

[8];

383/2023

Tohannes Degle.

DIXIT, ET FACTA SUN MANDAVITET CREATASUN

Italian Greenhouse Gas Inventory 1990-2021 National Inventory Report 2023

Tofephy à Montalegre Sculpsit, Norimberijo

alm

Italian Greenhouse Gas Inventory 1990-2021 National Inventory Report 2023

RAPPORTI 383/2023

Legal Disclaimer

The Institute for Environmental Protection and Research (ISPRA), together with the 21 Regional Agencies (ARPA) and Provincial Agencies (APPA) for the protection of the environment, as of 14 January 2017 is part of the National Network System for the Protection of the Environment (SNPA), established by the Law June 28, 2016, n.132.

The Institute for Environmental Protection and Research, or persons acting on its behalf, are not responsible for the use that may be made of the information contained in this report.

ISPRA - Institute for Environmental Protection and Research Via Vitaliano Brancati, 48 – 00144 Rome www.isprambiente.gov.it

ISPRA, Rapporti 383/2023 ISBN 978-88-448-1155-6

Extracts from this document may be reproduced on the condition that the source is acknowledged

Graphic design

Cover design: Antonella Monterisi - ISPRA – Communications Area - Graphic Office Cover image: DEGLER, Johannes. Untitled spherical map of Central Asia. Munich, 1700. 235 x 180mm. Altea Gallery Antique Maps & Rare Charts, 35 St George Street, London, UK

Coordination of the online publication:

Daria Mazzella

ISPRA – Communications Area

15th April 2023

Annual Report for submission under the UN Framework Convention on Climate Change

Authors

Daniela Romano, Chiara Arcarese, Antonella Bernetti, Antonio Caputo, Marco Cordella, Riccardo De Lauretis, Eleonora Di Cristofaro, Andrea Gagna, Barbara Gonella, Federica Moricci, Guido Pellis, Ernesto Taurino, Marina Vitullo

INTRODUCTION

Daniela Romano Riccardo De Lauretis Chiara Arcarese

TRENDS IN GREENHOUSE GAS EMISSIONS

Daniela Romano

ENERGY

Riccardo De Lauretis Ernesto Taurino Daniela Romano (§3.5.1, §3.5.4) Antonella Bernetti (§3.5) Antonio Caputo (§3.9) Marco Cordella (§3.5, §3.6)

INDUSTRIAL PROCESSES AND PRODUCT USE

Andrea Gagna Barbara Gonella Ernesto Taurino Federica Moricci Daniela Romano (§4.5, §4.8)

AGRICULTURE

Eleonora Di Cristofaro Angela Fiore

LAND USE, LAND USE CHANGE AND FORESTRY

Marina Vitullo Guido Pellis

WASTE

Barbara Gonella Ernesto Taurino

RECALCULATIONS AND IMPROVEMENTS

Daniela Romano

ANNEXES

Key CATEGORIES AND UNCERTAINTY Daniela Romano Antonio Caputo Marina Vitullo

ENERGY CONSUMPTION FOR POWER GENERATION

Riccardo De Lauretis Ernesto Taurino

ESTIMATION OF CARBON CONTENT OF COALS USED IN INDUSTRY Ernesto Taurino

CO2 REFERENCE APPROACH

Ernesto Taurino Riccardo De Lauretis

NATIONAL EMISSION FACTORS

Antonio Caputo Riccardo De Lauretis Ernesto Taurino

AGRICULTURE SECTOR

Eleonora Di Cristofaro Angela Fiore

THE NATIONAL REGISTRY

Chiara Arcarese

FOR-EST MODEL

Guido Pellis Marina Vitullo

FOR-FIRES MODEL

Guido Pellis Marina Vitullo

Contact: Daniela Romano Telephone +39 0650072541 E-mail daniela.romano@isprambiente.it

ISPRA- Institute for Environmental Protection and Research Environmental Assessment, Control and Sustainability Department Emissions, Prevention of Atmospheric Impacts and Climate Change Area Air Emission Inventory Unit Via V. Brancati, 48 00144 Rome – Italy Text available on ISPRA website at <u>www.isprambiente.gov.it</u>

INDICE

Som	mario (Italian)	22
1 IN	ITRODUCTION	23
1.1	Background information on greenhouse gas inventories and climate change	23
1.2	Description of the institutional arrangement for inventory preparation	26
1.2.1	National Inventory System	26
1.3	Brief description of the process of inventory preparation	28
1.4	Brief general description of methodologies and data sources used	30
1.5	Brief description of key categories	34
1.6 where	Information on the QA/QC plan including verification and treatment of confidentiality iss e relevant	ues 39
1.7 totals	General uncertainty evaluation, including data on the overall uncertainty for the invent 543	ory
1.8	General assessment of the completeness	44
2 TR	RENDS IN GREENHOUSE GAS EMISSIONS	47
2.1	Description and interpretation of emission trends for aggregate greenhouse gas emissions	s 47
2.2	Description and interpretation of emission trends by gas	49
2.2.1	Carbon dioxide emissions	49
2.2.2	Methane emissions	50
2.2.3	Nitrous oxide emissions	51
2.2.4	Fluorinated gas emissions	52
2.3	Description and interpretation of emission trends by source	53
2.3.1	Energy	53
2.3.2	Industrial processes and product use	55
2.3.3	Agriculture	56
2.3.4	LULUCF	57
2.3.5	Waste	59
2.4	Description and interpretation of emission trends for indirect greenhouse gases and SO_2	61
2.5	Indirect CO ₂ and nitrous oxide emissions	62
3 EN	NERGY [CRF sector 1]	64
3.1	Sector overview	64
3.2	Methodology description	71
3.3	Energy industries	74
3.3.1		74
3.3.1.		74
	2 Methodological issues	75
3.3.2	Refineries	76
3.3.2.		76
3.3.2.	5	76
3.3.2.	3 Uncertainty and time-series consistency	77

3.3.2.4 Source-specific QA/QC and verification	78
3.3.2.5 Source-specific recalculations	78
3.3.2.6 Source-specific planned improvements	78
3.3.3 Manufacture of Solid Fuels and Other Energy Industries	78
3.3.3.1 Source category description	78
3.3.3.2 Methodological issues	79
3.3.3.3 Uncertainty and time-series consistency	79
3.3.3.4 Source-specific QA/QC and verification	80
3.3.3.5 Source-specific recalculations	80
3.3.3.6 Source-specific planned improvements	80
3.4 Manufacturing industries and construction	81
3.4.1 Sector overview	81
3.4.2 Source category description	82
3.4.3 Methodological issues	85
3.4.4 Uncertainty and time-series consistency	89
3.4.5 Source-specific QA/QC and verification	90
3.4.6 Source-specific recalculations	90
3.4.7 Source-specific planned improvements	90
3.5 Transport	91
3.5.1 Aviation	92
3.5.1.1 Source category description	92
3.5.1.2 Methodological issues	92
3.5.1.3 Uncertainty and time-series consistency	95
3.5.1.4 Source-specific QA/QC and verification	95
3.5.1.5 Source-specific recalculations	95
3.5.1.6 Source-specific planned improvements	95
3.5.2 Road Transport	96
3.5.2.1 Source category description	96
3.5.2.2 Methodological issues	96
3.5.2.3 Uncertainty and time-series consistency	107
3.5.2.4 Source-specific QA/QC and verification	108
3.5.2.5 Source-specific recalculations	108
3.5.2.6 Source-specific planned improvements	110
3.5.3 Railways	110
3.5.4 Navigation	111
3.5.4.1 Source category description	111
3.5.4.2 Methodological issues	111
3.5.4.3 Uncertainty and time-series consistency	113
3.5.4.4 Source-specific QA/QC and verification	114

3.5.4.	5 Source-specific recalculations	114
3.5.4.	6 Source-specific planned improvements	114
3.5.5	Other transportation	114
3.5.5.	1 Source category description	114
3.5.5.	2 Methodological issues	114
3.5.5.	3 Uncertainty and time-series consistency	115
3.5.5.	4 Source-specific QA/QC and verification	115
3.5.5.	5 Source-specific recalculations	115
3.5.5.	6 Source-specific planned improvements	115
3.6	Other sectors	116
3.6.1	Sector overview	116
3.6.2	Source category description	117
3.6.3	Methodological issues	118
3.6.4	Uncertainty and time-series consistency	121
3.6.5	Source-specific QA/QC and verification	122
3.6.6	Source-specific recalculations	122
3.6.7	Source-specific planned improvements	122
3.7	International bunkers	122
3.8	Feedstock and non-energy use of fuels	123
3.8.1	Source category description	123
3.8.2	Methodological issues	123
3.8.3	Uncertainty and time-series consistency	125
3.8.4	Source-specific QA/QC and verification	125
3.8.5	Source-specific recalculations	125
3.9	Fugitive emissions from solid fuels, oil and natural gas	125
3.9.1	Source category description	125
3.9.2	Methodological issues	126
3.9.3	Uncertainty and time-series consistency	132
3.9.4	Source-specific QA/QC and verification	133
3.9.5	Source-specific recalculations	133
3.9.6	Source-specific planned improvements	134
4 IN	IDUSTRIAL PROCESSES AND PRODUCT USE [CRF sector 2]	135
4.1	Sector overview	135
4.2	Mineral Products (2A)	138
4.2.1	Source category description	138
4.2.2	5	140
4.2.3		146
4.2.4		147
4.2.5	Source-specific recalculations	147

4.2.6	Source-specific planned improvements	147
4.3	Chemical industry (2B)	147
4.3.1	Source category description	147
4.3.2	Methodological issues	151
4.3.3	Uncertainty and time-series consistency	159
4.3.4	Source-specific QA/QC and verification	161
4.3.5	Source-specific recalculations	161
4.3.6	Source-specific planned improvements	161
4.4	Metal production (2C)	162
4.4.1	Source category description	162
4.4.2	Methodological issues	164
4.4.3	Uncertainty and time-series consistency	169
4.4.4	Source-specific QA/QC and verification	171
4.4.5	Source-specific recalculations	171
4.4.6	Source-specific planned improvements	171
4.5	Non-energy products from fuels and solvent use (2D)	171
4.5.1	Source category description	171
4.5.2	Methodological issues	172
4.5.3	Uncertainty and time-series consistency	174
4.5.4	Source-specific QA/QC and verification	175
4.5.5	Source-specific recalculations	176
4.5.6	Source-specific planned improvements	177
4.6	Electronics Industry Emissions (2E)	177
4.6.1	Source category description	177
4.6.2	Methodological issues	177
4.6.3	Uncertainty and time-series consistency	179
4.6.4	Source-specific QA/QC and verification	179
4.6.5	Source-specific recalculations	179
4.6.6	Source-specific planned improvements	179
4.7	Emissions of fluorinated substitutes for ozone depleting substances (2F)	180
4.7.1	Source category description	180
4.7.2	Methodological issues	180
4.7.3	Emissions from Stationary Air Conditioning sector	181
4.7.4	Emissions from Refrigeration sector: commercial, domestic and industrial	196
4.7.5 Aeros	Emissions from Mobile Air Conditioning, Foam blowing Agents, Fire Protection sols 205	and
4.7.6	Uncertainty and time-series consistency	209
4.7.7	Source-specific QA/QC and verification	211
4.7.8	Source-specific recalculations	212

4.7.9	Source-specific planned improvements	215
4.8	Other product manufacture and use (2G)	216
4.8.1	Source category description	216
4.8.2	Methodological issues	216
4.8.3	Uncertainty and time series consistency	220
4.8.4	Source-specific QA/QC and verification	221
4.8.5	Source-specific recalculation	221
4.8.6	Source-specific planned improvements	221
4.9	Other production (2H)	221
4.9.1	Source category description	221
5 AC	GRICULTURE [CRF sector 3]	222
5.1	Sector overview	222
5.1.1	Emission trends	223
5.1.2	Key categories	224
5.1.3	Activities	224
5.1.4	Agricultural statistics	225
5.2	Enteric fermentation (3A)	226
5.2.1	Source category description	226
5.2.2	Methodological issues	226
5.2.3	Uncertainty and time-series consistency	234
5.2.4	Source-specific QA/QC and verification	234
5.2.5	Source-specific recalculations	235
5.2.6	Source-specific planned improvements	235
5.3	Manure management (3B)	235
5.3.1	Source category description	235
5.3.2	Methodological issues	236
5.3.3	Uncertainty and time-series consistency	250
5.3.4	Source-specific QA/QC and verification	251
5.3.5	Source-specific recalculations	252
5.3.6	Source-specific planned improvements	252
5.4	Rice cultivation (3C)	253
5.4.1	Source category description	253
5.4.2	Methodological issues	254
5.4.3	Uncertainty and time-series consistency	257
5.4.4	Source-specific QA/QC and verification	257
5.4.5	Source-specific recalculations	258
5.4.6	Source-specific planned improvements	258
5.5	Agriculture soils (3D)	258
5.5.1	Source category description	258

5.5.2	Methodological issues	259
5.5.3	Uncertainty and time-series consistency	266
5.5.4	Source-specific QA/QC and verification	267
5.5.5	Source-specific recalculations	268
5.5.6	Source-specific planned improvements	269
5.6	Field burning of agriculture residues (3F)	269
5.6.1	Source category description	269
5.6.2	Methodological issues	269
5.6.3	Uncertainty and time-series consistency	272
5.6.4	Source-specific QA/QC and verification	272
5.6.5	Source-specific recalculations	272
5.6.6	Source-specific planned improvements	272
5.7	Liming (3G)	273
5.7.1	Source category description	273
5.7.2	Methodological issues	273
5.7.3	Uncertainty and time-series consistency	273
5.7.4	Source-specific QA/QC and verification	273
5.7.5	Source-specific recalculations	274
5.7.6	Source-specific planned improvements	274
5.8	Urea application (3H)	274
5.8.1	Source category description	274
5.8.2	Methodological issues	274
5.8.3	Uncertainty and time-series consistency	274
5.8.4	Source-specific QA/QC and verification	275
5.8.5	Source-specific recalculations	275
5.8.6	Source-specific planned improvements	275
5.9	Other carbon-containing fertilizers (3I)	275
5.9.1	Source category description	275
5.9.2	Methodological issues	275
5.9.3	Uncertainty and time-series consistency	275
5.9.4	Source-specific QA/QC and verification	276
5.9.5	Source-specific recalculations	276
5.9.6	Source-specific planned improvements	276
6 LA	ND USE, LAND USE CHANGE AND FORESTRY [CRF sector 4]	277
6.1	Sector overview	277
6.2	Forest Land (4A)	282
6.2.1	Description	282
6.2.2 for th	Information on approaches used for representing land areas and on land-use databases ne inventory preparation	used 283

6.2.3 LULU	Land-use definitions and the classification systems used and their corresponden JCF categories	ice to the 283
6.2.4	Methodological issues	283
6.2.5	Uncertainty and time series consistency	290
6.2.6	Category-specific QA/QC and verification	292
6.2.7	Category-specific recalculations	294
6.2.8	Category-specific planned improvements	295
6.3	Cropland (4B)	296
6.3.1	Description	296
6.3.2 for th	Information on approaches used for representing land areas and on land-use datab ne inventory preparation	ases used 296
6.3.3 LULU	Land-use definitions and the classification systems used and their corresponden JCF categories	ce to the 296
6.3.4	Methodological issues	296
6.3.5	Uncertainty and time series consistency	302
6.3.6	Category-specific QA/QC and verification	302
6.3.7	Category-specific recalculations	302
6.3.8	Category-specific planned improvements	303
6.4	Grassland (4C)	303
6.4.1	Description	303
6.4.2 for th	Information on approaches used for representing land areas and on land-use datab ne inventory preparation	ases used 303
6.4.3 LULU	Land-use definitions and the classification systems used and their corresponden JCF categories	ce to the 304
6.4.4	Methodological issues	304
6.4.5	Uncertainty and time series consistency	309
6.4.6	Category-specific QA/QC and verification	309
6.4.7	Category-specific recalculations	310
6.4.8	Category-specific planned improvements	310
6.5	Wetlands (4D)	311
6.5.1	Description	311
6.5.2 for th	Information on approaches used for representing land areas and on land-use datab ne inventory preparation	ases used 311
6.5.3 LULU	Land-use definitions and the classification systems used and their corresponden JCF categories	ice to the 311
6.5.4	Methodological issues	311
6.5.5	Uncertainty and time series consistency	312
6.5.6	Category-specific QA/QC and verification	312
6.5.7	Category-specific recalculations	312
6.5.8	Category-specific planned improvements	312
6.6	Settlements (4E)	313

6.6.1	Description	313
6.6.2 for the	Information on approaches used for representing land areas and on land-use databases inventory preparation	used 313
	Land-use definitions and the classification systems used and their correspondence to F categories	o the 313
6.6.4	Methodological issues	313
6.6.5	Uncertainty and time series consistency	315
6.6.6	Category-specific QA/QC and verification	315
6.6.7	Category-specific recalculations	316
6.6.8	Category -specific planned improvements	316
6.7 0	Other Land (4F)	316
6.8 [Direct N2O emissions from N inputs to managed soils (4(I))	316
	Emissions and removals from drainage and rewetting and other management of organial soils (4(II))	c and 317
matter	N2O emissions from N mineralization/immobilization associated with loss/gain of soil or resulting from change of land use or management of mineral soils	317
	Description	317
6.10.2	Methodological issues	317
6.10.3	Category-specific recalculations	318
	ndirect N2O emissions from managed soils (4(IV))	318
6.11.1	Description	318
6.11.2	Methodological issues	319
6.11.3	Category-specific recalculations	319
6.12 E	Biomass Burning (4(V))	319
6.12.1	Description	319
6.12.2	Methodological issues	320
6.12.3	Uncertainty and time series consistency	321
6.12.4	Category-specific QA/QC and verification	321
6.12.5	Category-specific recalculations	321
6.12.6	Category-specific planned improvements	322
6.13 H	Harvested wood products (HWP) (4G)	323
6.13.1	Description	323
6.13.2	Methodological issues	323
6.13.3	Uncertainty and time series consistency	324
6.13.4	Category-specific QA/QC and verification	324
6.13.5	Category-specific recalculations	324
6.13.6	Category-specific planned improvements	325
7 WA	STE [CRF sector 5]	326
7.1 5	Sector overview	326
7.2 5	Solid waste disposal on land (5A)	327
7.2.1	Source category description	327

7.2.2	Methodological issues	328
7.2.3	Uncertainty and time-series consistency	340
7.2.4	Source-specific QA/QC and verification	341
7.2.5	Source-specific recalculations	343
7.2.6	Source-specific planned improvements	344
7.3	Biological treatment of solid waste (5B)	344
7.3.1	Source category description	344
7.3.2	Methodological issues	344
7.3.3	Uncertainty and time-series consistency	346
7.3.4	Source-specific QA/QC and verification	346
7.3.5	Source-specific recalculations	346
7.3.6	Source-specific planned improvements	346
7.4	Waste incineration (5C)	347
7.4.1	Source category description	347
7.4.2	Methodological issues	347
7.4.3	Uncertainty and time-series consistency	352
7.4.4	Source-specific QA/QC and verification	353
7.4.5	Source-specific recalculations	353
7.4.6	Source-specific planned improvements	354
7.5	Wastewater handling (5D)	355
7.5.1	Source category description	355
7.5.2	Methodological issues	356
7.5.3	Uncertainty and time-series consistency	362
7.5.4	Source-specific QA/QC and verification	364
7.5.5	Source-specific recalculations	364
7.5.6	Source-specific planned improvements	364
8 RI	ECALCULATIONS AND IMPROVEMENTS	366
8.1	Explanations and justifications for recalculations	366
8.2	Implications for emission levels	366
8.3	Implications for emission trends, including time series consistency	368
8.4	Recalculations, response to the review process and planned improvements	368
8.4.1	Recalculations	368
8.4.2	Response to the UNFCCC review process	370
8.4.3	Planned improvements (e.g., institutional arrangements, inventory preparation)	370
	EFERENCES	372
9.1	INTRODUCTION and TRENDS IN GREENHOUSE GAS EMISSIONS	372
9.2		373
9.3	INDUSTRIAL PROCESSES AND PRODUCT USE	376
9.4 9.5	AGRICULTURE LAND USE, LAND USE CHANGE AND FORESTRY	381 390
2.2	LAND USE, LAND USE CHANGE AND FORESTRI	290

9.6	WASTE	393
9.7	ANNEX 2	398
9.8	ANNEX 3	399
9.9	ANNEX 4	399
9.10	ANNEX 5	399
9.11	ANNEX 6	399
9.12	ANNEX 7	400
9.13	ANNEX 9	402
9.14	ANNEX 13	402
9.15	ANNEX 14	403
ANNE	EX 1: KEY CATEGORIES AND UNCERTAINTY	404
A1.1 l	ntroduction	404
A1.2 A	Approach 1 key category assessment	404
A1.3 L	Jncertainty assessment (IPCC Approach 1)	411
A1.4 A	Approach 2 key category assessment	424
ANNE	EX 2: ENERGY CONSUMPTION FOR POWER GENERATION	431
A2.1	Source category description	431
A2.2 N	Methodological issues	432
A2.3 L	Incertainty and time-series consistency	434
A2.4 S	Source-specific QA/QC and verification	435
A2.5 S	Source-specific recalculations	435
A2.6 S	Source-specific planned improvements	436
ANNE	EX 3: ESTIMATION OF CARBON CONTENT OF COALS USED IN INDUSTRY	437
ANNE	EX 4: CO ₂ REFERENCE APPROACH	441
A4.1 li	ntroduction	441
A4.2 C	Comparison of the sectoral approach with the reference approach	442
	Comparison of the sectoral approach with the reference approach and international sta 443	tistics
	EX 5: NATIONAL ENERGY BALANCE, YEAR 2021	445
	EX 6: NATIONAL EMISSION FACTORS	461
A6.1 N	Natural gas	461
A6.2 D	Diesel oil, petrol and LPG	463
A6.3 F	uel oil	464
A6.4 C	Coal	465
A6.5 C	Other fuels	467
ANNE	EX 7: AGRICULTURE SECTOR	473
A7.1 E	Interic fermentation (3A)	473
A7.2 N	Manure management (3B)	477
A7.3 A	Agricultural soils (3D)	489
ANNE	EX 8: ADDITIONAL INFORMATION OF THE ANNUAL INVENTORY SUBMISSION	501
A8.1 A	Annual inventory submission	501
	2 Standard electronic format	514

ANNEX 9: MINIMIZATION OF ADVERSE IMPACTS	526
ANNEX 10: THE NATIONAL REGISTRY	531
ANNEX 11: OVERVIEW OF THE CURRENT SUBMISSION IMPROVEMENTS	536
A11.1 Results of the UNFCCC review process	536
A11.2 Results of the ESD technical review process	539
ANNEX 12: REPORTING UNDER EU REGULATION No 525/2013	540
A12.1 Article 10 of the EU Regulation	540
A12.2Article 12 of the EU Regulation	543
ANNEX 13: FOR-EST MODEL	545
ANNEX 14: FOR-FIRES MODEL	554
A14.1 Method description	554
A14.2 Activity data	555
A14.3 Methodological issues	556

PREMESSA

Nell'ambito degli strumenti e delle politiche per fronteggiare i cambiamenti climatici, un ruolo fondamentale è svolto dal monitoraggio delle emissioni dei gas-serra.

A garantire la predisposizione e l'aggiornamento annuale dell'inventario dei gas-serra secondo i formati richiesti, in Italia, è l'ISPRA su incarico del Ministero dell'Ambiente e della Tutela del Territorio e del Mare, attraverso le indicazioni del Decreto Legislativo n. 51 del 7 marzo 2008 e, più di recente, del Decreto Legislativo n. 30 del 13 marzo 2013, che prevedono l'istituzione di un Sistema Nazionale, *National System*, relativo all'inventario delle emissioni dei gas-serra.

In più, come è previsto dalla Convenzione-quadro sui cambiamenti climatici, l'ISPRA documenta in uno specifico rapporto, il *National Inventory Report*, le metodologie di stima utilizzate, unitamente ad una spiegazione degli andamenti osservati.

Il National Inventory Report facilita i processi internazionali di verifica cui le stime ufficiali di emissione dei gas serra sono sottoposte. In particolare, viene esaminata la rispondenza alle proprietà di trasparenza, consistenza, comparabilità, completezza e accuratezza nella realizzazione, qualità richieste esplicitamente dalla Convenzione suddetta. L'inventario delle emissioni è sottoposto ogni anno ad un esame (*review*) da parte di un organismo nominato dal Segretariato della Convenzione che analizza tutto il materiale presentato dal Paese e ne verifica in dettaglio le qualità su enunciate. Senza tali requisiti, l'Italia sarebbe esclusa dalla partecipazione ai meccanismi flessibili, come il mercato delle quote di emissioni, l'implementazione di progetti con i Paesi in via di sviluppo (CDM) e l'implementazione di progetti congiunti con i Paesi a economia in transizione (JI).

Il presente documento rappresenta, inoltre, un riferimento fondamentale per la pianificazione e l'attuazione di tutte le politiche ambientali da parte delle istituzioni centrali e periferiche. Accanto all'inventario dei gas-serra, l'ISPRA realizza ogni anno l'inventario nazionale delle emissioni in atmosfera, richiesto dalla Convenzione di Ginevra sull'inquinamento atmosferico transfrontaliero (UNECE-CLRTAP) e dalle Direttive europee sulla limitazione delle emissioni. In più, tutto il territorio nazionale è attualmente coperto da inventari regionali sostanzialmente coerenti con l'inventario nazionale, realizzati principalmente dalle Agenzie Regionali e Provinciali per la Protezione dell'Ambiente.

Nonostante i progressi compiuti, l'attività di preparazione degli inventari affronta continuamente nuove sfide legate alla necessità di considerare nuove sorgenti e nuovi inquinanti e di armonizzare gli inventari prodotti per diverse finalità di *policy*. Il contesto internazionale al quale fa riferimento la preparazione dell'inventario nazionale costituisce una garanzia di qualità dei dati, per l'autorevolezza dei riferimenti metodologici, l'efficacia del processo internazionale di *review* e la flessibilità nell'adattamento alle nuove circostanze.

EXECUTIVE SUMMARY

ES.1. Background information on greenhouse gas inventories and climate change

The United Nations Framework Convention on Climate Change (FCCC) was ratified by Italy in the year 1994 through law no.65 of 15/01/1994.

The Kyoto Protocol, adopted in December 1997, has established emission reduction objectives for Annex B Parties (i.e., industrialised countries and countries with economy in transition): in particular, the European Union as a whole was committed to an 8% reduction within the period 2008-2012, in comparison with base year levels. For Italy, the EU burden sharing agreement, set out in Annex II to Decision 2002/358/EC and in accordance with Article 4 of the Kyoto Protocol, had established a reduction objective of 6.5% in the commitment period, in comparison with 1990 levels.

Subsequently, on 1st June 2002, Italy ratified the Kyoto Protocol through law no.120 of 01/06/2002. The ratification law also prescribed the preparation of a National Action Plan to reduce greenhouse gas emissions, which was adopted by the Interministerial Committee for Economic Planning (CIPE) on 19th December 2002 (deliberation n. 123 of 19/12/2002). The Kyoto Protocol entered into force in February 2005. The first commitment period ended in 2012, with an extension, for fulfilling commitments, to 18th November 2015, the so called *true-up period*. The evaluation of the Kyoto Protocol, together with the commitments fulfilled by each Party, has been finalized by the UNFCCC Secretariat.

A new global agreement was reached in Paris in December 2015, for the period after 2020. The agreement aims to strengthen the global response to the threat of climate change by holding the increase in the global temperature to well below 2°C above pre-industrial levels and to pursue efforts to limit the temperature increase to 1.5 °C above pre-industrial levels, recognizing that this would significantly reduce the risks and impact of climate change. On 5th October 2016, the threshold for entry into force of the Paris Agreement was achieved and the Paris Agreement entered into force on 4th November 2016.

To fulfil the gap 2013-2020, the 'Doha Amendment to the Kyoto Protocol' was adopted on 8th December 2012.

The EU and its Member States have committed to this second phase of the Kyoto Protocol and established to reduce their collective emissions to 20% below their levels in 1990 or other chosen base years; this is also reflected in the Doha Amendment. The target will be fulfilled jointly with Iceland.

As a Party to the Convention and the Paris Agreement, Italy is committed to develop, publish and regularly update national emission inventories of greenhouse gases (GHGs) as well as formulate and implement programs to reduce these emissions.

In order to establish compliance with national and international commitments, the national GHG emission inventory is compiled and communicated annually by the Institute for Environmental Protection and Research (ISPRA) to the competent institutions, after endorsement by the Ministry of the Environment, (now, MASE). The submission is carried out through compilation of the Common Reporting Format (CRF), according to the guidelines provided by the United Nations Framework Convention on Climate Change and the European Union's Greenhouse Gas Monitoring Mechanism. As a whole, an annual GHG inventory submission shall consist of a national inventory report (NIR) and the common reporting format (CRF) tables as specified in the Guidelines on reporting and review of greenhouse gas inventories from Parties included in Annex I to the Convention, decision 24/CP.19, in FCCC/CP/2013/10/Add.3.

Detailed information on emission figures and estimation procedures, including all the basic data needed to carry out the final estimates, is to be provided to improve the transparency, consistency, comparability, accuracy, and completeness of the inventory provided.

The national inventory is updated annually to reflect revisions and improvements in the methodology and use of the best information available. Adjustments are applied retrospectively to earlier years, which accounts for any difference in previously published data. This report provides an analysis of the Italian GHG emission inventory communicated to the Secretariat of the Climate Change Convention and to the European Commission in the framework of the Greenhouse Gas Monitoring Mechanism in the year 2023, including the update for the year 2021 and the revision of the entire time series 1990-2020.

Emission estimates comprise the seven direct greenhouse gases under the Convention (carbon dioxide, methane, nitrous oxide, hydrofluorocarbons, perfluorocarbons, sulphur hexafluoride, nitrogen trifluoride) which contribute directly to climate change owing to their positive radiative forcing effect and four indirect greenhouse gases (nitrogen oxides, carbon monoxide, non-methane volatile organic compounds, sulphur dioxide). From this year submission, Italy, as well as all EU Member States, has used the 100-year time-horizon global warming potential values, excluding the value for fossil methane, listed in table 8.A.1 in the contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change¹, following the COP27 decision taken in 2022 on the 'Revision of the UNFCCC reporting guidelines on annual inventories for Parties included in Annex I to the Convention'.

This report, the CRF files and other related documents are available on website at the address <u>http://emissioni.sina.isprambiente.it/serie-storiche-emissioni/</u>.

The official inventory submissions can also be found at the UNFCCC website <u>https://unfccc.int/ghg-inventories-annex-i-parties/2022.</u>

ES.2. Summary of national emission and removal related trends

Total greenhouse gas emissions, in CO_2 equivalent, excluding emissions and removals from land use, land use change and forestry, decreased by 19.9% between 1990 and 2021 (from 521 to 418 million of CO_2 equivalent tons).

The most important greenhouse gas, CO₂, which accounted for 80.8% of total emissions in CO₂ equivalent in 2021, showed a decrease by 23.2% between 1990 and 2021. CH₄ and N₂O emissions were equal to 11.3% and 4.1%, respectively, of the total CO₂ equivalent greenhouse gas emissions in 2021. Both gases showed a decrease from 1990 to 2021, equal to 14.3% and 28.9% for CH₄ and N₂O, respectively. Other greenhouse gases, HFCs, PFCs, SF₆ and NF₃, ranged from less than 0.01% to 4.0% of total emissions.

Table ES.1 illustrates the national trend of greenhouse gases for 1990-2021, expressed in CO_2 equivalent terms, by substance and category.

¹ IPCC, 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. TF Stocker, D Qin, G-K Plattner, et al. (eds.). Cambridge and New York: Cambridge University Press. Available at http://www.ipcc.ch/report/ar5/wg1.

GHG emissions	1990	1995	2000	2005	2010	2015	2018	2019	2020	2021
					kt CO₂ eq	juivalent				
CO ₂ excluding net CO ₂ from LULUCF	438,904	449,430	470,524	502,347	436,534	361,936	349,827	340,403	303,281	337,230
CO ₂ including net CO ₂ from LULUCF	433,214	424,391	447,552	465,893	394,075	317,385	304,086	297,929	269,900	308,306
CH ₄ excluding CH ₄ from LULUCF	54,975	57,034	57,706	54,703	52,690	49,316	47,972	46,762	47,513	47,087
CH ₄ including CH ₄ from LULUCF	56,416	57,373	58,506	55,038	53,083	49,611	48,144	46,965	47,885	48,065
N ₂ O excluding N ₂ O from LULUCF	24,193	26,177	26,923	26,048	18,090	16,788	16,893	16,691	17,346	17,193
N ₂ O including N ₂ O from LULUCF	24,954	26,958	27,541	26,608	18,472	17,079	17,292	17,124	17,811	17,666
HFCs	372	861	2,803	8,718	14,325	15,630	16,928	17,019	16,035	15,388
PFCs	2,615	1,351	1,363	1,759	1,377	1,529	1,502	915	499	395
Unspecified mix of HFCs and PFCs	NO,NA	24	24	24	24	24	23	23	22	25
SF ₆	421	700	621	565	405	485	464	444	257	258
NF ₃	NA,NO	77	13	33	20	28	22	18	16	15
Total (excluding	521,480	535,654	559,978	594,197	523,466	445,736	433,631	422,276	384,970	417,591
LULUCF) Total (including LULUCF)	517,992	511,734	538,424	558,640	481,781	401,772	388,460	380,439	352,425	390,118

Table ES.1. Total greenhouse gas	s emissions and removals in	CO ₂ equivalent [kt CO ₂ eq]
----------------------------------	-----------------------------	--

GHG categories	1990	1995	2000	2005	2010	2015	2018	2019	2020	2021
			kt C	CO₂ equival	lent					
1. Energy	425,548	438,293	460,326	488,285	429,904	359,966	346,504	336,391	300,048	332,832
2. Industrial Processes and Product Use	39,257	37,271	38,368	47,226	38,960	33,328	34,927	34,038	31,040	31,852
3. Agriculture	37,676	38,076	37,185	34,629	32,225	32,102	32,306	32,190	33,427	32,717
4. LULUCF	-3,489	-23,920	-21,554	-35,557	-41,685	-43,964	-45,171	-41,837	-32,545	-27,473
5. Waste	18,999	22,014	24,099	24,058	22,377	20,340	19,893	19,657	20,456	20,190
6. Other	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
Total (including LULUCF)	517,992	511,734			481,781	401,772	388,460	380,439	352,425	390,118

ES.3. Overview of source and sink category emission estimates and trends

The energy sector is the largest contributor to national total GHG emissions with a share, in 2021, of 79.7%. Emissions from this sector decreased by 21.8% from 1990 to 2021. Substances with decrease rates were CO₂, whose levels reduced by 21.3% from 1990 to 2021 and accounts for 96.7% of the total in the energy sector, and CH₄ which showed a reduction of 43.5% but its share out of the sectoral total is only 2.0%; N₂O showed an increase of 0.3% from 1990 to 2021, accounting for 1.4%. Specifically, in terms of total CO₂ equivalent, an increase in emissions was observed only in the other sectors, about 6.3%, from 1990 to 2021 which account for 25.0% of the total sectoral emissions in 2021; the transport sector (31.1% of the total energy emissions) showed an increase of 1.1% from 1990 to 2021.

For the industrial processes sector, emissions showed a decrease of 18.9% from 1990 to 2021. Specifically, by substance, CO_2 emissions account for 47.7% and showed a decrease by 48.1%, CH_4 decreased by 68.7%, but it accounts only for 0.1%, while N₂O, whose levels share 1.8% of total industrial emissions, decreased by 92.1%. The decrease in emissions is mostly due to a decrease in chemical industry (due to

the fully operational abatement technology in the adipic acid industry) and mineral and metal production emissions. A considerable increase was observed in F-gases emissions, whose level on total sectoral emissions is more than 50%.

For agriculture, emissions refer mainly to CH₄ and N₂O levels, which account for 59.6% and 39.0% of the sectoral total, respectively; CO₂, on the other hand, shares only 1.4% of the total. The decrease observed in the total level of emissions (-13.1%) is mostly due to the decrease of CH₄ emissions from enteric fermentation (-14.2%), which account for 41.2% of sectoral emissions and to the decrease of N₂O from agricultural soils (-7.8%), which accounts for 32.6% of sectoral emissions.

As regards land use, land-use change and forestry, from 1990 to 2021 total removals in CO₂ equivalent considerably increased; CO₂ accounts for almost the total emissions and removals of the sector (95.4%).

Finally, emissions from the waste sector increased by 6.3% from 1990 to 2021, mainly due to an increase in the emissions from solid waste disposal on land (14.7%), which account for 76.1% of waste emissions. The most important greenhouse gas in this sector is CH₄ which accounts for 90.0% of the sectoral emissions and shows an increase of 7.1% from 1990 to 2021. N₂O emission levels increased by 33.2%, whereas CO₂ decreased by 83.2%; these gases account for 9.5% and 0.5% in the sector, respectively.

Table ES.2 provides an overview of the CO₂ equivalent emission trends by IPCC source category.

Table ES.2. Summary of emission trends by source category and gas in CO₂ equivalent [kt CO₂ eq.]

Category	1990	1995	2000	2005	2010	2015	2018	2019	2020	2021
			kt CC	D₂ equivaler	nt	-			-	
A. Energy: fuel combustion	411,345	424,917	448,235	477,669	420,227	351,289	339,054	329,427	293,855	327,124
CO2: 1. Energy Industries	136,941	139,941	144,273	159,227	136,885	105,486	95,335	91,235	81,212	86,009
CO ₂ : 2. Manufacturing Industries and Construction	90,772	88,969	94,893	90,786	68,899	54,552	53,228	48,972	44,899	52,791
CO ₂ : 3. Transport	100,319	111,531	121,642	126,780	114,628	105,587	104,042	105,231	85,640	102,200
CO ₂ : 4. Other Sectors	75,428	75,205	79,023	92,265	90,880	77,681	78,721	76,229	74,587	78,347
CO2: 5. Other	1,071	1,496	837	1,233	652	459	341	453	625	299
CH4	2,735	3,024	2,764	2,577	3,539	3,367	3,274	3,294	3,143	3,386
N ₂ O	4,078	4,751	4,803	4,801	4,743	4,157	4,113	4,013	3,747	4,092
1B2. Energy: fugitives from oil & gas	14,203	13,376	12,090	10,616	9,676	8,677	7,449	6,964	6,193	5,708
CO ₂	4,048	4,002	3,262	2,557	2,377	2,574	2,295	2,756	2,112	1,816
CH4	10,145	9,363	8,818	8,047	7,289	6,094	5,146	4,200	4,074	3,885
N ₂ O	11	10	11	12	11	9	8	8	7	8
2. Industrial processes	39,257	37,271	38,368	47,226	38,960	33,328	34,927	34,038	31,040	31,852
CO ₂	29,303	27,260	25,815	28,704	21,654	15,039	15,331	15,001	13,613	15,221
CH4	144	150	82	83	67	48	49	46	38	45
N2O	6,402	6,848	7,646	7,338	1,088	545	608	570	559	505
HFCs	372	861	2,803	8,718	14,325	15,630	16,928	17,019	16,035	15,388
PFCs	2,615	1,351	1,363	1,759	1,377	1,529	1,502	915	499	395
Unspecified mix of HFCs and PFCs	NO,NA	24	24	24	24	24	22.74	23.15	22.37	25.33
SF ₆	421	700	621	565	405	485	464	444	257	258
NF ₃	NA,NO	77	13	33	20	28	22.13	17.94	16.24	15.23
3. Agriculture	37,676	38,076	37,185	34,629	32,225	32,102	32,306	32,190	33,427	32,717
CO2: Liming	1	1	2	14	18	14	15	16	10	26
CO ₂ : Urea application	465	512	525	507	335	425	405	396	472	414
CO ₂ : Other carbon- containing fertilizers	44	54	44	42	28	20	22	17	21	22

Category	1990	1995	2000	2005	2010	2015	2018	2019	2020	2021
	·	. <u> </u>	kt CC	D₂ equivaler	nt				. <u> </u>	-
CH₄: Enteric fermentation	17,093	16,697	16,509	14,484	14,100	14,272	14,612	14,584	14,771	14,671
CH₄: Manure management	5,424	5,161	5,122	5,248	5,088	5,011	4,879	4,868	4,875	4,782
CH4: Rice Cultivation	2,102	2,228	1,855	1,962	2,041	1,868	1,793	1,776	1,788	1,756
CH₄: Field Burning of Agricultural Residues	16	16	16	17	16	17	16	16	16	16
N2O: Manure management	2,518	2,406	2,329	2,144	2,074	1,865	1,852	1,832	1,835	1,800
N ₂ O: Agriculture soils	10,011	10,998	10,779	10,206	8,521	8,607	8,708	8,683	9,634	9,228
N ₂ O: Field Burning of Agricultural Residues	3	3	3	4	4	4	3	3	3	3
4A. Land-use change and forestry	-3,489	-23,920	-21,554	-35,557	-41,685	-43,964	-45,171	-41,837	-32,545	-27,473
CO ₂	-5,690	-25,039	-22,972	-36,453	-42,459	-44,551	-45,741	-42,473	-33,381	-28,924
CH₄	1,440	339	800	335	392	296	171	203	371	978
N ₂ O	761	781	618	561	382	291	399	433	465	472
6. Waste	18,999	22,014	24,099	24,058	22,377	20,340	19,893	19,657	20,456	20,190
CO ₂	512	458	208	230	177	99	91	96	89	86
CH₄	17,317	20,395	22,540	22,284	20,551	18,639	18,202	17,979	18,808	18,546
N ₂ O	1,170	1,160	1,351	1,544	1,649	1,602	1,600	1,582	1,559	1,558
Total emissions (with LULUCF)	517,992	511,734	538,424	558,640	481,781	401,772	388,460	380,439	352,425	390,118
Total emissions (without LULUCF)	521,480	535,654	559,978	594,197	523,466	445,736	433,631	422,276	384,970	417,591

ES.4. Other information

In Table ES.3 NO_X, CO, NMVOC and SO₂ emission trends from 1990 to 2021 are summarised. All gases showed a significant reduction in 2021 as compared to 1990 levels. The highest reduction is observed for SO₂ (-95.2%), while NO_X and CO emissions reduced by about 72.1% and 72.4%, respectively; NMVOC levels showed a decrease by 57.9%.

Table ES.3. Total emissions of indirect greenhouse gases and SO₂ [kt]

	1990	1995	2000	2005	2010	2015	2018	2019	2020	2021
					kt	-	-			
NO _x	2,164	2,001	1,533	1,305	941	719	704	662	662	642
СО	6,796	7,071	4,750	3,467	3,073	2,266	2,191	2,258	2,049	2,060
NMVOC	1,993	2,058	1,630	1,340	1,116	897	880	921	894	888
SO ₂	1,784	1,323	757	411	222	126	120	117	109	105

Sommario (Italian)

Nel documento "Italian Greenhouse Gas Inventory 1990-2021. National Inventory Report 2023" si descrive la comunicazione annuale italiana dell'inventario delle emissioni dei gas serra in accordo a quanto previsto nell'ambito della Convenzione Quadro sui Cambiamenti Climatici delle Nazioni Unite (UNFCCC). Tale comunicazione è anche trasmessa all'Unione Europea nell'ambito del Meccanismo di Monitoraggio dei Gas Serra.

Ogni Paese che partecipa alla Convenzione, infatti, oltre a fornire annualmente l'inventario nazionale delle emissioni dei gas serra secondo i formati richiesti, deve documentare in un *report*, il *National Inventory Report*, la serie storica delle emissioni. La documentazione prevede una spiegazione degli andamenti osservati, una descrizione dell'analisi delle sorgenti principali, *key sources*, e dell'incertezza ad esse associata, un riferimento alle metodologie di stima e alle fonti dei dati di base e dei fattori di emissione utilizzati per le stime, un'illustrazione del sistema di *Quality Assurance/Quality Control* a cui è soggetto l'inventario e delle attività di verifica effettuate sui dati.

Il National Inventory Report facilita, inoltre, i processi internazionali di verifica cui le stime di emissione dei gas serra sono sottoposte al fine di esaminarne la rispondenza alle proprietà di trasparenza, consistenza, comparabilità, completezza e accuratezza nella realizzazione, qualità richieste esplicitamente dalla Convenzione suddetta. Nel caso in cui, durante il processo di *review*, siano identificati eventuali errori nel formato di trasmissione o stime non supportate da adeguata documentazione e giustificazione nella metodologia scelta, il Paese viene invitato ad una revisione delle stime di emissione.

I dati di emissione dei gas-serra, i rapporti *National Inventory Report*, così come i risultati dei processi di *review*, sono pubblicati sul sito web del Segretariato della Convenzione sui Cambiamenti Climatici <u>https://unfccc.int/process-and-meetings/transparency-and-reporting/reporting-and-review-under-the-convention/greenhouse-gas-inventories-annex-i-parties/national-inventory-submissions-2023.</u>

La serie storica nazionale delle emissioni è anche disponibile sul sito web all'indirizzo: <u>http://emissioni.sina.isprambiente.it/serie-storiche-emissioni/</u>.

Da un'analisi di sintesi della serie storica dei dati di emissione dal 1990 al 2021, si evidenzia che le emissioni nazionali totali dei sei gas serra, espresse in CO₂ equivalente, sono diminuite del 19.9% nel 2021 rispetto al 1990. In particolare, le emissioni complessive di CO₂ sono pari all'80.8% del totale e risultano nel 2021 inferiori del 23.2% rispetto al 1990. Le emissioni di metano e di protossido di azoto sono pari a circa l'11.3% e il 4.2% del totale, rispettivamente, e presentano andamenti in diminuzione sia per il metano (-14.3%) che per il protossido di azoto (-28.9%). Gli altri gas serra, HFC, PFC, SF₆ e NF₃, hanno un peso complessivo sul totale delle emissioni che varia tra lo 0.01% e il 4.0%; le emissioni degli HFC evidenziano una forte crescita, mentre le emissioni di PFC decrescono e quelle di SF₆ e NF₃ mostrano un incremento. Sebbene tali variazioni non siano risultate determinanti ai fini del conseguimento degli obiettivi di riduzione delle emissioni, la significatività del trend degli HFC potrebbe renderli sempre più importanti nei prossimi anni.

1 INTRODUCTION

1.1 Background information on greenhouse gas inventories and climate change

In 1988 the World Meteorological Organisation (WMO) and the United Nations Environment Program (UNEP) established a scientific Intergovernmental Panel on Climate Change (IPCC) to evaluate the available scientific information on climate variations, examine the social and economical influence on climate change and formulate suitable strategies for the prevention and the control of climate change.

The first IPCC report in 1990, although considering the high uncertainties in the evaluation of climate change, emphasised the risk of a global warming due to an unbalance in the climate system originated by the increase of anthropogenic emissions of greenhouse gases (GHGs) caused by industrial development and use of fossil fuels. More recently, the scientific knowledge on climate change has firmed up considerably by the IPCC Fifth Assessment Report on global warming which states that "Human influence on the climate system is clear, and recent anthropogenic emissions of greenhouse gases are the highest in history. Recent climate changes have had widespread impacts on human and natural systems." and "Warming of the climate system is unequivocal, and since the 1950s, many of the observed changes are unprecedented over decades to millennia. The atmosphere and ocean have warmed, the amounts of snow and ice have diminished, and sea level has risen." Hence the need of reducing those emissions, particularly for the most industrialised countries.

The first initiative was taken by the European Union (EU) at the end of 1990, when the EU adopted the goal of a stabilisation of carbon dioxide emissions by the year 2000 at the level of 1990 and requested Member States to plan and implement initiatives for environmental protection and energy efficiency. The contents of EU statement were the base for the negotiation of the United Nations Framework Convention on Climate Change (UNFCCC) which was approved in New York on 9th May 1992 and signed during the summit of the Earth in Rio de Janeiro in June 1992. Parties to the Convention are committed to develop, publish and regularly update national emission inventories of greenhouse gases (GHGs) as well as formulate and implement programmes addressing anthropogenic GHG emissions. Specifically, Italy ratified the convention through law no.65 of 15/1/1994.

On 11/12/1997, Parties to the Convention adopted the Kyoto Protocol, which establishes emission reduction objectives for Annex B Parties (i.e., industrialised countries and countries with economy in transition) in the period 2008-2012. In particular, the European Union as a whole was committed to an 8% reduction within the period 2008-2012, in comparison with base year levels. For Italy, the EU burden sharing agreement, set out in Annex II to Decision 2002/358/EC and in accordance with Article 4 of the Kyoto Protocol, established a reduction objective of 6.5% in the commitment period, in comparison with the base 1990 levels.

Italy ratified the Kyoto Protocol on 1st June 2002 through law no.120 of 01/06/2002. The ratification law also prescribes the preparation of a National Action Plan to reduce greenhouse gas emission, which was adopted by the Interministerial Committee for Economic Planning (CIPE) on 19th December 2002 (deliberation n. 123 of 19/12/2002). The Kyoto Protocol entered into force on 16th February 2005.

The first commitment period ended in 2012, with an extension, for fulfilling commitments, to 18th November 2015, the so called *true-up period*. The evaluation of the Kyoto Protocol, together with the commitments fulfilled by each Party, has been finalized by the UNFCCC Secretariat.

In 2012 the 'Doha Amendment to the Kyoto Protocol was adopted in relation to the period 2013-2020, including:

- new commitments for Annex I Parties to the Kyoto Protocol in a second period from 1 January 2013 to 31 December 2020;
- a revised list of GHG to be reported on by Parties in the second commitment period.

During the second commitment period, Parties committed to reduce GHG emissions by at least 18% below 1990 levels in the eight-year period from 2013 to 2020. The EU and its Member States have committed to the 'Doha Amendment to the Kyoto Protocol', pledging to reduce their collective emissions to 20% below their levels in 1990 during the period 2013-2020, as reflected in the Doha Amendment. The target has to be fulfilled jointly with Iceland.

The EU has jointly fulfilled its UNFCCC target and implemented it internally through EU legislation in the 2020 <u>Climate and Energy package</u>, adopted in 2009. In the package, in order to achieve the 20% reduction in 2020 compared to 1990, the EU divided the effort between the sectors covered by the <u>EU Emissions</u> <u>Trading System</u> (EU ETS) and the sectors under the <u>Effort Sharing Decision</u> (ESD). Legally binding target trajectories for the period 2013-2020 are enshrined in both the <u>EU-ETS Directive</u> (Directive 2003/87/EC and respective amendments) and the <u>Effort Sharing Decision</u>. The Effort Sharing Decision has set annual national emission targets for all Member States for the period 2013-2020 for those sectors², excluding LULUCF, not covered by the EU emissions trading system (ETS). For Italy, the target included in the Effort Sharing Decision is equal to a GHG emissions reduction by 13% compared to 2005 levels. Under the ESD, EU Member States report annually their greenhouse gas emissions for the period 2013-2020.

A new global agreement was reached in Paris in December 2015, for the period after 2020. The <u>Paris</u> <u>Agreement</u>, entered into force in 2016, aims at strengthening the global response to the threat of climate change by holding the increase in the global temperature to well below 2°C above pre-industrial levels and to pursue efforts to limit the temperature increase below 1.5°C above pre-industrial levels, as this would significantly reduce the risks and impact of climate change. To achieve this long-term temperature goal, Parties aim to reach global peaking of GHG emissions as soon as possible and undertake rapid reductions to achieve a balance between anthropogenic GHG emissions and removals in the second half of this century. In this framework, the European Union set a <u>binding target</u> to cut its emissions by at least 40% below 1990 levels by 2030, including the Land Use, Land-Use Change and Forestry (LULUCF) sector. Two separate targets are set for ETS sector (-43% compared to 2005) and for non-ETS sectors (-30% compared to 2005). The non-ETS target has been translated into individual binding targets for Member States with the <u>Regulation (EU) 2018/842</u>, while the <u>Regulation (EU) 2018/841</u> defines the LULUCF target.

As a Party to the Convention and the Paris Agreement, Italy is committed to develop, publish and regularly update national emission inventories as well as formulate and implement programmes to reduce these emissions. In order to establish compliance with national and international commitments, air emission inventories are compiled and communicated annually to the competent institutions.

Specifically, the national GHG emission inventory is communicated through compilation of the Common Reporting Format (CRF), according to the guidelines provided by the United Nations Framework Convention on Climate Change and the European Union's Greenhouse Gas Monitoring Mechanism (IPCC, 1997; IPCC, 2000; IPCC, 2006; EMEP/CORINAIR, 2007; EMEP/EEA, 2019).

The inventory is updated annually in order to reflect revisions and improvements in methodology and availability of new information. Recalculations are applied retrospectively to earlier years, which account for any difference in previously published data. The submission also provides for detailed information on emission figures and estimation methodologies in the annual National Inventory Report.

As follows, this report is compiled according to the guidelines on reporting as specified in the document FCCC/CP/2013/10/Add.3, Decision 24/CP.19. From this year submission, Italy, as well as all EU Member States, has used the 100-year time-horizon global warming potential values, excluding the value for fossil methane, listed in table 8.A.1 in the contribution of Working Group I to the Fifth Assessment Report of

² transport, buildings, agriculture, non-ETS industry and waste sectors

the Intergovernmental Panel on Climate Change³, following the COP27 decision taken in 2022 on the 'Revision of the UNFCCC reporting guidelines on annual inventories for Parties included in Annex I to the Convention'.

An analysis of the 2021 Italian GHG emission inventory, and a revision of the entire time series from 1990, communicated in the framework of the annual submission under the UNFCCC, is provided in the document.

Emission estimates comprise the six direct greenhouse gases (carbon dioxide, methane, nitrous oxide, hydrofluorocarbons, perfluorocarbons, sulphur hexafluoride) plus nitrogen trifluoride (NF₃) which contribute directly to climate change owing to their positive radiative forcing effect and four indirect greenhouse gases (nitrogen oxides, carbon monoxide, non-methane volatile organic compounds, sulphur dioxide).

The CRF files, the national inventory reports and other related documents are available at the address <u>http://emissioni.sina.isprambiente.it/serie-storiche-emissioni/</u>.

Information on accounts, legal entities, Art.6 projects, holdings and transactions is publicly available at: <u>http://www.info-ets.isprambiente.it/index.php?p=publicinfo</u>.

The internet address of the Italian registry is:

https://ets-registry.webgate.ec.europa.eu/euregistry/IT/index.xhtml.

The official inventory submissions can also be found at the UNFCCC website:

https://unfccc.int/process-and-meetings/transparency-and-reporting/reporting-and-review-under-theconvention/greenhouse-gas-inventories-annex-i-parties/national-inventory-submissions-2023.

The present document is the official submission, for the year 2023, under the UNFCCC. It is also the annual submission to the European Commission in the framework of the Greenhouse Gas Monitoring Mechanism.

³ IPCC, 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. TF Stocker, D Qin, G-K Plattner, et al. (eds.). Cambridge and New York: Cambridge University Press. Available at http://www.ipcc.ch/report/ar5/wg1.

1.2 Description of the institutional arrangement for inventory preparation

1.2.1 National Inventory System

The National System for the Italian Greenhouse Gas Inventory was established by the Legislative Decree 51 of March 7th 2008 and confirmed by the Legislative Decree 30 of March 13th 2013.

Article 5.1 of the Kyoto Protocol established that Annex I Parties should have in place a National System since the end of 2006 for estimating anthropogenic greenhouse gas emissions by sources and removals by sinks and for reporting and archiving inventory information according to the guidelines specified in the UNFCCC Decision 20/COP.7. This decision is updated by Decision 24/CP19, which calling the system national inventory arrangements does not change the basic requests of functionality and operability.

In addition, the Decision of the European Parliament and of the Council concerning a mechanism for monitoring Community greenhouse gas emissions (EC, 2004) required that Member States established a national greenhouse gas inventory system since the end of 2005 at the latest and that the Commission adopts the EC's inventory system since 30 June 2006.

The 'National Registry for Carbon sinks⁴', instituted by a Ministerial Decree on 1st April 2008, is part of the Italian National System. In agreement with the Ministerial decree art.4, the Ministry for the Environment, Land and Sea is responsible for the management of the National Registry for Carbon sinks. The Decree also provides that ISPRA and the former State Forestry Service, now Carabinieri Forestali, are involved by the Ministry as technical scientific support for specific activities as defined in the relevant protocol. ISPRA is responsible for the preparation of emission and removals estimates for the LULUCF sector. Following an update of the abovementioned Ministerial Decree, in 2013, the Institute for Services on Agricultural and Agro-food Market (ISMEA⁵) has been designated for the technical coordination of the section related to cropland and grassland of the National Registry of Carbon Sinks.

In March 2006 Italy started operating a national registry under the European Emission Trading Scheme (EU ETS). In October 2008 such registry went through an initialization and go-live process to become part of the Kyoto system of registries. Eventually, in June 2012 all national registries of the EU Member States as well as the national registries of Norway, Liechtenstein and Iceland were grouped in a single central software system managed by the European Commission.

According to <u>Legislative Decree N. 47 of 9 June 2020</u>, enforcing European Directive 2018/410/EC, ISPRA is responsible for the administration of the Italian part of the Union Registry and of the Kyoto National Registry; the Institute performs this task under the supervision of the National Competent Authority.

Information on the units holdings and transactions during the year 2022, is reported in the SEF submission (figures are also available in tables A8.2.2.1 - A8.2.2.5c of this document). The SEF reports have been produced using the report tool version 3.8.3 provided by the UNFCCC Secretariat. Although there is no obligation to submit a SEF report for the first commitment period after the end of its true-up-period, a separate report for CP1 units was included in the submission.

Further information on the national registry and its changes, in accordance with the guidelines set down in Decision 15 CMP.1 (Annex II.E Paragraph 32), is reported in Annex 12.

ISPRA is also responsible of the national system for policies, measures and emissions and, in cooperation with Ministry of the Environment (MASE), collects all the information and data from the competent Ministries. Article 1 of the Decree implementing law N. 79 (9th December 2016), reports the list of information and data that are to be sent by the competent ministries to MASE and ISPRA and also the

⁴ Detailed description of the National Registry for Carbon sinks is included in the Annex 10 to the 2022 NIR submission.

⁵ ISMEA is a public body, providing support to public and private sector. According to DPR 31 March 2001, n. 200, ISMEA is part of the National Statistical System – SISTAN and of the National Agricultural Information System – SIAN.

timing for providing such information. With the establishment of this system, there has been a strengthening of roles and obligations for statistical data flow, some of which are useful for the inventory scope.

The Italian National System, currently in place, is fully described in the document 'National Greenhouse Gas Inventory System in Italy' (ISPRA, 2018). No changes with respect to the last year submission occurred in the National System. A summary picture is reported herebelow.

As indicated by art. 14 bis of the Legislative Decree, the Institute for Environmental Protection and Research (ISPRA), former Agency for Environmental Protection and Technical Services (APAT), is the single entity in charge of the preparation and compilation of the national greenhouse gas emission inventory. The MASE is responsible for the endorsement of the inventory and for the communication to the Secretariat of the Framework Convention on Climate Change. The inventory is also submitted to the European Commission in the framework of the Greenhouse Gas Monitoring Mechanism.

The Institute prepares a document which describes the national system including all updated information on institutional, legal and procedural arrangements for estimating emissions and removals of greenhouse gases and for reporting and archiving inventory information. The document is updated when there is the need to describe an annual change occurred in the system. The reports are publicly available at http://emissioni.sina.isprambiente.it/serie-storiche-emissioni/.

A specific unit of the Institute is responsible for the compilation of the Italian Atmospheric Emission Inventory and the Italian Greenhouse Gas Inventory in the framework of the Convention on Climate Change and the Convention on Long Range Transboundary Air Pollution. The whole inventory is compiled by the Institute.

ISPRA is responsible for the general administration of the inventory and all aspects related to its preparation, reporting and quality management. Activities include the collection and processing of data from different data sources, the selection of appropriate emissions factors and estimation methods consistent with the IPCC Guidelines, the compilation of the inventory following the QA/QC procedures, the assessment of uncertainty, the preparation of the National Inventory Report and the reporting through the Common Reporting Format, the response to the review process, the updating and data storage. Scientific and technical institutions and consultants may be engaged for ad hoc studies and research aimed at improving both activity data and emission factors, at country level, for some specific activities. Also, there are different institutions responsible for statistical basic information and data publication, primary to ISPRA for carrying out estimates. These institutions are part of the National Statistical System (Sistan), which periodically provides official statistics at national level; moreover, the National Statistical System ensures the homogeneity of the methods used for official statistics through a coordination plan, involving the entire public administration at central, regional and local levels.

The National Statistical System is coordinated by the Italian National Institute of Statistics (ISTAT); other bodies, joining the National Statistical System, are the statistical offices of ministries, national agencies, regions and autonomous provinces, provinces, municipalities, research institutes, chambers of commerce, local governmental offices, some private agencies and private subjects who have specific characteristics determined by law. The Italian statistical system was instituted on 6th September 1989 by the Legislative Decree n. 322/89, which established guiding principles and criteria for reforming public statistics. This decree addresses to all public statistical bodies and agencies which provide official statistics both at local, national and international level in order to assure homogeneity of the methods and comparability of the results. To this end, a national statistical plan which defines surveys, data elaborations and project studies for a three-year period was established to be drawn up and updated annually. The procedures to be followed with relation to the annual fulfilment as well as the forms to be filled in for census, data elaborations and projects, and how to deal with sensitive information were also defined.

The plan is deliberated by the Committee for addressing and coordinating statistical information (Comstat) and forwarded to the Commission for the assurance of statistical information; the Commission

adopts the plan after endorsement of the Guarantor of the privacy of personal data. Finally, the plan is approved by a Prime Ministerial Decree after consideration of the Interministerial Committee for Economic Planning (CIPE). The latest Prime Ministerial Decree approved the three-year plan for 2020-2022, (GU Serie Generale n.44, 21/02/2023); the last plan for 2023-2025 has been approved and is under the process of official publication. Statistical information and results deriving from the completion of the plan are of public domain and the system is responsible for wide circulation.

Ministries, public agencies and other bodies are obliged to provide the data and information specified in the annual statistical plan; the same obligations regard the private entities. All the data are protected by the principles of statistical disclosure control and can be distributed and communicated only at aggregate level even though microdata can circulate among the subjects of the Statistical System.

Sistan activity is supervised by the Commission for Guaranteeing Statistical Information (CGIS) which is an external and independent body. In particular, the Commission supervises: the impartiality and completeness of statistical information, the quality of methodologies, the compliance of surveys with EU and international directives. The Commission, established within the Presidency of the Council of Ministers, is composed of high-profile university professors, directors of statistical or research institutes and managers of public administrations and bodies, which do not participate at Sistan.

The main Sistan products, which are primarily necessary for the inventory compilation, are:

- National Statistical Yearbooks, Monthly Statistical Bulletins, by ISTAT (National Institute of Statistics);
- Annual Report on the Energy and Environment, by ENEA (Agency for New Technologies, Energy and the Environment);
- National Energy Balance (annual), Petrochemical Bulletin (quarterly publication), by MASE (Ministry of Economic Development);
- Transport Statistics Yearbooks, by MIT (Ministry of Transportation);
- Annual Statistics on Electrical Energy in Italy, by TERNA (National Independent System Operator);
- Annual Report on Waste, by ISPRA;
- National Forestry Inventory, by "Carabinieri Forestali"⁶.

The national emission inventory is also a Sistan product.

Other information and data sources are used to carry out emission estimates, which are generally referred to in Table 1.1 of the following section 1.4.

1.3 Brief description of the process of inventory preparation

ISPRA has established fruitful cooperation with a number of governmental and research institutions as well as industrial associations, which helps improving the accuracy of the estimates of some leading categories of the inventory. These activities aim at the improvement of provision and collection of basic data and emission factors, through plant-specific data, and exchange of information on scientific studies and new sources. Moreover, when in depth investigation is needed and a high uncertainty in the estimates is present, ISPRA may commit specific sector studies to ad hoc research teams or consultants.

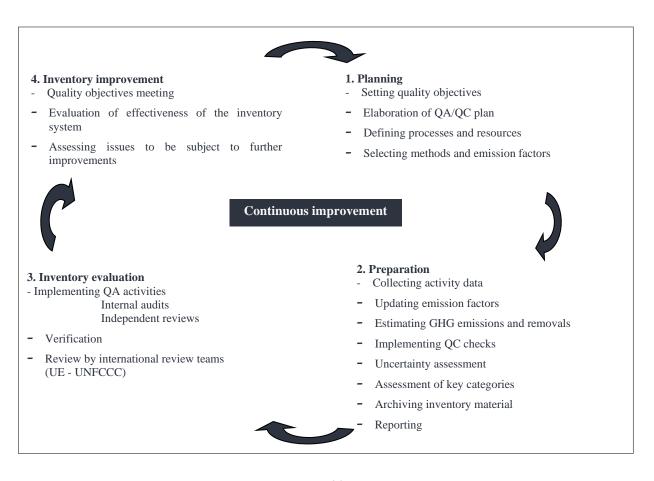
The final aim is for ISPRA to improve the implementation of country specific methodologies and use of national emission factors and parameters.

ISPRA also coordinates with different national and regional authorities and private institutions for the cross-checking of parameters and estimates as well as with ad hoc expert panels in order to improve the completeness and transparency of the inventory. The main basic data needed for the preparation of the

⁶ <u>http://www.carabinieri.it/arma/oggi/organizzazione/organizzazione-per-la-tutela-forestale-ambientale-e-agroalimentare</u>

GHG inventory are energy statistics published by the Ministry of the Environment, in the National Energy Balance (BEN), statistics on industrial and agricultural production published by the National Institute of Statistics (ISTAT), statistics on transportation provided by the Ministry of Transportation (MIT), and data supplied directly by the relevant professional associations.

Emission factors and methodologies used in the estimation process are consistent with the IPCC Guidelines and supported by national experiences and circumstances.


In addition to a new year, the entire time series from 1990 is checked and revised during the annual compilation of the inventory to meet the requirements of transparency, consistency, comparability, completeness and accuracy of the inventory. Measures to guarantee and improve these qualifications are undertaken and recalculations should be considered as a contribution to the overall improvement of the inventory.

In particular, recalculations are elaborated on account of changes in the methodologies used to carry out emission estimates, changes due to different allocation of emissions as compared to previous submissions and changes due to error corrections. The inventory may also be expanded by including categories not previously estimated if sufficient information on activity data and suitable emission factors have been identified and collected.

Information on the major recalculations is provided every year in the sectoral and general chapters of the national inventory reports.

In Figure 1.1 the most important steps to guarantee the continuous improvement of the national GHG emission inventory are outlined.

Figure 1.1 National Greenhouse Gas Inventory: annual inventory process

All the reference material, estimates and calculation sheets, as well as the documentation on scientific papers and the basic data needed for the inventory compilation, are stored and archived at the Institute. After each reporting cycle, all database files, spreadsheets and electronic documents are archived as 'read-only-files' so that the documentation and estimates could be traced back during the review process or the new inventory compilation year.

Technical reports and emission figures are publicly available on website at the address <u>http://emissioni.sina.isprambiente.it/serie-storiche-emissioni/</u>.

1.4 Brief general description of methodologies and data sources used

A detailed description of methodologies and data sources used in the preparation of the emission inventory for each sector is outlined in the relevant chapters. In Table 1.1, a summary of the activity data and sources used in the inventory compilation is reported.

Methodologies are consistent with the IPCC Guidelines and EMEP/EEA Guidebooks (IPCC, 1997; IPCC, 2000; IPCC, 2003; IPCC, 2006; EMEP/CORINAIR, 2007; EMEP/EEA, 2016; EMEP/EEA, 2019); national emission factors are used as well as default emission factors from international guidebooks, when national data are not available. The development of national methodologies is supported by background documents.

In Table 1.2, a summary of the methods and emission factors used in the compilation of the Italian inventory is reported.

SECTOR	ACTIVITY DATA	SOURCE
1 Energy 1A1 Energy Industries	Fuel use	Energy Balance - Ministry of Environment Major national electricity producers European Emissions Trading Scheme
1A2 Manufacturing Industries and Construction	Fuel use	Energy Balance - Ministry of Environment Major National Industry Corporation European Emissions Trading Scheme
1A3 Transport	Fuel use Number of vehicles Aircraft landing and take-off cycles and maritime activities	Energy Balance - Ministry of Environment Statistical Yearbooks - National Statistical System Statistical Yearbooks - Ministry of Transportation Statistical Yearbooks - Italian Civil Aviation Authority (ENAC) Maritime and Airport local authorities
1A4 Residential-public-commercial sector	Fuel use	Energy Balance - Ministry of Environment
1B Fugitive Emissions from Fuel	Amount of fuel treated, stored, distributed	Energy Balance - Ministry of Environment Statistical Yearbooks - Ministry of Transportation Major National Industry Corporation
2 Industrial Processes and Product Use	Production data	National Statistical Yearbooks- National Institute of Statistics International Statistical Yearbooks-UN European Emissions Trading Scheme European Pollutant Release and Transfer Register Sectoral Industrial Associations
3 Agriculture	Agricultural surfaces Production data Number of animals Fertiliser consumption	Agriculture Statistical Yearbooks - National Institute of Statistics Sectoral Agriculture Associations
4 Land Use, Land Use Change and Forestry	Forest area, biomass increment and stock Biomass burnt	Carabinieri - National and Regional Forestry Inventory Statistical Yearbooks - National Institute of Statistics Universities and Research Institutes
5 Waste	Amount of waste	National Waste Cadastre - Institute for Environmental Protection and Research , National Waste Observatory

Table 1.1 Main activity data and sources for the Italian Emission Inventory

Table 1.2 Methods and emission factors used in the inventor	y preparation
---	---------------

SUMMARY 3 SUMMAR	Y REPORT FO	OR METHO	DS AND E	MISSION F	ACTORS USE	D										
GREENHOUSE GAS SOURCE AND SINK	CO2		CH₄		N ₂ O		HFC	5	PFC	s	SI	6	Unspecifi ed mix of HFCs and PFCs		NF ₃	
CATEGORIES	Meth	EF	Meth	EF	Meth	EF	Meth	EF	Meth	E F	Me th	E F	Me th	EF	Me th	EF
1. Energy	T1,T2,T3	CS,D,M	T1,T2, T3	CR,CS,D,M	T1,T2,T3	CR,D, M										
A. Fuel combustion	T1,T2,T3	CS,M	T1,T2, T3	CR,D,M	T1,T2,T3	CR,D, M										
1. Energy industries	Т3	CS	Т3	CR,D	Т3	CR,D										
 Manufacturing industries and construction 	T2	CS	T2	CR,D	T2	CR,D										
3. Transport	T1,T2	CS,M	T1,T2, T3	CR,D,M	T1,T2,T3	CR,D, M										
4. Other sectors	T2	CS	T2	CR	T2	CR										
5. Other	T2	CS	T2	CR	T2	CR										
B. Fugitive emissions from fuels	T1,T2	CS,D	T1,T2	CR,CS,D	T1	D										
1. Solid fuels			T1,T2	CR,D												
2. Oil and natural gas	T1,T2	CS,D	T1,T2	CR,CS,D	T1	D										
C. CO ₂ transport and storage																
2. Industrial processes	CR,CS,D,T1,T 2,T3	R,CS,D,M, PS	D,T1	CR,CS,D	CS,T3	CS,D, PS	CS,T2	CS,D, PS	CS,T2	:S,P S	S,T2, T3	S,P S	CS	PS	T2	CS
A. Mineral industry	T2	CS,PS														
B. Chemical industry	D,T2,T3	CR,PS	D,T1	CR,CS,D	Т3	D,PS	CS	PS	CS	PS						
C. Metal industry	T2	CR,CS,PS	D	CS,D												
D. Non-energy products from fuels and solvent use	CR,CS,T1,T2	R,CS,D,M, PS														
E. Electronic industry							T2	CS	T2	CS	T2	CS	CS	PS	T2	CS
F. Product uses as ODS substitutes							T2	CS,D								
G. Other product manufacture and use					CS	CS					CS,T3	S,P S				
H. Other																
3. Agriculture	T1	D	T1,T2	CS,D	D,T1,T2	CS,D										
A. Enteric fermentation			T1,T2	CS,D												
B. Manure management			T1,T2	CS,D	T2	CS,D										
C. Rice cultivation			T2	CS												
D. Agricultural soils ⁽³⁾					D,T1	CS,D										
E. Prescribed burning of savannas																
F. Field burning of agricultural residues			T1	CS,D	T1	CS,D										
G. Liming	T1	D														
H. Urea application	T1	D														
I. Other carbon- containing fertilizers	T1	D														
J. Other																
4. Land use, land-use change and forestry	T1,T2,T3	CS,D	T1,T2	CS,D	T1,T2	CS,D										

A. Forest land	T1,T2,T3	CS,D	T2	CS,D	T2	CS,D									
B. Cropland	T1,T2	CS,D	T1	D	T1	D									
C. Grassland	T1,T2,T3	CS,D	T1	CS	T1	CS									
D. Wetlands															
E. Settlements	T1	D			T1	D									
F. Other land															
G. Harvested wood products	T2	CS													
H. Other															
5. Waste	D,T1	CS,D	D,T1,T2	CR,CS,D	D,T1	R,CS ,D									
A. Solid waste disposal			T2	CS											
B. Biological treatment of solid waste			D	CS,D	D	D									
C. Incineration and open burning of waste	D,T1	CS,D	D,T1	CR,CS,D	D,T1	CS,D									
D. Waste water treatment and discharge			D,T1	D	D,T1	CR,D									
E. Other															
6. Other (as specified in summary 1.A)															
Use the following notation	keys to spec	ify the met	hod applie	d:											
D (IPCC default)			T1c (IPCC c, respectiv	Tier 1a, Tie ely)	r 1b		CR (CORIN AIR)		M (mod el)						
RA (Reference Approach)		T2 (IPCC Tier 2)					CS (Cour Specific)	ntry	0.7						
T1 (IPCC Tier 1)		T3 (IPCC T	Tier 3)				OTH (Ot	her)							
If using more than one me or any modifications to the one method is indicated, s Use the following notation specify the emission factor	e default IPCC hould be pro keys to	c methods,	as well as i	nformation	regarding the	use c	of different	meth	ods per	sour	ce cat	egor	y wher	re mor	
D (IPCC default)		CS (Count	ry Specific)		OTH (Other M)									
CR (CORINAIR)		PS (Plant	Specific)		(mod el)										
Where a mix of emission fa documentation box. Also u							give furthe	er exp	lanation	s in t	he				

Activity data used in emission calculations and their sources are briefly described here below.

In general, for the energy sector, basic statistics for estimating emissions are fuel consumptions provided in the Energy Balance by the Ministry of Environment. Additional information for electricity production is supplied by the major national electricity producers and by the major national industry corporation. On the other hand, basic information for road transport, maritime and aviation, such as the number of vehicles, harbour statistics and aircraft landing and take-off cycles are published by the National Institute of Statistics and the Ministry of Transportation in the relevant statistical yearbooks. Other data are communicated by different category associations.

In the last years, a lot of information on productions, fuel consumptions, emission factors and emissions in specific energy and industrial sub sectors is obtained from data collected by operators under the European Emissions Trading Scheme (ETS).

The criteria of data reporting are defined by European Directive 2018/410/EC and adopted at national level by the <u>Legislative Decree N. 47 of 9 June 2020</u>. In compliance with the above-mentioned legislations, independent certifications and verifications of activity data, emission data and emission factors are required. At national level, data verification has to be carried out by verifiers accredited by the national

ETS Committee according to the ministerial decree DEC/RAS/115/2006. The verification of data submissions ensures reliability, credibility, and precision/accuracy of monitoring systems for data and any information relating emissions by plant.

Data from the Italian Emissions Trading Scheme database are incorporated into the national inventory whenever the sectoral coverage is complete; in fact, ETS data not always entirely cover energy categories whereas national statistics, such as the national energy balance and the energy production and consumption statistics, provide the complete basic data needed for the Italian emission inventory. Nevertheless, ETS data are entirely used to develop country-specific emission factors and check activity data levels.

For the industrial sector, the annual production data are provided by national sources and international statistical yearbooks, such as the FAO database on food balance.

Emission data collected through the National Pollutant Release and Transfer Register are also used in the development of emission estimates or taken into account as a verification of emission estimates for some specific categories. According to the Italian Decree of 23 November 2001, data (reporting period 2002-2006) included in the Italian pollutant emissions register were validated by competent authorities within 30 June each year and communicated by ISPRA to the Ministry for the Environment, Land and Sea every year and to the European Commission every three years according to EC Decision 2000/479 (two reporting cycles: data related to 2002 and 2004 were reported respectively in 2003 and in 2006). Since 2008 the national pollutant emissions register has been replaced by the national pollutant release and transfer register (the Italian PRTR) to comply with Regulation EC n.166/2006; data are collected annually at facility level and sent, after validation, by competent authorities to European Commission within 31 March every year for data referring to the previous year. These data are used for the compilation of the inventory whenever they are complete in terms of sectoral information; in fact, industries communicate figures only if they exceed specific thresholds; furthermore, basic data such as fuel consumption are not supplied, and production data are not always split by product but reported as an overall figure. In any case, the Italian PRTR is a good basis for data checks and a way to facilitate contacts with industries which, in many cases, supply, under request, additional information as necessary for carrying out sectoral emission estimates.

In addition, final emissions are checked and verified also considering figures reported by industries in their annual environmental reports.

Both for energy and industrial processes, emissions of large industrial point sources are registered individually; communication also takes place in the framework of the European Directive on Large Combustion Plants, based upon detailed information such as fuel consumption. Other small plants voluntarily communicate their emissions which are also considered individually. For solvents, the amount of solvent use is provided by environmental publications of sectoral industries and associations.

ISPRA directly collects data from the industrial associations under the ETS and other European directives, Large Combustion Plant and PRTR, and makes use of these data in the preparation of the national inventory ensuring the consistency of time series.

For the other sectors, i.e. for agriculture, annual production data and number of animals are provided by the National Institute of Statistics and other sectoral associations.

For land use, land use change and forestry, forest areas are derived from national forest inventories provided by the Ministry of Agriculture and Carabinieri; the Carabinieri is also the provider of official statistics related to the areas subject to fires.

For waste, the main activity data are provided by the Institute for Environmental Protection and Research and the Waste Observatory.

Unpublished data are used only if supported by personal communication and confidentiality of data is respected.

As for data disclosure, the inventory team is obliged to ensure confidentiality of sensitive information by legislation when data are communicated under specific directives or confidentiality is requested by data providers. In the case of data collection under the ETS, E-PRTR, large combustion plants and other directives, the database of the complete information is available only to a specific group of authorised persons which has the legal responsibility for the respect of confidentiality issues. In other cases, each expert is responsible for the data received, and confidentiality. In any case, all data are placed on a password protected access environment at ISPRA and available only to authorised experts of the inventory team.

All the material and documents used for the inventory estimation process are stored at the Institute for Environmental Protection and Research. Activity data and emission factors as well as methodologies are referenced to their data sources. A 'reference' database has also been developed and used to increase the transparency of the inventory.

1.5 Brief description of key categories

A key category analysis of the Italian inventory is carried out according to the Approach 1 and Approach 2 described in the 2006 IPCC Guidelines (IPCC, 2006).

Following the IPCC guidelines, a key category is defined as an emission category that has a significant influence on a country's GHG inventory in terms of the absolute level and trend in emissions and removals, or both. Key categories are those which, when summed together in descending order of magnitude, add up to over 95% of the total emissions or 90% of total uncertainty.

National emissions have been disaggregated into the categories proposed in the IPCC guidelines and reflecting specific national circumstances. Both level and trend analysis have been applied to the last submitted inventory; a key category analysis has also been carried out for the base year emission levels.

For the base year, 27 sources were individuated implementing Approach 1, whereas 29 sources were carried out by Approach 2. Including the LULUCF in the analysis, 33 categories were selected by Approach 1 and 35 by Approach 2. The description of these categories is shown in Table 1.3 and Table1.4.

	Key categories (excluding the LULUCF sector)	
1.A.1	Energy industries - CO2 gaseous fuels	L
1.A.1	Energy industries - CO2 liquid fuels	L
1.A.1	Energy industries - CO ₂ solid fuels	L
1.A.2	Manufacturing industries and construction - CO ₂ gaseous fuels	L
1.A.2	Manufacturing industries and construction - CO ₂ liquid fuels	L
1.A.2	Manufacturing industries and construction - CO ₂ solid fuels	L
1.A.2	Manufacturing industries and construction - N ₂ O liquid fuels	L2
1.A.3.b	Transport - CH ₄ Road transportation	L2
1.A.3.b	Transport - CO ₂ Road transportation	L
1.A.3.d	Transport - CO ₂ Waterborne navigation	L1
1.A.4	Other sectors - CH ₄ commercial, residential, agriculture biomass Other sectors - CO ₂ commercial, residential, agriculture gaseous	L2
1.A.4	fuels	L
1.A.4	Other sectors - CO2 commercial, residential, agriculture liquid fuels	L
1.A.4	Other sectors - N_2O commercial, residential, agriculture liquid fuels	L2
1.B.2.a	Fugitive - CO ₂ Oil and natural gas - Oil	L1
1.B.2.b	Fugitive - CH ₄ Oil and natural gas - Natural gas	L
1.B.2.c	Fugitive - CO ₂ Oil and natural gas - venting and flaring	L2
1.B.2.d	Fugitive - CO ₂ Oil and natural gas - Other - flaring in refineries	L2
2.A.1	Mineral industry- CO ₂ Cement production	L
2.A.2	Mineral industry- CO ₂ Lime production	L1
2.A.4	Mineral industry- CO2 Other processes uses of carbonates	L1
2.B.1	Chemical industry- CO ₂ Ammonia production	L1
2.B.2	Chemical industry- N ₂ O Nitric acid production	L1
2.B.3	Chemical industry- N ₂ O Adipic acid production	L
2.B.9	Chemical industry- PFCs Fluorochemical production	L2
2.C.1	Metal industry- CO ₂ Iron and steel production	L1
2.C.3	Metal industry- PFCs Aluminium production	L2
2.D	Non-Energy products from Fuels and Solvent Use - CO_2	L2
3.A.1	Enteric Fermentation- CH ₄	L
3.A.2	Manure Management - CH ₄	L
3.A.2	Manure Management - N ₂ O	L
3.C	Rice Cultivation - CH ₄	L1
3.D.a	Direct N ₂ O Emissions from Managed soils	L
3.D.b	Indirect N ₂ O Emissions from Managed soils	L
5.A	Solid waste disposal - CH ₄	L
5.D	Wastewater treatment and discharge - CH4	L
5.D	Wastewater treatment and discharge - N2O	L2

Table 1.3 Key categories (exe	cluding LULUCF) by the IPC	C Approach 1 and Approa	ach 2. Base year

L1 = level key category by Approach 1 T1 = trend key category by Approach 1 L2 = level key category by Approach 2 T2 = trend key category by Approach 2 L = level key category by Approach 1 and Approach 2

T = trend key category by Approach 1 and Approach 2

Table 1.4 Key categories (including LULUCF) by the IPCC Approach 1 and Approach 2. Base year

	Key categories (excluding the LULUCF sector)	
1.A.1	Energy industries - CO2 gaseous fuels	L
1.A.1	Energy industries - CO2 liquid fuels	L
1.A.1	Energy industries - CO2 solid fuels	L
1.A.2	Manufacturing industries and construction - CO2 gaseous fuels	L
1.A.2	Manufacturing industries and construction - CO2 liquid fuels	L
1.A.2	Manufacturing industries and construction - CO2 solid fuels	L

- L1 = level key category by Approach 1
- T1 = trend key category by Approach 1 L2 = level key category by Approach 2
- T2 = trend key category by Approach 2
- L = level key category by Approach 1 and
- Approach 2
- T = trend key category by Approach 1 and Approach 2

	Key categories (excluding the LULUCF sector)	
1.A.2	Manufacturing industries and construction - N2O liquid fuels	L2
1.A.3.b	Transport - CH4 Road transportation	L2
1.A.3.b	Transport - CO2 Road transportation	L
1.A.3.d	Transport - CO2 Waterborne navigation	L1
1.A.4	Other sectors - CH4 commercial, residential, agriculture biomass Other sectors - CO2 commercial, residential, agriculture gaseous	L2
1.A.4	fuels	L
1.A.4	Other sectors - CO2 commercial, residential, agriculture liquid fuels	L
1.A.4	Other sectors - N2O commercial, residential, agriculture liquid fuels	L2
1.B.2.a	Fugitive - CO2 Oil and natural gas - Oil	L1
1.B.2.b	Fugitive - CH4 Oil and natural gas - Natural gas	L
1.B.2.c	Fugitive - CO2 Oil and natural gas - venting and flaring	L2
2.A.1	Mineral industry- CO2 Cement production	L
2.A.2	Mineral industry- CO2 Lime production	L1
2.A.4	Mineral industry- CO2 Other processes uses of carbonates	L1
2.B.1	Chemical industry- CO2 Ammonia production	L1
2.B.2	Chemical industry- N2O Nitric acid production	L1
2.B.3	Chemical industry- N2O Adipic acid production	L
2.B.9	Chemical industry- PFCs Fluorochemical production	L2
2.C.1	Metal industry- CO2 Iron and steel production	L1
2.C.3	Metal industry- PFCs Aluminium production	L
2.D	Non-Energy products from Fuels and Solvent Use - CO2	L
3.A.1	Enteric Fermentation- CH4	L
3.A.2	Manure Management - CH4	L
3.A.2	Manure Management - N2O	L
3.C	Rice cultivations - CH4	L1
3.D.a	Direct N2O Emissions from Managed soils	L
3.D.b	Indirect N2O Emissions from Managed soils	L
4.A.1	Forest Land remaining Forest Land - CO2	L
4.A.2	Land Converted to Forest Land - CO2	L
4.B.1	Cropland remaining cropland – CO2	L2
4.B.2	Land Converted to Cropland - CO2	L2
4.C.1	Grassland Remaining Grassland - CO2	L
4.E.2	Land Converted to Settlements - CO2	L
4.E.2	Land Converted to Settlements - N2O	L2
5.A	Solid waste disposal - CH4	L
5.D	Wastewater treatment and discharge - CH4	L
5.D	Wastewater treatment and discharge - N2O	L2

Applying the analysis to the 2021 inventory, without the LULUCF sector, 44 key categories were totally individuated, both at level and trend. Results are reported in Table 1.5.

Table 1.5 Key categories	(excluding LULUCF)	by the IPCC Approach 1	and Approach 2. Year 2021
--------------------------	--------------------	------------------------	---------------------------

	Key categories (excluding th			
1.A.1 1.A.1 1.A.1	Energy industries - CO2 gaseous fuels Energy industries - CO2 liquid fuels Energy industries - CO2 solid fuels		L, T L, T L, T	L1 = level key category, Approach 1 T1 = trend key category, Approach 1 L2 = level key category, Approach 2
		36		T2 = trend key category, Approach 2 L = level key category, Approach 1 and Approach 2 T = trend key category, Approach 1

	Key categories (excluding the LULUCF sector)	
1.A.2	Manufacturing industries and construction - CO2 gaseous fuels	L, T
1.A.2	Manufacturing industries and construction - CO2 liquid fuels	L, T
1.A.2	Manufacturing industries and construction - CO2 solid fuels	L1, T
1.A.3.b	Transport - CH4 Road transportation	T2
1.A.3.b	Transport - CO2 Road transportation	L, T
1.A.3.d	Transport - CO2 Waterborne navigation	L1
1.A.4	Other sectors - CH4 commercial, residential, agriculture biomass	L, T
1.A.4	Other sectors - CO2 commercial, residential, agriculture gaseous fuels	L, T
1.A.4	Other sectors - CO2 commercial, residential, agriculture liquid fuels	L, T
1.A.4	Other sectors - CO2 commercial, residential, agriculture other fossil fuels	L1, T
1.A.4	Other sectors - CO2 commercial, residential, agriculture solid fuels	T1
1.A.4	Other sectors - N2O commercial, residential, agriculture biomass	L2, T
1.A.4	Other sectors - N2O commercial, residential, agriculture liquid fuels	L2
1.B.2.b	Fugitive - CH4 Oil and natural gas - Natural gas	L, T
1.B.2.c	Fugitive – CO2 Oil and natural gas - Other – venting and flaring	T2
1.B.2.d	Fugitive - CH4 Oil and natural gas - Other - flaring in refineries	L2, T2
1.B.2.d	Fugitive - CO2 Oil and natural gas - Other - flaring in refineries	T2
2.A.1	Mineral industry- CO2 Cement production	L, T
2.A.2	Mineral industry- CO2 Lime production	L1
2.A.4	Mineral industry- CO2 Other processes uses of carbonates	T1
2.B.1	Chemical industry- CO2 Ammonia production	T1
2.B.2	Chemical industry- N2O Nitric acid production	T1
2.B.3	Chemical industry- N2O Adipic acid production	Т
2.B.9	Chemical industry- HFCs Fluorochemical production	Т2
2.B.9	Chemical industry- PFCs Fluorochemical production	T2
2.C.1	Metal industry- CO2 Iron and steel production	T1
2.C.3	Metal industry- PFCs Aluminium production	Т
2.D	Non-Energy products from Fuels and Solvent Use - CO2	L2, T2
2.F.1	Product uses as substitutes for ozone depleting substances - HFCs Refrigeration and Air conditioning Product uses as substitutes for ozone depleting substances - HFCs Foam blowing	L, T
2.F.2	agents Product uses as substitutes for ozone depleting substances - HFCs Fire	Т2
2.F.3	protection	L, T
3.A.1	Enteric Fermentation- CH4	L, T
3.A.2	Manure Management - CH4	L
3.A.2	Manure Management - N2O	L
3.C	Rice cultivations - CH4	L1
3.D.a	Direct N2O Emissions from Managed soils	L, T
3.D.b	Indirect N2O Emissions from Managed soils	L
5.A E D	Solid waste disposal - CH4 Biological treatment of Colid waste N2O	L, T
5.B	Biological treatment of Solid waste - N2O	L2, T2
5.D 5.D	Wastewater treatment and discharge - CH4 Wastewater treatment and discharge - N2O	L, T2 L2, T2

If considering emissions and removals from the LULUCF sector, 50 key categories were individuated as reported in Table 1.6.

	Key categories (including the LULUCF sector)		
1.A.1	Energy industries - CO2 gaseous fuels	L, T	L1 = level key category, Approach 1
1.A.1	Energy industries - CO2 liquid fuels	L, T	T1 = trend key category, Approach 1 L2 = level key category, Approach 2
1.A.1	Energy industries - CO2 solid fuels	L, T	T2 = trend key category, Approach 2 T2 = trend key category, Approach 2
1.A.2	Manufacturing industries and construction - CO2 gaseous fuels	L, T	L = level key category, Approach 1 and
1.A.2	Manufacturing industries and construction - CO2 liquid fuels	L, T	Approach 2
1.A.2	Manufacturing industries and construction - CO2 solid fuels	L1, T	T = trend key category, Approach 1 and Approach 2
1.A.3.b	Transport - CO2 Road transportation	L, T	
1.A.3.b	Transport – CH4 Road transportation	T2	
1.A.3.c	Transport – CO2 Civil aviation	L1	
1.A.3.d	Transport - CO2 Waterborne navigation	L1	
1.A.4	Other sectors - CH4 commercial, residential, agriculture biomass	L, T	
1.A.4	Other sectors - CO2 commercial, residential, agriculture gaseous fuels	L, T	
1.A.4	Other sectors - CO2 commercial, residential, agriculture liquid fuels	L, T	
1.A.4	Other sectors - CO2 commercial, residential, agriculture other fossil fuels	L1, T	
1.A.4	Other sectors - CO2 commercial, residential, agriculture solid fuels	T1	
1.A.4	Other sectors - N2O commercial, residential, agriculture biomass	L2, T	
1.B.2.b	Fugitive - CH4 Oil and natural gas - Natural gas	, L, T	
1.B.2.c	Fugitive – CO2 Oil and natural gas - Other – venting and flaring	, Т2	
1.B.2.d	Fugitive - CH4 Oil and natural gas - Other - flaring in refineries	L2, T2	
1.B.2.d	Fugitive – CO2 Oil and natural gas - Other - flaring in refineries	T2	
2.A.1	Mineral industry- CO2 Cement production	 L, Т	
2.A.2	Mineral industry- CO2 Lime production	_, . L1, T1	
2.A.4	Mineral industry- CO2 Other processes uses of carbonates	, T1	
2.B.2	Chemical industry- CO2 Ammonia production	T1	
2.B.2	Chemical industry- N2O Nitric acid production	T1	
2.B.3	Chemical industry- N2O Adipic acid production	Т	
2.C.1	Metal industry- CO2 Iron and steel production	T1	
2.C.3	Metal industry- PFCs Aluminium production	Т	
2.D	Non-Energy products from Fuels and Solvent Use - CO2	L2	
2.F.1	Product uses as substitutes for ozone depleting substances - HFCs Refrigeration and Air conditioning	 L, Т	
2.1.1	Product uses as substitutes for ozone depleting substances - HFCs Foam	L, I	
2.F.2	blowing agents	T2	
252	Product uses as substitutes for ozone depleting substances - HFCs Fire		
2.F.3	protection	L, T	
3.A.1	Enteric Fermentation- CH4	L, T	
3.A.2	Manure Management - CH4	L, T1	
3.A.2	Manure Management - N2O	L1	
3.C.4	Direct N2O Emissions from Managed soils	L, T	
3.C.5	Indirect N2O Emissions from Managed soils	L	
3.C.7	Rice cultivations - CH4	L1	
4.A.1	Forest Land remaining Forest Land - CO2	L, T	
4.A.2	Land Converted to Forest Land - CO2	L, T T	
4.B.1	Cropland Remaining Cropland - CO2	T	
4.B.2	Land converted to cropland – CO2	L2, T2	
4.C.1	Grassland Remaining Grassland - CO2	Т	
4.C.2	Land Converted to Grassland - CO2	L, T	
4.E.2	Land Converted to Settlements - CO2	L, T2	

Table 1.6 Key categories (including LULUCF) by the IPCC Approach 1 and Approach 2. Year 2021

	Key categories (including the LULUCF sector)								
4.G	Harvest wood products – CO2	L, T							
5.A	Solid waste disposal - CH4	L, T							
5.B	Biological treatment of Solid waste - N2O	L2, T2							
5.D	Wastewater treatment and discharge - CH4	L							
5.D	Wastewater treatment and discharge - N2O	L2, T2							

The analysis of key categories is used to prioritize improvements that should be taken into account for the next inventory submissions. First of all, it is important that emissions of key categories, being the most significant in terms of absolute weight and/or combined uncertainty, are estimated with a high level of accuracy. For the Italian inventory, higher tiers are mostly used for calculating emissions from these categories as requested by the IPCC Guidelines and the use of country specific emission factors is extensive. As reported in Table A9.1, in the Annex, there are only a few key categories which estimates do not meet these quality objectives, in terms of the methodology and the application of default emission factors.

Among these categories, prioritization is made on account of the actual absolute weight, the expected future relevance, the level of uncertainty and a cost-effectiveness analysis. Therefore, improvements are planned for the LULUCF sector as well as for maritime navigation category, which emissions are estimated with a Tier1 and with Tier 2 for few years and has been selected as a priority after verification of the availability of annual detailed activity data, the evaluation of the resources and cost of the database to be implemented.

In addition to this evaluation, also categories estimated with higher tiers but affected by a high level of uncertainty are considered in the prioritization plan. For instance, activities were planned and are on going for HFC, PFC substitutes for ODS to improve the accuracy of the Italian inventory and reduce the overall uncertainty.

1.6 Information on the QA/QC plan including verification and treatment of confidentiality issues where relevant

ISPRA has elaborated an inventory QA/QC plan which describes specific QC procedures to be implemented during the inventory development process, facilitates the overall QA procedures to be conducted, to the extent possible, on the entire inventory and establishes quality objectives.

Particularly, an inventory QA/QC procedures manual (ISPRA, 2013) has been drawn up which describes QA/QC procedures and verification activities to be followed during the inventory compilation and helps in the inventory improvement. Furthermore, specific QA/QC procedures and different verification activities implemented thoroughly the current inventory compilation, as part of the estimation process, are figured out in the annual QA/QC plan (ISPRA, 2023 [a]). These documents are publicly available at ISPRA website http://emissioni.sina.isprambiente.it/serie-storiche-emissioni/.

Quality control checks and quality assurance procedures together with some verification activities are applied both to the national inventory as a whole and at sectoral level. Future planned improvements are prepared for each sector by the relevant inventory compiler; each expert identifies areas for sectoral improvement based on his own knowledge and in response to the UNFCCC inventory reviews and taking into account the result of the key category assessment.

The quality of the inventory has improved over the years and further investigations are planned for all those sectors relevant in terms of contribution to total CO_2 equivalent emissions and with a high uncertainty.

In addition to *routine* general checks, source specific quality control procedures are applied on a caseby-case basis focusing on key categories and on categories where significant methodological and data revision have taken place or on new sources. Checklists are compiled annually by the inventory experts and collected by the QA/QC coordinator. These lists are also registered in the 'reference' database. General QC procedures also include data and documentation gathering. Specifically, the inventory analyst for a source category maintains a complete and separate project archive for that source category; the archive includes all the materials needed to develop the inventory for that year and is kept in a transparent manner.

All the information used for the inventory compilation is traceable back to its source. The inventory is composed by spreadsheets to calculate emission estimates; activity data and emission factors as well as methodologies are referenced to their data sources. Particular attention is paid to the archiving and storing of all inventory data, supporting information, inventory records as well as all the reference documents. To this end, a major improvement which increases the transparency of the inventory has been the development of a 'reference' database. After each reporting cycle, all database files, spreadsheets and official submissions are archived as 'read-only' mode in a master computer.

Quality assurance procedures regard some verification activities of the inventory as a whole and at sectoral level. Feedbacks for the Italian inventory derive from communication of data to different institutions and/or at local level. For instance, the communication of the inventory to the European Community results in a pre-check of the GHG values before the submission to the UNFCCC and relevant inconsistencies may be highlighted.

Every year, emission figures are also subjected to a process of re-examination once the inventory, the inventory related publications and the national inventory reports are posted on website, specifically <u>www.isprambiente.gov.it</u>, and from the communication of data to different institutions and/or at local level. In some cases, sectoral major recalculations are presented and shared with the relevant stakeholders prior to the official submission.

For the energy and industrial sectors, different meetings have been held in the last years jointly with the industrial associations, the Ministries of the Environment and Economic Development and ISPRA in the framework of the European Emissions Trading Scheme (EU-ETS), for assessing carbon leakage in EU energy intensive industries and the definition of GHG emission benchmarks; also in this context, estimations of the emission inventory for different sectors have been presented.

ISPRA has also held different meetings with the industrial associations in the context of different European legislation. ISPRA collects data from the industrial associations and industrial facilities under the EU- ETS and other European legislation such as Large Combustion Plant Directive and E-PRTR Regulation. The inventory team manages all these data and makes use of them in the preparation of the national inventory ensuring the consistency of time series among data by the comparison of the information collected under the directives with other sources available before the first available years of data collected (2000 and 2002, reporting years for data collected under ETS and INES/PRTR facilities, respectively). Emissions and activity data submitted under the ETS are mandatorily subject to verification procedures, as requested and specified by the European Directive 2003/87/EC (art. 15 and Annex V). Also, the quality of the Italian PRTR data is guaranteed by art.9 of the Regulation 2006/166/EC and by art.3(3) of the Presidential Decree n.157/2011.

In addition, ISPRA manages all this information in an informative system to help in highlighting the main discrepancies among data and improving the time series consistency. The informative system is based on identification codes to trace back individual point sources in different databases.

Other specific activities relating to improvements of the inventory and QA/QC practices in the last year regarded the progress on the building of a unique database where information collected in the framework of different European legislation, Large Combustion Plant, INES/PRTR and Emissions Trading, are gathered thus highlighting the main discrepancies in information and detecting potential errors. The

actual figures are considered in an overall approach and used in the compilation of the inventory. In this regard main progress is the update of the administrative information to identify the facilities under the separate databases. A spreadsheet including the list of facilities from Large Combustion Plant, PRTR, ETS is updated every year: a comprehensive list of the facilities reporting to the three systems with the identification codes in use in the source datasets is used to check for un-matching facilities so as to detect possible mistakes in the administrative information or facilities which did not report to one or more registers. Moreover, the so called "EU Business Registry" has been launched under the Industrial Emission Directive at European Union level; this new registry will include the administrative data for all the facilities in the scope of the Industrial Emission Directive as far as permitting procedures, site visit and site inspections, thematic data reporting are concerned. The first step should have had administrative data reported to European Union in order to be included in the new European registry by the end of 2019 but delays are due to the upcoming emergencies; in the following years thematic data (emissions, releases, waste quantities, activity data; number of site visits, infringements etc.) will be also reported in compliance with the reporting decisions that will be adopted by the EU Commission.

ISPRA is also responsible for the provincial inventory at local scale; at now the provincial inventories at local scale for the years 1990, 1995, 2015 and 2019 are available. In fact, every 5 years, and now every 4 years, in the framework of the Protocol on Long-term Financing of the Cooperative Programme for Monitoring and Evaluation of the Long-range Transmission of Air Pollutants in Europe (EMEP) under the Convention on Long-range Transboundary Air Pollution (CLTRAP), Parties have to report their national air emissions disaggregated on a 0.1°*0.1° grid. Specifically, ISPRA has applied a top-down approach to estimate emissions at provincial areas based on proxy variables. The results were checked out by regional and local environmental agencies and authorities; data are available at ISPRA web address Reports http://emissioni.sina.isprambiente.it/serie-storiche-emissioni/. which describe detailed methodologies to carry out estimates are available (Liburdi et al., 2004; ISPRA, 2009; ISPRA, 2022). Comparisons between top-down and local inventories have been carried out during the last year and will continue in the next years; results are shared among the 'local inventories' expert group leading to an improvement in methodologies for both the inventories. ISPRA has also collaborated with local authorities to assess the participation of the Italian municipalities to the Covenant of Mayors (http://www.isprambiente.gov.it/it/pubblicazioni/rapporti/stato-di-attuazione-del-patto-dei-sindaci-initalia).

A specific procedure undertaken for improving the inventory regards the establishment of national expert panels (in particular, in road transport, LULUCF and energy sectors) which involve, on a voluntary basis, different institutions, local agencies and industrial associations cooperating for improving activity data and emission factors accuracy.

The quality of the inventory has also improved by the organization and participation in sector specific workshops. Follow-up processes are also set up in the framework of the WGI and WG5 under the EC Monitoring Mechanism, which addresses to the improvement of different inventory sectors. In the last years, different workshops were held: on the management of uncertainty and how to proper use data from the European emissions trading scheme in the national greenhouse gas inventories; methodologies to estimate emissions from the agriculture and LULUCF sectors were also addressed, involving the Joint Research Centre, and from the waste sector, involving the European Topic Center on Resource and Waste Management, as well as from international bunkers, involving the International Energy Agency and EUROCONTROL. Presentations and documentation of the workshops are available on the website at the address: http://air-climate.eionet.europa.eu/meetings/past.html.

Especially in the last years, there has been an intensification of activities related to emission scenarios, and the importance of the emission inventory as a solid starting point is primary. The inventory is shared with the MASE, and all the relevant Ministries and local authorities.

In this context, from 2011, a report concerning the state of implementation of commitments to reduce greenhouse gases emissions, and describing emission trend and projections, is prepared by the MASE in

consultation with other relevant Ministries. The report is annexed to the economy and financial document (DEF) to be annually approved by the Government.

Expert peer reviews of the national inventory occur annually within the UNFCCC process, whose results and suggestions can provide valuable feedback on areas where the inventory should be improved. The last review occurred in 2022. The final report will be available at the relevant UNFCCC web site address https://unfccc.int/process-and-meetings/transparency-and-reporting/reporting-and-review-under-the-convention/greenhouse-gas-inventories-annex-i-parties/inventory-review-reports-2022 and details on the review processes and implementation of the comments and potential recommendations are described in Annex 11 and in relevant sections.

At European level, reviews of the European inventory are undertaken by experts from different Member States for critical sectoral categories in the context of the European GHG Monitoring Mechanism. Moreover, in the context of the European Effort Sharing Decision (EC, 2009), in 2021, a detailed review of the Italian inventory was conducted. Following the main relevant recommendations, revisions of the estimates were implemented.

An official independent review of the entire Italian greenhouse gas inventory was undertaken by the Aether consultants in 2013. Main findings and recommendations are reported in a final document, and regard mostly the transparency in the NIR, the improvement of QA/QC documentation.

The preparation of environmental reports where data are needed at different aggregation levels or refer to different contexts, such as environmental and economic accountings, is also a check for emission trends. At national level, for instance, emission time series are reported in the Environmental Data Yearbooks published by ISPRA. Emission data are also published by the Ministry of the Environment in the Reports on the State of the Environment and the National Communications as well as in the Demonstrable Progress Report. Moreover, figures are communicated to the National Institute of Statistics to be published in the relevant Environmental Statistics Yearbooks as well as used in the framework of the EUROSTAT NAMEA Project.

At European level, ISPRA also reports on indicators meeting the requirements of Article 13 of EU Regulation 1999/2018. Member States shall submit figures on specified indicators. These indicators are reported in the document 'Carbon Dioxide Intensity Indicators' (ISPRA, 2023 [b]).

Comparisons between emission estimates from industrial sectors and those published by the industry itself in their Environmental reports are carried out annually to assess the quality and the uncertainty of the estimates.

Additional consistency checks of data are carried out in the context of the European Regulation No 1999/2018. EU Member States shall report in textual and tabular format on data inconsistencies.

For example, according to Art. 15 of the EU Regulation, data on air pollutants estimated under the UNECE Convention on Long-range Transboundary Air Pollution and those under the UNFCCC Convention should not exceed the difference of more than +/-5 % between the total emissions for a specific pollutant otherwise text and a tabular format should be compiled by the Member State. As shown in chapter 2, para 2.4, these differences for Italy are far under the threshold.

Other relevant articles of the EU Regulation for data consistency are Article 14, on emissions reported under the European ETS, and Article 17(2) related to consistency with energy statistics.

Specifically, Article 14 regards the consistency of reported GHG emissions under UNFCCC with data from the EU emissions trading system in tabular and textual form by category; the detailed table is included in Annex 12 of the NIR.

Article 17 of the EU Implementing Regulation obliges Member States to report textual information on the comparison between the reference approach calculated on the basis of the data included in the GHG

inventory and the reference approach calculated on the basis of the data reported pursuant to Article 4 of Regulation (EC) No 1099/2008 of the European Parliament and of the Council (1) and Annex B to that Regulation (Eurostat energy data). If these differences are higher than +/-2 %, in the total national apparent fossil fuel consumption at aggregate level for all fossil fuel categories, a tabular format shall also be compiled. For Italy these differences are below the determined threshold; also, these data are reported in Annex 12 for the year 2021.

A summary of all the main QA/QC activities over the past years which ensure the continuous improvement of the inventory is presented in the document 'Quality Assurance/Quality Control plan for the Italian Emission Inventory. Year 2023' (ISPRA, 2023 [a]).

A proper archiving and reporting of the documentation related to the inventory compilation process is also part of the national QA/QC programme.

All the material and documents used for the inventory preparation are stored at ISPRA. Information relating to the planning, preparation, and management of inventory activities are documented and archived. The archive is organised so that any skilled analyst could obtain relevant data sources and spreadsheets, reproduce the inventory, and review all decisions about assumptions and methodologies undertaken. A master documentation catalogue is generated for each inventory year and it is possible to track changes in data and methodologies over time. Specifically, the documentation includes:

- electronic copies of each of the draft and final inventory report, electronic copies of the draft and final CRF tables;
- electronic copies of all the final, linked source category spreadsheets for the inventory estimates (including all spreadsheets that feed the emission spreadsheets);
- results of the reviews and, in general, all documentation related to the corresponding inventory year submission.

After each reporting cycle, all database files, spreadsheets and electronic documents are archived as 'readonly' mode.

A 'reference' database is also compiled every year to increase the transparency of the inventory. This database consists of a number of records that references all documentation used during the inventory compilation, for each sector and submission year, the link to the electronically available documents and the place where they are stored as well as internal documentation on QA/QC procedures.

1.7 General uncertainty evaluation, including data on the overall uncertainty for the inventory totals

The 2006 IPCC Guidelines (IPCC, 2006) define two approaches to estimating uncertainties in national greenhouse gas inventories: Approach 1, based on the error propagation equations, and Approach 2, corresponding to the application of Monte Carlo analysis.

For the Italian inventory, quantitative estimates of the uncertainties are calculated using Approach 1 which application is described in Annex 1, with or without emissions and removals from the LULUCF sector. Emission categories are disaggregated into a detailed level and uncertainties are therefore estimated for these categories.

For the 2021 total emission figures without LULUCF, an uncertainty of 2.9% in the combined global warming potential (GWP) total emissions is estimated, whereas for the trend between the base year and 2021 the analysis assesses an uncertainty by 2.2%. Including the LULUCF sector into national figures, the uncertainty according to Approach 1 is equal to 3.8% for the year 2021, whereas the uncertainty for the trend is estimated to be 2.8%. The small variation in the uncertainty levels, as compared the previous submission, is mainly due to the recalculation process and consequent different weights of the categories

and relevant uncertainties. The assessment of uncertainty has also been applied to the base year emission levels. The results show an uncertainty of 2.1% in the combined GWP total emissions, excluding emissions and removals from LULUCF, whereas it increases to 2.7% including the LULUCF sector.

Approach 2, Montecarlo analysis⁷, was implemented in previous submissions to estimate uncertainty of some of the key categories of the Italian inventory. Most of the results prove that both approaches (Approach 1 and 2) produce comparable results and that uncertainty values derived by Approach 2 are lower than those derived from the application of Approach 1. For details, please consult previous NIRs

QC procedures are also undertaken on the calculations of uncertainties to confirm the correctness of the estimates and that there is sufficient documentation to duplicate the analysis. The assumptions which uncertainty estimations are based on are documented for each category. Figures used to draw up uncertainty analysis are checked both with the relevant analyst experts and literature references and are consistent with the IPCC Guidelines (IPCC, 2000; IPCC, 2003; IPCC, 2006). More in details, facility level data are used to check and verify information from the industrial sector; these data also include information from the European Emissions Trading Scheme, the Italian PRTR register which is also collected and elaborated by the inventory team. Most of the times there is correspondence among activity data from different databases so that the level of uncertainty could be assumed lower than the one fixed at 3%; the same occurs for emission factors coming from measurements at plant level, and even in this case the uncertainty may be assumed lower than the predetermined level. Since the overall uncertainty of the Italian inventory is relatively low due to the prevalence of the energy sector sources, whose estimates derive from accurate parameters, out of the total, it has been decided to use conservative figures; this occurs especially for energy and industrial sectors. Details can be found at category level in the relevant sections.

The results of the uncertainty analysis, generally associated with a key category assessment by Approach 2, are used to prioritize improvements for the next inventory submissions. Emissions of key categories are usually estimated with a high level of accuracy in terms of the methodology used and characterised by a low uncertainty; some exceptions may occur and categories estimated with higher tiers may be affected by a high level of uncertainty. For instance, in the agriculture sector, direct N₂O emissions from agricultural soils and indirect N₂O from nitrogen used in agriculture are affected by a high level of uncertainty especially in the emission factors notwithstanding the advanced tiers used. For the categories with a high uncertainty, further improvements are planned whenever sectoral studies can be carried out.

1.8 General assessment of the completeness

The inventory covers all major sources and sinks, as well as direct and indirect gases, included in the IPCC guidelines.

Details are reported in Table 1.7 and Table 1.8. Sectoral and background tables of CRF sheets are complete as far as details of basic information are available. For instance, multilateral operations emissions are not estimated because no activity data are available.

Allocation of emissions is not consistent with the IPCC Guidelines only where there is no data available to split the information. For instance, for fugitive emissions, N₂O fugitive emissions from oil refining and storage activities are reported under category 1.B.2.d other, flaring in refineries. Further investigation will be carried out closely with industry about these figures.

⁷ The description of the key categories to which the analysis was applied and the reference years are reported in 2022 NIR submission

	Sources and sinks not estimated (NE) ⁽¹⁾									
GHG	Sector ⁽²⁾	Source/sink category ⁽²⁾	Explanation							
CH₄	Energy	1.A.1c Manufacture of solid fuel (biomass)	CH₄ emissions from charcoal production are not accounted for because of a lack of methodology in the 2006 IPCC Guidelines applicable to the type of furnace technology in use							
N ₂ O	Energy	1.B Fugitive Emissions from Fuels/ 1.B.2 Oil and Natural Gas and Other Emissions from Energy Production/ 1.B.2.d Other /Geotherm	N ₂ O emissions are negligible							
CO _{2,} CH _{4,} N ₂ O	Energy	1.D.2 Multilateral Operations	Information and statistical data are not available							
CH₄	Agriculture	3.D Agricultural Soils	CH ₄ emissions from managed soils have not been estimated because no methodology is available in the IPCC Guidelines.							
CO ₂ , CH _{4,} N ₂ O	LULUCF	4.E Settlements/4(V) Biomass Burning 4.E Settlements	Emissions are considered insignificant, below 0.05% of the national total GHG emissions, and minor than 500 kt CO ₂ eq.							

Table 1.7 Source and sinks not estimated in the 2021 inventory

Table 1.8 Source and sinks reported elsewhere in the 2021 inventory

GHG	Source/sink category	Allocation as per IPCC Guidelines	Allocation used by the Party	Explanation
CO2	1.AD Feedstocks, reductants and other non-energy use of fuels/Liquid Fuels/Gasoline	1.AD Liquid fuel/Gasoline/LPG/ Other Oil/Refinery feedstock/Residual oil	1.AD Liquid fuel/Naphta	National energy balances include only the input and output quantities from the petrochemical plants; so in the petrochemical transformation process the output quantity could be greater than the input quantity, in particular for light products as LPG, gasoline and refinery gas, due to chemical reactions. Therefore, it is possible to have negative values for some products (mainly gasoline, refinery gas, fuel oil). For this matter, for the reporting on CRF tables, these fuels have been added to naphtha.
N2O	1.B Fugitive Emissions from Fuels/ 1.B.2 Oil and Natural Gas and Other Emissions from Energy Production/ 1.B.2.a Oil/ 1.B.2.a.4 Refining / Storage	1.B.2.a.4 Refining/storage	1.B.2.d flaring in refineries	No information is available to split the emissions
CO ₂	2.C Metal Industry/ 2.C.5 Lead Production	2.C.5. Lead Production	2.C.6 Zinc production	CO ₂ emissions from the sole zinc and lead integrated plant in Italy have been estimated. The available data do not allow to distinguish between zinc and lead emissions.

GHG	Source/sink category	Allocation as per IPCC Guidelines	Allocation used by the Party	Explanation
HFC- 125, HFC- 134a, HFC- 143a	2.F Product Uses as Substitutes for ODS/2.F.1 Refrigeration and air conditioning/ Transport Refrigeration	2.F.1 Refrigeration and air conditioning/ Transport Refrigeration	2.F.1 Refrigeration and air conditioning/ Commercial Refrigeration	Emissions from Transport Refrigeration are included in Commercial Refrigeration
CO ₂	4.A Forest Land/4.A.1 Forest Land Remaining Forest Land/4(V) Biomass Burning/Wildfires	4.A.1 4(V) Biomass Burning/Wildfires	4.A.1, Carbon stock change in living biomass	CO ₂ emissions due to wildfires in forest land remaining forest land are included in table 4.A.1, Carbon stock change in living biomass, Losses
CO ₂	4.A Forest Land/4.A.2 Land Converted to Forest Land/4(V) Biomass Burning/Wildfires	4.A.2 4(V) Biomass Burning/Wildfires	4.A.2, Carbon stock change in living biomass	CO₂ emissions due to wildfires in forest land remaining forest land are included in table 4.A.2, Carbon stock change in living biomass, Losses
N2O	4.A Forest Land/4.A.1 Forest Land Remaining Forest Land/4(I) Direct N2O Emissions from N Inputs to Managed Soils/Inorganic N Fertilizers	4(I) Direct N2O Emissions from N Inputs to Managed Soils/Inorganic N Fertilizers	3.D.1 Direct N2O emissions from managed soils	N inputs to managed soils are reported in the agriculture sector
CO ₂	4.G Harvested Wood Products/Approach B/Approach B2/Total HWP from Domestic Harvest/HWP Produced and Exported/Solid Wood/Sawnwood and Wood panels	Solid Wood/Sawnwood and Wood panels in HWP Produced and exported	Solid Wood/Sawnwood and wood panels in HWP produced and consumed domestically	HWP produced and exported are included in the HWP produced and consumed domestically

2 TRENDS IN GREENHOUSE GAS EMISSIONS

2.1 Description and interpretation of emission trends for aggregate greenhouse gas emissions

Summary data of the Italian greenhouse gas emissions for the years 1990-2021 are reported in Tables A8.1.1- A8.1.5 of Annex 8. The emission figures presented are those sent to the UNFCCC Secretariat and to the European Commission in the framework of the Greenhouse Gas Monitoring Mechanism.

Total greenhouse gas emissions, in CO₂ equivalent, excluding emissions and removals from LULUCF, have decreased by 19.9% between 1990 and 2021, varying from 521 to 418 CO₂ equivalent million tons (Mt). Table 1 shows the national greenhouse gases for 1990-2021, expressed in CO₂ equivalent terms and by substance; emissions are reported excluding and including emissions and removals from LULUCF. Total emissions are also reported with indirect emissions which, for Italy, equals the total without indirect emissions.

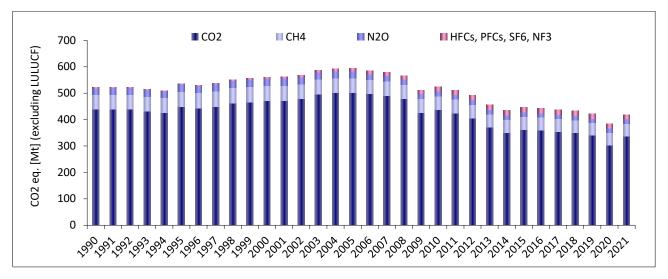
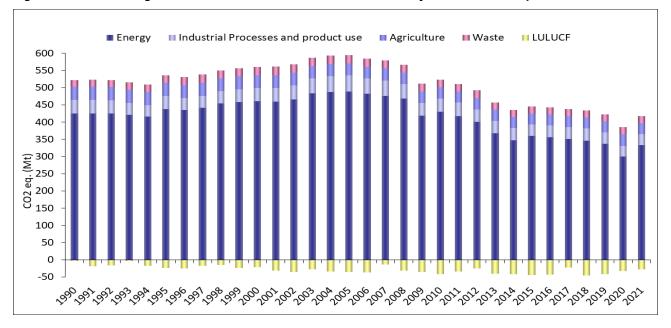

GHG emissions	1990	1995	2000	2005	2010	2015	2018	2019	2020	2021		
	kt CO2 equivalent											
CO ₂ excluding net CO ₂ from LULUCF	438,904	449,430	470,524	502,347	436,534	361,936	349,827	340,403	303,281	337,230		
CO ₂ including net CO ₂ from LULUCF	433,214	424,391	447,552	465,893	394,075	317,385	304,086	297,929	269,900	308,306		
CH ₄ excluding CH ₄ from LULUCF	54,975	57,034	57,706	54,703	52,690	49,316	47,972	46,762	47,513	47,087		
CH ₄ including CH ₄ from LULUCF	56,416	57,373	58,506	55,038	53,083	49,611	48,144	46,965	47,885	48,065		
N ₂ O excluding N ₂ O from LULUCF	24,193	26,177	26,923	26,048	18,090	16,788	16,893	16,691	17,346	17,193		
N ₂ O including N ₂ O from LULUCF	24,954	26,958	27,541	26,608	18,472	17,079	17,292	17,124	17,811	17,666		
HFCs	372	861	2,803	8,718	14,325	15,630	16,928	17,019	16,035	15,388		
PFCs	2,615	1,351	1,363	1,759	1,377	1,529	1,502	915	499	395		
Unspecified mix of HFCs and PFCs	NO,NA	24	24	24	24	24	23	23	22	25		
SF ₆	421	700	621	565	405	485	464	444	257	258		
NF ₃	NA,NO	77	13	33	20	28	22	18	16	15		
Total (excluding LULUCF)	521,480	535,654	559,978	594,197	523,466	445,736	433,631	422,276	384,970	417,591		
Total (including LULUCF)	517,992	511,734	538,424	558,640	481,781	401,772	388,460	380,439	352,425	390,118		
Total (excluding LULUCF, with indirect)	521,480	535,654	559,978	594,197	523,466	445,736	433,631	422,276	384,970	417,591		
Total (including LULUCF, with indirect)	517,992	511,734	538,424	558,640	481,781	401,772	388,460	380,439	352,425	390,118		

Table 2.1 Greenhouse gas emissions and removals from 1990 to 2021 by gas (Mt CO₂ eq.)

The most important greenhouse gas, CO₂, which accounts for 80.8% of total emissions in CO₂ equivalent, shows a decrease by 23.2% between 1990 and 2021. In the energy sector, in particular CO₂ emissions in 2021 are 21.3% lower than in 1990. In 2021, CH₄ and N₂O emissions are equal to 11.3% and 4.1% of the total CO₂ equivalent greenhouse gas emissions, respectively. CH₄ emissions have decreased by 14.3%

from 1990 to 2021, while N₂O emissions have decreased by 28.9%. As for other greenhouse gases, HFCs account for 3.9% of total emissions, PFCs and SF₆ are equal both to about 0.1% of total emissions; the weight of NF₃ is less than 0.01%. Among these gases, HFCs show a strong increase in emissions, and the meaningful increasing trend will make them even more important in next years.

Figure 2.1 illustrates the national trend of greenhouse gases for 1990-2021, expressed in CO₂ equivalent terms and by substance; total emissions do not include emissions and removals from land use, land use change and forestry.



The share of the different sectors, in terms of total emissions, remains nearly unvaried over the period 1990-2021. Specifically, for the year 2021, the greatest part of the total greenhouse gas emissions is to be attributed to the energy sector, with a percentage of 79.7%, followed by agriculture and industrial processes and product use, accounting for 7.8% and 7.6%, respectively, and waste contributing with 4.8% to total emissions.

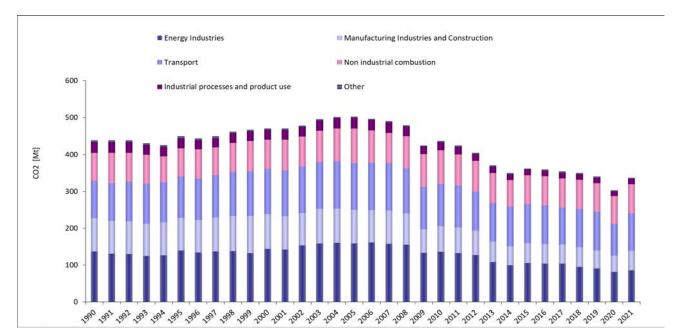
Total greenhouse gas emissions and removals, including LULUCF sector, are shown in Figure 2.2 subdivided by sector.

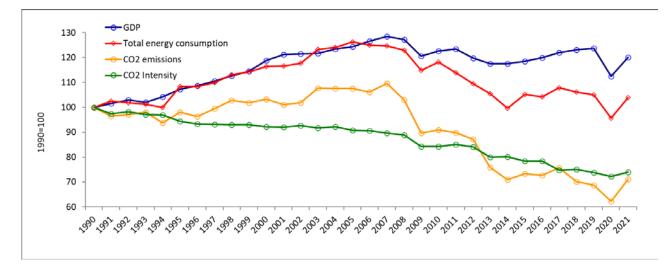
In 2021, considering the total GHG emissions (including the absolute value of net LULUCF emissions/ removals), the percentage contribution of the sectors is: 74.8% for energy, 7.4% for agriculture, 7.2% for industrial processes and product use, 6.2% for LULUCF and 4.5% for waste.

2.2 Description and interpretation of emission trends by gas

2.2.1 Carbon dioxide emissions

 CO_2 emissions, without LULUCF, decreased by 23.7% from 1990 to 2021, ranging from 439 to 337 million tons. The most relevant emissions derive from transportation (30.3%) and energy industries (25.5%). Non-industrial combustion accounts for 23.3% and manufacturing and construction industries for 15.6%, while the remaining emissions derive from industrial processes (4.5%) and the other sectors (about 0.7%). The trend of CO_2 emissions by sector is shown in Figure 2.3.




Figure 2.3 National CO₂ emissions by sector from 1990 to 2021 (Mt)

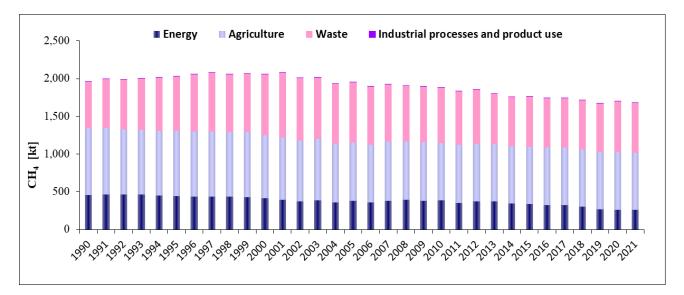
The main driver for the reduction of CO₂ emissions is the reduction in emissions observed in energy industries and manufacturing industries and construction; in the period 1990-2021, emissions from energy industries decreased by 37.2% while those from manufacturing industries and construction show a decrease of 41.8%. The transport sector has shown an increase of emissions until 2007 and then a decrease both for the economical recession and the penetration of vehicles with low fuel consumption. Non industrial combustion emission trend is driven by the annual climatic variation while emissions from industrial processes decreased by 48.1% mainly for the decrease of cement production.

Figure 2.4 illustrates the performance of the following economic and energy indicators:

- Gross Domestic Product (GDP) at market prices as of 2010 (base year 1990=100);
- Total Energy Consumption;
- CO2 emissions, excluding emissions and removals from land-use change and forests;
- CO₂ intensity, which represents CO₂ emissions per unit of total energy consumption.

CO₂ emissions in the 1990s essentially mirrored energy consumption. A decoupling between the curves is observed only in recent years, mainly as a result of the substitution of fuels with high carbon contents by methane gas in the production of electric energy and in industry; in the last years, the increase in the use of renewable sources has led to a notable reduction of CO₂ intensity. The pandemic situation due to Covid-19 has led to a sharp fall in emissions and a slowdown in economic growth in 2020. The expected countertrend is observed in 2021.

Figure 2.4 Energy-related and economic indicators and CO₂ emissions


2.2.2 Methane emissions

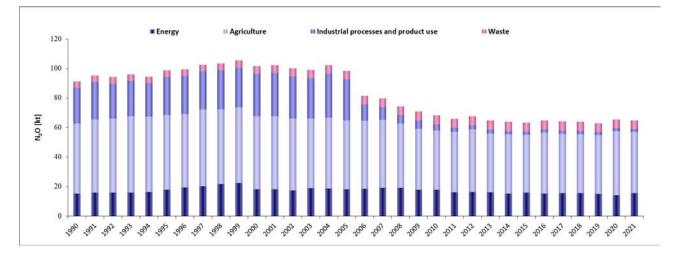
Methane emissions (excluding LULUCF) in 2021 represent 11.3% of total greenhouse gases, equal to 47.1 Mt in CO₂ equivalent, and show a decrease of 14.3% as compared to 1990 levels. CH₄ emissions, in 2021, are mainly originated from the agriculture sector which accounts for 45.1% of total methane emissions, as well as from the waste (39.4%) and energy (15.4%) sectors.

Emissions in the agriculture sector regard mainly the enteric fermentation (69.1%) and manure management (22.5%) categories. The sector shows a decrease of emissions equal to 13.8% as compared to 1990, attributable widely to a reduction in livestock and the recovery of biogas for energy purposes (for swine and poultry).

Activities typically leading to emissions in the waste-management sector are the operation of dumping sites and the treatment of industrial wastewater. The waste sector shows an increase in CH₄ emission levels, equal to 7.1% compared to 1990; the largest sectoral shares of emissions are attributed to solid waste disposal on land (84.5%) and waste-water handling (14.5%), which show an increase equal to 14.7% and a decrease by 25.1%, respectively.

In the energy sector, the reduction of CH₄ emissions (-43.5%) is the result of two contrasting factors: on the one hand there has been a considerable reduction in emissions deriving from energy industries, transport, fugitive emissions from fuels (caused by leakage from the extraction and distribution of fossil fuels, due to the gradual replacement of natural-gas distribution networks), on the other hand a strong increase in the civil sector can be observed, as a result of the increased use of methane and biomass in heating systems. Figure 2.5 shows the emission figures by sector.

Figure 2.5 National CH₄ emissions by sector from 1990 to 2021 (kt)


2.2.3 Nitrous oxide emissions

In 2021, nitrous oxide emissions (excluding LULUCF) represent 4.2% of total greenhouse gases, with a decrease of 28.9% between 1990 and 2021, from 24.2 to 17.2 Mt CO₂ equivalent. The major source of N₂O emissions is the agricultural sector (64.2%), in particular the use of both chemical and organic fertilisers in agriculture, as well as the management of waste from the raising of animals. Emissions from the agriculture sector show a decrease of 12.0% during the period 1990-2021, due to a reduction in livestock number.

Emissions in the energy sector (23.8% of the total) show an increase by 0.2% from 1990 to 2021; this trend can be traced primarily to the reduction of 37.2% in the manufacturing and construction industries (which account for 4.3% of the total N₂O emissions) due mainly to the reduction in the last years of cement production; the downward trend was counterbalanced by the increase of emissions by 41.7% in the other sectors category, which accounts for 12.7% of the total N₂O emissions, as a result of the increased use of biomass in heating systems.

For the industrial sector, N_2O emissions show a decrease of 92.1% from 1990 to 2021. The decrease is almost totally due to the introduction of abatement systems in the nitric and adipic acid production plants which drastically reduced emissions from these processes. A further component which has contributed to the reduction is the decreasing use of N_2O for medical purposes. Other emissions in the waste sector (9.1% of national N₂O emissions) primarily regard the processing of industrial and domestic waste-water treatment and the biological treatment of solid waste.

Figure 2.6 shows national emission figures by sector.

Figure 2.6 National N₂O emissions by sector from 1990 to 2021 (kt)

2.2.4 Fluorinated gas emissions

Italy has set 1990 as the base year for emissions of fluorinated gases, HFCs, PFCs, SF₆ and 1995 for NF₃. Taken altogether, the emissions of fluorinated gases represent 3.9% of total greenhouse gases in CO₂ equivalent in 2021 and they show a significant increase between 1990 and 2021. This increase is the result of different features for the different gases. HFCs, for instance, have increased considerably from 1990 to 2021, from 0.4 to 15.4 Mt in CO₂ equivalent. The main sources of emissions are the consumption of HFC-134a, HFC-125, HFC-32 and HFC-143a in refrigeration and air-conditioning devices, together with the use of HFC-134a in pharmaceutical aerosols. Increases during this period are due both to the use of these substances as substitutes for gases that destroy the ozone layer and to the greater use of air conditioners in automobiles.

Emissions of PFCs show a decrease of 84.9% from 1990 to 2021. The level of PFC emissions in 2021 is equal to 0.4 Mt in CO_2 equivalent, and it is due to by product emissions in fluorchemical production (66.1%), and the use of the gases in the production of semiconductors (33.9%).

Emissions of SF₆ are equal to 0.3 Mt in CO₂ equivalent in 2021, with a decrease of 38.8% as compared to 1990 levels. In 2021, 76.4% of SF₆ emissions derive from the gas contained in electrical equipment, 7.6% from the use of this substance in accelerators and 15.8% from the gas used in the semiconductors manufacture. NF₃ emissions account for 0.004 Mt in CO₂ equivalent in 2021 and derive from the semiconductors industry.

The national inventory of fluorinated gases has largely improved in terms of sources and gases identified and a strict cooperation with the relevant industry has been established. Higher methods are applied to estimate these emissions; nevertheless, uncertainty still regards some activity data which are considered of strategic economic importance and therefore kept confidential.

Figure 2.7 National emissions of fluorinated gases by sector from 1990 to 2021 (kt CO2 eq.)

2.3 Description and interpretation of emission trends by source

2.3.1 Energy

Emissions from the energy sector account for 79.7% of total national greenhouse gas emissions, excluding LULUCF, in 2021. Emissions in CO₂ equivalent from the energy sector are reported in Table 2.2 and Figure 2.8.

	1990	1995	2000	2005	2010	2015	2018	2019	2020	2021
		kt CO₂ eq.								
Total emissions	424,677	437,559	459,685	487,746	429,335	359,471	346,115	336,089	299,742	332,564
Fuel Combustion (Sectoral Approach)	411,560	425,185	448,537	477,991	420,439	351,446	339,216	329,574	293,984	327,271
Energy Industries	137,646	140,631	144,906	159,934	137,507	106,090	95,857	91,718	81,656	86,450
Manufacturing Industries and Construction	92,278	90,312	96,373	92,444	70,165	55,634	54,279	50,006	45,876	53,922
Transport	102,191	114,289	124,031	128,425	115,988	106,773	105,218	106,424	86,629	103,364
Other Sectors	78,303	78,388	82,347	95,865	96,086	82,471	83,511	80,958	79,182	83,228
Other	1,143	1,566	881	1,323	692	478	351	467	642	308
Fugitive Emissions from Fuels	13,117	12,374	11,147	9,755	8,897	8,025	6,899	6,516	5,758	5,293
Solid Fuels	132	74	97	90	86	53	-	-	-	-
Oil and Natural Gas	12,985	12,300	11,050	9,665	8,810	7,973	6,865	6,483	5,732	5,268

Table 2.2 Total emissions from the energy sector by source (1990-2021) (kt CO₂ eq.)

From 2005, GHG emissions from the energy sector have been decreasing because of the policies adopted at European and national level to implement the production of energy from renewable sources. From the same year, a further shift from petrol products to natural gas in producing energy has been observed as a consequence of the starting of the EU greenhouse gas Emission Trading Scheme (EU ETS) on January 1st, 2005. From 2009, a further drop of the sectoral emissions is due to the economic recession. From 2008 to 2009 the decrease observed in GHG emissions is equal to -10.5% followed by an increase (+2.7%) only

from 2009 to 2010; since then, except for the increase of 3.5% between 2014 and 2015, the annual variations are always negative until 2019.

Total greenhouse gas emissions, in CO_2 equivalent, show a decrease of about 21.8% from 1990 to 2021; in particular, an upward trend is noted from 1990 to 2004, with an increase by 14.6%, while between 2005 and 2021 emissions decreased by 31.7%.

The GHG with the highest impact, in the energy sector, is CO₂, accounting for 96.6% of the sectoral total, in 2021, whose levels have decreased by 21.3% from 1990 to 2021.

In 2021, CH₄ emissions account for 2.2% of the sectoral total. Their trend shows a decrease of 43.5% from 1990 to 2021, and it is driven by the combined effect of technological improvements that limit volatile organic compounds (VOCs) from tail pipe and evaporative emissions (for cars) and the expansion of two-wheelers fleet.

N₂O shows an increase of 0.4% with a share out of the total equal to 1.4%, mainly driven by the technology development in road transport and to the switch from gasoline to diesel fuel consumption.

In general, for the sector, the decrease in emissions from 1990 to 2021 is driven by the reduction in the energy industries and manufacturing industries and construction, which, in 2021, account for 26.0% and 16.2% and reduced by 37.2% and 41.5%, respectively. Specifically, for the manufacturing industries and construction, the reason for the reduced emissions is the cut in production in some subsectors (e.g. chemical, construction and building materials, steel) due to the effects of the economic recession but also to an increase in efficiency, especially identified in the chemical sector. An increase in emissions also occurs in other sectors subcategory (6.4%), which account for 25.0% in 2021; the transport sector, accounting for 31.0%, in 2021, shows an increase of 1.1%.

Road transport is the most relevant source in the transport sector, accounting in 2021 for 23.0% of total national CO₂ equivalent emissions.

The increase in other sectors, which refer to emissions originated from energy use in the civil sector and from military mobile activities, is due, from 1990 to 2000, to the increase in numbers and size of building with heating, and to the trend in weather conditions, while from 2002, and especially in the last few years, to the increase in other greenhouse gas emissions than CO₂ for the growing use of woody biomass and biogas for heating. Details on these figures are described in the specific chapter.

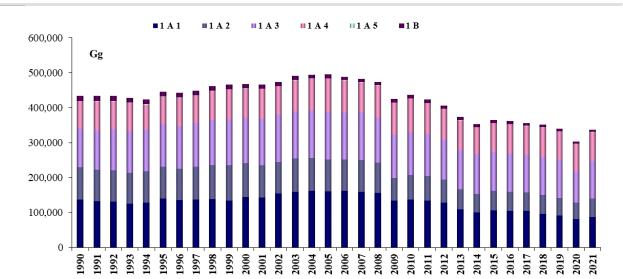
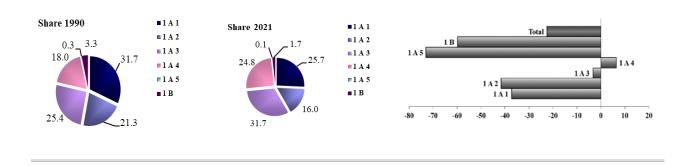
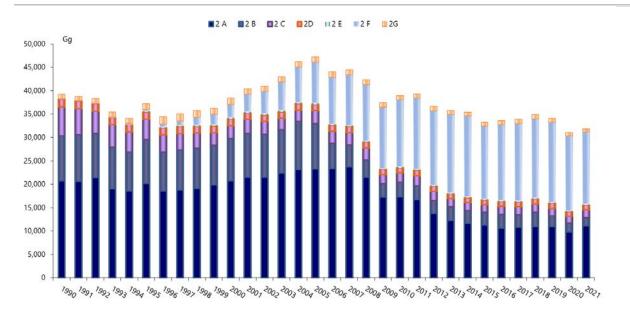
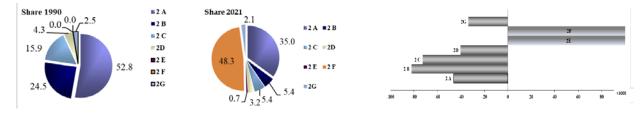



Figure 2.8 Trend of total emissions from the energy sector (1990-2021) (kt CO₂ eq.)


2.3.2 Industrial processes and product use

Emissions from the industrial processes and product use sector account for 7.6% of total national greenhouse gas emissions, excluding LULUCF, in 2021. Emission trends from industrial processes are reported in Table 2.3 and Figure 2.9.


Total emissions, in CO₂ equivalent, show a decrease of 18.9%, from 1990 to 2021. Taking into account emissions by substance, CO₂ and N₂O decreased by 48.1% and 92.1%, respectively; in terms of their weight out of the sectoral total emissions, CO₂ accounts for 47.8% and N₂O for 1.6%. CH₄ decreased by 68.7% but it accounts for only 0.1%.

The decrease in emissions is mostly to be attributed to a decrease in the mineral and chemical industries. Emissions from mineral production decreased by 46.2%, mostly for the reduction of cement production. The decrease of GHG emissions in the chemical industry (-82.0%) is due to the decreasing trend of the emissions from nitric acid and adipic acid production (the last production process sharply reduced its emissions, due to a fully operational abatement technology). On the other hand, from 1990 to 2021, a considerable increase is observed in F-gas emissions (371.9%), whose share on total sectoral emissions is 50.5% in the last reporting year. The main drivers of the increase are the consumptions of HFCs in refrigeration and air-conditioning devices, together with their use in pharmaceutical aerosols (see section 2.2.4). Details for industrial processes and product use emissions can be found in the specific chapter.

	1990	1995	2000	2005	2010	2015	2018	2019	2020	2021
				kt CO₂ eq.						
Total emissions	39,257	37,271	38,368	47,226	38,960	33,328	34,927	34,038	31,040	31,852
CO ₂	29,303	27,260	25,815	28,704	21,654	15,039	15,331	15,001	13,613	15,221
CH ₄	144	150	82	83	67	48	49	46	38	45
N ₂ O	6,402	6,848	7,646	7,338	1,088	545	608	570	559	505
F-gases	3,408	3,013	4,824	11,101	16,151	17,697	18,939	18,420	16,829	16,081
HFCs	372	861	2,803	8,718	14,325	15,630	16,928	17,019	16,035	15,388
PFCs	2,615	1,351	1,363	1,759	1,377	1,529	1,502	915	499	395
Unspecified mix of HFCs and PFCs		24	24	24	24	24	23	23	22	25
SF ₆	421	700	621	565	405	485	464	444	257	258
NF ₃		77	13	33	20	28	22	18	16	15

2.3.3 Agriculture

Emissions from the agriculture sector account for 7.8% of total national greenhouse gas emissions, in 2021, excluding LULUCF. Emissions from the agriculture sector are reported in Table 2.4 and Figure 2.10.

	1990	1995	2000	2005	2010	2015	2018	2019	2020	2021
					kt CO₂ eq.					
Total emissions	37,676	38,076	37,185	34,629	32,225	32,102	32,306	32,190	33,427	32,717
Enteric Fermentation	17,093	16,697	16,509	14,484	14,100	14,272	14,612	14,584	14,771	14,671
Manure Management	7,942	7,567	7,451	7,392	7,161	6,875	6,731	6,699	6,711	6,582
Rice Cultivation	2,102	2,228	1,855	1,962	2,041	1,868	1,793	1,776	1,788	1,756
Agricultural Soils	10,011	10,998	10,779	10,206	8,521	8,607	8,708	8,683	9,634	9,228
Field Burning of Agricultural Residues	19	19	19	21	20	20	20	19	20	20
Liming	1	1	2	14	18	14	15	16	10	26
Urea application	465	512	525	507	335	425	405	396	472	414
Other carbon-containing fertilizers	44	54	44	42	28	20	22	17	21	22

Table 2.4 Total emissions from the agriculture sector by source (1990-2021) (kt CO₂ eq.)

Emissions mostly refer to CH_4 and N_2O , which, in 2021, account for 64.9% and 33.7% of the total emissions of the sector, respectively. CO_2 accounts for the remaining 1.4% of total emissions. The decrease observed

in total emissions (-13.2%) is mostly due to the decrease of CH₄ emissions from enteric fermentation (-14.2%) and to the decrease of N₂O (-7.8%) from agricultural soils; in 2021 these categories account for 44.8% and 28.2% of the total sectoral emissions, respectively.

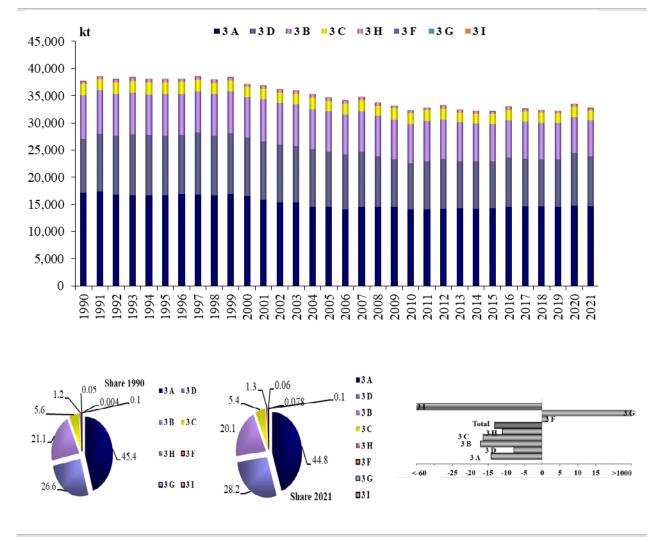
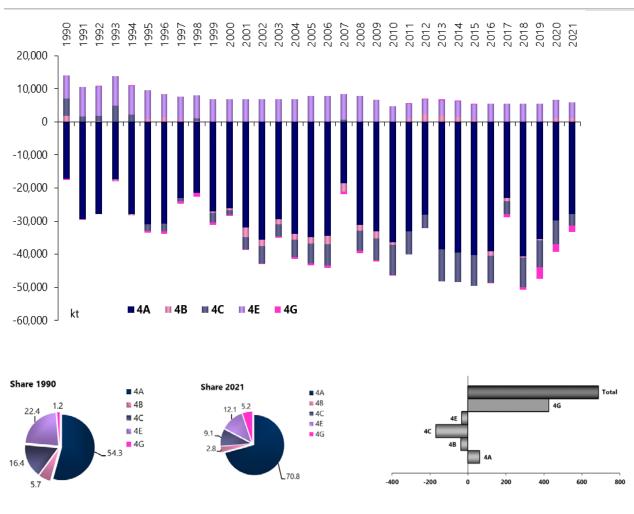


Figure 2.10 Trend of total emissions from the agriculture sector (1990-2021) (kt CO₂ eq.)

Main drivers behind these downward trends are the reduction in the number of animals, especially cattle in the whole period and the reduction of the use of nitrogen fertilizers, mainly due to the European Common Agricultural Policy (CAP) measures. In addition, a significant increase in the recovery of the biogas produced from animal manure and used in the energy sector has occurred in the last years. This biogas has been used for the electricity production and the combined electricity and heat production, thus contributing to the reduction of total emissions. Detailed comments can be found in the specific chapter.


2.3.4 LULUCF

Emissions and removals from the LULUCF sector are reported in Table 2.5 and Figure 2.11.

	1990	1995	2000	2005	2010	2015	2018	2019	2020	2021
				k	t CO2 eq.					
Total emissions/removals	-3,433	-23,925	-21,522	-35,548	-41,670	-43,953	-23,256	-45,178	-41,845	-32,556
Forest land	-17,184	-30,987	-26,202	-34,909	-36,383	-40,233	-22,982	-40,597	-35,361	-29,779
Cropland	1,795	763	-458	-1,807	-782	664	-939	-504	-469	1,139
Grassland	5,184	-1,884	-1,385	-6,103	-9,174	-9,321	-3,957	-8,861	-8,107	-7,255
Wetlands	NE,NO	5	8	8	130	130	32	32	32	32
Settlements	7,089	8,867	6,928	7,749	4,659	4,709	5,516	5,525	5,533	5,538
Other land	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
Harvested wood products	-388	-706	-454	-503	-142	89	-974	-778	-3,481	-2,240
Other (indirect N ₂ O soils)	70	18	40	17	23	11	50	4	8	9

Table 2.5 Total emissions from the LULUCF sector by source/sink (1990-2021) (kt CO₂ eq.)

LULUCF total removals, in CO₂ equivalent, show a high variability in the period, remarkably influenced by the annual fires' occurrence and the related GHG emissions. CO₂ accounts for 95.2% of total emissions and removals of the sector, as absolute weight. The key driver for the rise in removals is the increase of carbon stock in forest land. Further details for LULUCF emissions and removals can be found in the specific chapter.

2.3.5 Waste

In 2021, emissions from the waste sector account for 4.8% of total national greenhouse gas emissions, excluding LULUCF. Emissions from the waste sector are shown in Table 2.6 and Figure 2.12.

Table 2.6 Total emissions from the waste sector b	by source (1990-2021) (kt CO ₂ eq.)
---	--

	1990	1995	2000	2005	2010	2015	2018	2019	2020	2021
					kt CO₂ eq.					
Total emissions	18,999	22,014	24,099	24,058	22,377	20,340	19,893	19,657	20,458	20,192
Solid waste disposal	13,671	16,938	19,264	19,043	17,429	15,718	15,262	15,055	15,960	15,674
Biological treatment of solid waste	23	54	232	456	577	599	591	582	561	559
Incineration and open burning of waste	601	552	292	320	261	181	169	173	167	163
Waste-water treatment and	. =						0.074			
discharge	4,703	4,469	4,311	4,240	4,110	3,843	3,871	3,847	3,769	3,795
Other	NA	NA	NA	NA	NA	NA	NA	NA	NA	

Total sectoral emissions, in CO₂ equivalent, increased by 6.3% from 1990 to 2021. The trend is mainly driven by the increase in emissions from solid waste disposal (14.7%), accounting for 77.6% of the sectoral

total in 2021, counterbalanced by the decrease of emissions from waste-water treatment (-19.3%), accounting for 18.8%. Considering emissions by gas, the most important greenhouse gas is CH₄ which accounts for 91.9% of the sectoral total and shows an increase of 7.1% from 1990 to 2021. N₂O levels have increased by 33.2% while CO₂ decreased by 83.2%; in 2021, these gases account for 7.7% and 0.4%, respectively. Further details can be found in the specific chapter.

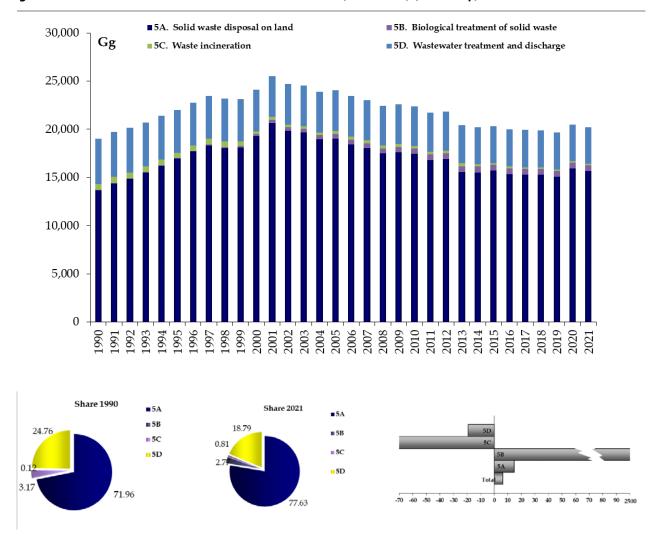


Figure 2.12 Trend of total emissions from the waste sector (1990-2021) (kt CO₂ eq.)

2.4 Description and interpretation of emission trends for indirect greenhouse gases and SO₂

Emission trends of NO_X, CO, NMVOC and SO₂ from 1990 to 2021 are presented in Table 2.7 and Figure 2.13.

	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021				
	kt														
NOx	2,128	1,992	1,512	1,295	948	732	677	681	665	599	614				
CO	6,794	7,066	4,727	3,437	3,054	2,259	2,261	2,060	2,079	1,898	2,045				
NMVOC	1,981	2,051	1,625	1,335	1,113	899	931	908	904	843	868				
SO ₂	1,784	1,323	757	411	225	128	119	114	112	85	79				

All gases show a significant reduction in 2020 as compared to 1990 levels. The highest reduction is observed for SO₂ (- 95.2%), NO_X levels have reduced by 71.9%, while CO and NMVOC show a decrease by 72.1% and 57.4%, respectively. A detailed description of the trend by gas and sector as well as the main reduction plans can be found in the Italian National Programme for the progressive reduction of the annual national emissions of SO₂, NO_X, NMVOC and NH₃, as requested by the Directive 2001/81/EC.

The most relevant reductions occurred as a consequence of the Directive 75/716/EC, and successive ones related to the transport sector, and of other European Directives which established maximum levels for sulphur content in liquid fuels and introduced emission standards for combustion installations. As a consequence, in the combustion processes, oil with high sulphur content and coal have been substituted with oil with low sulphur content and natural gas.

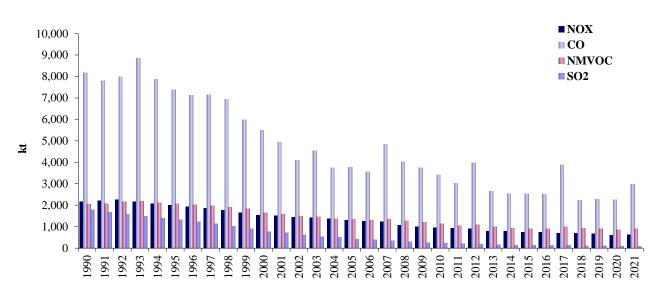


Figure 2.13 Trend of total emissions for indirect greenhouse gases and SO₂ (1990-2021) (kt)

It should be noted that these figures differ from the national totals reported under the United Nations Economic Commission for Europe (UNECE) Convention on Long Range Transboundary Air Pollution (CLRTAP). If considering total emissions excluding the LULUCF sector, differences are to be attributed to the different accounting of emissions from the civil aviation sector and from fires. In the national totals under CLRTAP, in fact, emissions from aviation are calculated considering all LTO cycles, both domestic and international, excluding entirely the cruise phase. If national figures comprise LULUCF, on the other

hand, differences are also to be attributed to fires; under the UNFCCC national total with LULUCF includes emissions from fires from forest, grassland, and cropland whereas they are not considered in the national total for CLRTAP. Emission trends of NO_X, CO, NMVOC and SO₂, excluding LULUCF, communicated under UNECE CLRTAP are presented in Table 2.8.

In the context of the European Regulation No 525/2013, Art. 7(1)(m)(i), EU Member States shall report on the consistency of data on air pollutants under the UNECE Convention on Long-range Transboundary Air Pollution and those under the UNFCCC. Differences in percentage terms between figures, without LULUCF, between the two Conventions are illustrated in Table 2.9.

	1990	1995	2000	2005	2010	2015	2018	2019	2020	2021				
		kt												
NOx	2,124	1,988	1,506	1,290	942	728	678	662	596	611				
СО	8,174	7,391	5,493	3,758	3,430	2,542	2,224	2,273	2,254	2,982				
NMVOC	1,982	2,051	1,625	1,335	1,113	899	908	904	843	868				
SO ₂	1,783	1,322	756	411	224	128	113	112	85	79				

Table 2.8 Total emissions for indirect greenhouse gases and SO₂ (1990-2021) (kt) under UNECE CLRTAP

Table 2.9 Percentage differences between total emissions for indirect greenhouse gases and SO₂ under the UNFCCC and UNECE CLRTAP Conventions (1990-2021)

	1990	1995	2000	2005	2010	2015	2018	2019	2020	2021
NOx	0.17%	0.17%	0.41%	0.40%	0.65%	0.48%	0.46%	0.48%	0.40%	0.55%
со	-0.01%	-0.01%	-0.02%	-0.01%	0.00%	-0.04%	-0.06%	-0.06%	0.01%	0.03%
NMVOC	0.00%	0.00%	-0.01%	-0.01%	-0.01%	-0.02%	-0.02%	-0.02%	0.00%	0.01%
SO ₂	0.01%	0.02%	0.05%	0.10%	0.18%	0.16%	0.16%	0.16%	0.19%	0.33%

2.5 Indirect CO₂ and nitrous oxide emissions

Indirect emissions are originated from the atmospheric oxidation of CH₄, CO and NMVOCs.

Italy has chosen to report indirect CO_2 emissions from the oxidation of NMVOCs including them in the relevant categories of solvent use. Details on how they are converted into indirect CO_2 , can be found in the sections on non-energy-related products from fuels and solvents in Chapter 4.5.2.

Indirect emissions of N₂O take place as a result of two different nitrogen loss pathways. These pathways are the volatilization/emission of nitrogen as NH₃ and NO_x and the subsequent deposition of these forms of nitrogen as ammonium (NH₄+) and oxidised nitrogen (NO_x) on soils and waters, and the leaching and runoff of nitrogen from synthetic and organic nitrogen fertilizer inputs, crop residues, mineralization of nitrogen through land use change or management practices, and urine and dung deposition from grazing animals, into groundwater, riparian areas and wetlands, rivers. All NH₃ or NO_x anthropogenic emissions are potential sources of N₂O emissions.

Indirect N₂O emissions are estimated according to Equation 7.1 of the 2006 IPCC Guidelines (IPCC, 2006) based on NO_x and NH₃ national emissions disaggregated at sectoral level (ISPRA, 2021 [a]) and reported as memo item in the relevant sectors, except for the agriculture sector where emissions are already included in the national totals. This method assumes that N₂O emissions from atmospheric deposition are reported by the country that produced the original NO_x and NH₃ emissions. The ultimate formation

of N₂O may occur in another country due to atmospheric transport of emissions. Also, the method does not account for the probable lag time between NO_X and NH₃ emissions and subsequent production of N₂O in soils and surface waters. This time lag is expected to be small related to an annual reporting cycle.

As stated, Italy has chosen to report indirect CO_2 emissions from the oxidation of NMVOCs including them in the relevant categories of solvent use. Total emissions are reported with indirect emissions which, for Italy, equals the total without indirect emissions. The national totals are the same because indirect CO_2 emissions are included under 2D3 solvent use consistently with the previous submissions and as recommended by UE as continuity of KP1 and KP2 period practice. The notation key 'IE' is used in Table 6 to be more transparent. Italy has not changed this approach yet, because of some concerns on the trasparency of the reporting. In Table 6 all these indirect CO_2 emissions would be imputed under IPPU losing the corresponding category/ies they come from and in Table 10s6 totals at sectoral levels, this amount will not be included at all); furthermore, these emissions will not be part of the key categories analysis reported in Table 7. In any case, as occurred during the last review, we could provide separate calculation if we were to include the indirect CO_2 from solvent use in Table 6-indirect emissions instead of 2D3(i), and separate the national totals with and without indirect CO_2 .

3 ENERGY [CRF sector 1]

3.1 Sector overview

For the pollutants and sources discussed in this section, emissions result from the combustion of fuel. The pollutants estimated are: carbon dioxide (CO₂), NO_x as nitrogen dioxide, nitrous oxide (N₂O), methane (CH₄), non-methane volatile organic compounds (NMVOC), carbon monoxide (CO), and sulphur dioxide (SO₂). The sources covered are:

- Electricity (power plants and industrial producers);
- Refineries (combustion);
- Chemical and petrochemical industries (combustion);
- Construction industries (roof tiles, bricks);
- Other industries (metal works factories, food, textiles, others);
- Road Transport;
- Shipping;
- Railways;
- Aircraft;
- Domestic;
- Commercial;
- Public Service;
- Fishing and Agriculture.

The national emission inventory is prepared using energy consumption information available from national statistics and an estimate of the actual use of the fuels. The latter information is available at sectoral level in many publications, but the evaluation of emissions of methane and nitrous oxide is needed. Those emissions are related to the actual physical conditions of the combustion process and to environmental conditions.

The continuous monitoring of GHG emissions in Italy is not regular especially in some sectors; hence, information is not often available on actual emissions over a specific period from an individual emission source. Therefore, the majority of emissions are estimated from different information such as fuel consumption, distance travelled, or some other statistical data related to emissions.

Estimates for a particular source sector are calculated by applying an emission factor to an appropriate statistic. That is:

Total Emission = Emission Factor x Activity Statistic

Emission factors are typically derived from measurements on a number of representative sources and the resulting factor applied to the whole country.

For some categories, emissions data are available at individual site. Hence, emissions for a specific category can be calculated as the sum of the emissions from these point sources. That is:

Emission =
$$\Sigma$$
 Point Source Emissions

However, it is necessary to carry out an estimate of the fuel consumption associated with these point sources, so that emissions from non-point sources can be estimated from fuel consumption data without double counting. In general, point source approach is applied to specific point sources (e.g. power stations, cement kilns, refineries). Most non-industrial sources are estimated using emission factors.

For most of the combustion source categories, emissions are estimated from fuel consumption data reported in the National Energy Balance (BEN) and from an emission factor appropriate to the type of

combustion. However, the industrial category covers a range of sources and types, so the inventory disaggregates this category into several sub-categories, namely:

- Other Industry;
- Other Industry Off-road (see paragraph 3.6);
- Iron & Steel (Combustion, Blast Furnaces, Sinter Plant);
- Petrochemical industries (Combustion);
- Other combustion with contact industries: glass and tiles;
- Other industries (Metal works factories, food, textiles, others);
- Ammonia Feedstock (natural gas only);
- Ammonia (Combustion) (natural gas only);
- Cement (Combustion);
- Lime Production (non-decarbonizing).

Thus, the estimate from fuel consumption emission factors refers to stationary combustion in boilers and heaters. The other categories are estimated by more complex methods discussed in the relevant sections. However, for these processes, where emissions arise from fuel combustion for energy production, these are reported under IPCC Table 1A. The fuel consumption of Other Industry is estimated so that the total fuel consumption of these sources is consistent with the national energy balance.

Fugitive emissions are also estimated and reported under 1B category and the relevant information are provided in paragraph 3.9.

From the 2015 submission, the UNFCCC Reporting Guidelines require estimating a new source category, emissions from the CO₂ storage and distribution category, but in Italy this activity and the relevant emissions do not occur yet.

According to the IPCC 2006 Guidelines (IPCC, 2006), electricity generation by companies primarily for their own use is auto-generation, and the emissions produced should be reported under the industry concerned. However, most national energy statistics (including Italy) report emissions from electricity generation as a separate category. The Italian inventory makes an overall calculation and then attempts to report as far as possible according to the IPCC methodology:

- auto-generators are reported in the relevant industrial sectors of section "1.A.2 Manufacturing Industries and Construction", including sector "1.A.2.g Other";
- refineries auto-generation is included in section 1.A.1.b;
- iron and steel auto-generation is included in section 1.A.1.c;
- autogeneration of energy and heat in the incinerators is reported in 1.A.4.a.

These reports are based on TERNA estimates of fuel used for steam generation connected with electricity production (TERNA, several years).

Emissions from waste incineration facilities with energy recovery are reported under category 1.A.4.a (Combustion activity, commercial/institutional sector), for the fossil and biomass fraction of waste incinerated in the other fuel and biomass subcategories respectively, whereas emissions from other types of waste incineration facilities are reported under category 5.C (Waste incineration). In fact, energy recovered by these plants is mainly used for district heating of commercial buildings or is auto consumed in the plant. For 2021, 99% of the total amount of waste incinerated is treated in plants with energy recovery system. Although there are not data or a robust estimate of the share of waste used to produce electricity the available literature (ENEA-federAmbiente, 2012) provides that in 2010 the gross electricity production by urban waste incinerators was equal to 3887 GWh (net 3190 GWh) and the amount sent to the network was equal to only 121 GWh. To estimate CO₂ emissions, considering the total amount of waste incinerated in plants with energy recovery, carbon content is calculated, as described in paragraph 7.4.2, in the waste chapter. Different emission factors for municipal, industrial and oils, hospital waste, and sewage sludge are applied, as reported in the waste chapter, Tables 7.19-7.23. Waste amount is then

converted in energy content applying the conversion factor resulting from data provided by TERNA and equal in 2021 to 11.4 GJ/t of waste. In 2021, the resulting average emission factor for the fossil part of waste is equal to 95.7 kg CO₂/GJ while for the biomass is equal to 82.1 kg CO₂/GJ.

Landfill gas recovered is used for heating and power in commercial facilities, the resulting emissions are reported under 1.A.4.a in biomass. In 2021, the resulting average emission factor is equal to 51.4 kg CO₂/GJ. Biogas recovered from the anaerobic digester of animal waste is used for utilities in the agriculture sector and relative emissions are reported under 1.A.4.c in biomass. In 2021, the resulting average emission factor is equal to 54.0 kg CO₂/GJ. Italy allocates these emissions to the 1.A.4 category because the energy produced in these plants, incinerators or landfills, as well as energy produced by biogas collection from manure and agriculture residue, is prevalently auto-consumed for heating and electricity of the buildings or animal recoveries, and only a few amount of energy produced goes to the electrical grid.

Emission trends

In 2021, the energy sector accounts for 95.3% of CO₂ emissions, 15.4% of CH₄ and 23.8% of N₂O. In terms of CO₂ equivalent, the energy sector shares 79.7% of total national greenhouse gas emissions excluding LULUCF. Emission trends of greenhouse gases from the energy sector are reported in Table 3.1.

	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
Total Energy	425.5	438.3	460.3	488.3	429.9	360.0	351.0	346.5	336.4	300.0	332.8
CO2	408.6	421.1	443.9	472.8	414.3	346.3	337.8	334.0	324.9	289.1	321.5
CH₄	12.9	12.4	11.6	10.6	10.8	9.5	9.0	8.4	7.5	7.2	7.3
N ₂ O	4.1	4.8	4.8	4.8	4.8	4.2	4.1	4.1	4.0	3.8	4.1

Table 3.1 GHG emission trends in the energy sector 1990-2021 (Mt CO₂ eq.)

The emission trend is generally driven by the economic indicators as already shown in chapter 2. From 2005, GHG emissions from the sector are decreasing as a result of the policies adopted at European and national level to implement the production of energy from renewable sources. From the same year, a further shift from petrol products to natural gas in producing energy has been observed as a consequence of the starting of the EU greenhouse gas Emission Trading Scheme (EU ETS) in January 1st 2005. From 2009, a further drop of the sectoral emissions is due to the economic recession. In general, from 2005 a decrease is observed in total GHG emissions and annual variations are always negative except for 2010 because a recovery of the economy after the economic recession and 2015 where emissions increased of 3.5% with respect to 2014 due to a reduction in energy production by hydroelectric which resulted in an increase of energy production from thermoelectric plants to satisfy the energy demand. From 2016 main driver of the decrease of emissions is the shift from coal to natural gas fuel consumption for energy production. In 2020 there is a further significant decrease in emissions due to the pandemic and the consequent lock-down regime to which the country has been subjected. In 2021 the end of the pandemic and recovery of economy resulted in an increase of emissions with respect the previous year.

In Table 3.2, the electricity production distinguished by source for the whole time series is reported on the basis of data supplied by the national grid operator (ENEL, several years; TERNA, several years). From 2010 to 2014 a drop in electricity generation from fossil fuels has been observed in Italy. The drop has been driven both by the economic recession and by the increase of renewable sources for energy production. The use of natural gas and coal is generally driven by the market; in 2011, from one side there was a minor availability (and higher prices) of natural gas imported by pipelines from Algeria and Libya, due to the "spring revolutions" occurring in these countries in that year, on the other side a new coal

power plant, one of the largest in Italy, was fully operative with a production of around 12500 GWh explaining the increasing trend of electricity production from solid fuels. In "other fuels" a multitude of fuels are included, as biomass, waste, biogas from agriculture residues and waste and synthesis gases from heavy residual or chemical processes. The breakdown is available to the inventory expert allowing emission estimations, but it is confidential and not published by the owner of the information, TERNA.

Source	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
					Gl	Vh					
Hydroelectric	35,079	41,907	50,900	42,927	54,407	46,970	38,025	50,503	48,154	49,495	46,919
Thermoelectric	178,590	196,123	220,455	253,073	231,248	192,054	209,485	192,730	195,734	181,307	189,711
- solid fuels	32,042	24,122	26,272	43,606	39,734	43,201	32,627	28,470	18,839	13,380	14,022
- natural gas	39,082	46,442	97,607	149,259	152,737	110,860	140,349	128,538	141,687	133,683	143,998
- derivated gases	3,552	3,443	4,252	5,837	4,731	2,220	2,501	2,520	2,452	1,697	1,947
- oil products	102,718	120,783	85,878	35,846	9,908	5,620	4,083	3,289	3,453	3,175	3,851
- other fuels	1,196	1,333	6,446	18,525	24,138	30,151	29,924	29,914	29,302	29,373	25,893
Geothermic	3,222	3,436	4,705	5,325	5,376	6,185	6,201	6,105	6,075	6,026	5,536
Eolic and											
Photovoltaic	0	14	569	2,347	11,032	37,786	42,120	40,370	43,891	43,703	45,356
Total	216,891	241,480	276,629	303,672	302,062	282,994	295,830	289,709	293,853	280,531	287,522

Table 3.2 Production of electricity by sources 1990-2021 (GWh)

Source: TERNA

More in general, the share of the total energy consumption by primary sources in the period 1990- 2021, reported in Table 3.3, shows an evident change from oil products and solid fuels to natural gas and renewable while the share of consumption of electricity is variable and driven by the market.

Sources	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
						%					
renewable	0.7	0.9	1.1	2.0	4.3	8.8	10.5	10.4	10.6	11.5	10.8
solid fuels	9.6	7.9	6.9	8.6	8.0	8.0	5.9	5.5	4.2	3.6	3.6
natural gas	23.7	25.7	31.4	36.0	36.2	35.8	38.9	38.2	39.5	41.5	40.9
crude oil	56.2	54.9	49.5	43.1	38.5	36.7	35.0	35.1	35.0	32.0	33.4
primary electricity	9.8	10.5	11.1	10.3	13.1	10.8	9.8	10.8	10.7	11.4	11.2

Source: Ministry of Economic Development

Further analysis on the electricity generation time series and CO₂ emission factors are available at the following web address: <u>http://emissioni.sina.isprambiente.it/inventario-nazionale/</u>.

Recalculations

In 2015 submission, recalculations regarded the whole sector due to the application of the IPCC 2006 Guidelines which provide new default emission and oxidation factors for all the fuels. In particular, in the Guidelines (IPCC, 2006) oxidation factors are supposed to be equal to 1 for all the fuels. Time series have been reconstructed for all the fuels taking in account the default values proposed by the Guidelines and national circumstances. In Annex 6 more detailed information is provided especially with regard to time series of country specific CO₂ emission factors.

In 2023 submission some recalculations occurred as in the following.

Updated time series of the national energy balance regarded the carbon coke for transformation in the iron and steel plant from 2016 and kerosene for residential for the whole time series,

Emission factors of CO2 in 2012 for diesel and gasoline used in off-road vehicles has been changed because of an error.

For inland waterways from 1999 the diesel fuel consumption time series has been updated on the basis of additional information.

Fuel consumption and emission factors of navigation has been updated from 2008 on the basis of a national study applying the Tier3 to the main national harbours.

In the fugitive sector, the most relevant recalculation is the update of emissions from LNG regasification based on data provided by the main operators.

The road transport historical series has been revised mainly as a result of the upgrade of Copert model version used (from version 5.5.1 in last submission to 5.6.1 in submission 2023), which resulted in various methodological updates. Detailed information is reported in paragraph 3.5.2.

Waste fuel consumption for commercial heating activity data has been updated from 2019 because of the update of activity data for some industrial waste plants. Detailed information is reported in paragraph 3.6.

Recalculations affected the whole time series 1990-2020 for all gases. The following table shows the percentage differences between the 2023 and 2022 submissions for the total energy sector and by gas. Recalculation resulted for the energy sector in a decrease of GHG emissions in 1990 of 0.06% and in 2020 of 0.38%.

Year	GHG	CO ₂	CH₄	N₂O
1990	0.06	-0.15	-0.01	-0.11
1991	0.04	-0.17	-0.01	-0.12
1992	0.08	-0.13	-0.01	-0.09
1993	0.11	-0.10	-0.01	-0.07
1994	0.11	-0.09	-0.01	-0.06
1995	0.08	-0.09	-0.01	-0.06
1996	0.07	-0.08	-0.01	-0.05
1997	0.08	-0.07	-0.01	-0.04
1998	0.07	-0.06	-0.01	-0.04
1999	0.12	0.00	0.00	-0.01
2000	0.15	0.01	0.00	0.00
2001	0.13	0.01	0.00	0.00
2002	0.12	0.00	0.00	-0.01
2003	0.12	0.01	0.00	0.00
2004	0.11	0.02	0.00	0.00
2005	0.13	0.02	0.00	0.01
2006	0.12	0.02	0.00	0.01
2007	0.13	0.02	0.00	0.01
2008	0.16	0.05	0.00	0.02
2009	0.19	0.07	0.01	0.03
2010	0.23	0.10	0.01	0.06
2011	0.25	0.12	0.01	0.07
2012	0.29	0.15	0.01	0.08
2013	0.32	0.17	0.01	0.09
2014	0.35	0.20	0.02	0.10
2015	0.33	0.20	-0.05	0.11
2016	0.28	0.16	-0.24	0.10
2017	0.29	0.18	-0.26	0.10
2018	0.31	0.22	-0.31	0.12
2019	0.39	0.34	-1.38	0.24
2020	0.38	0.37	-3.39	0.14

Table 3.4 Emission recalculations in the energy sector 1990-2020 (%)

Key categories

Key category analysis, for the years 1990 and 2021, identified 23 categories at level or trend assessment with Approach 1 and Approach 2 in the energy related emissions.

In the case of the energy sector in Italy, a sector by sector analysis instead of a source by source analysis will better illustrate the accuracy and reliability of the emission data, given the interconnection between the underlying data of most key categories.

In the following box, key categories for 2021 are listed, referring to the section of the text where they are quoted.

KEY CATEGORIES	without LULUCF	with LULUCF	Relevant paragraphs	Notes
1 Transport - CO ₂ Road transportation	L,T	L,T	3.5.2	Tables 3.21-3.29
2 Other sectors - CO ₂ commercial, residential, agriculture gaseous fuels	L,T	L,T	3.6	Tables 3.32-3.35
3 Energy industries - CO ₂ solid fuels	L,T	L,T	3.3	Tables 3.6-3.9
4 Energy industries - CO ₂ gaseous fuels	L,T	L,T	3.3	Tables 3.6-3.9
5 Manufacturing industries and construction - CO_2 gaseous fuels	L,T	L,T	3.4	Tables 3.10-3.13
6 Energy industries - CO ₂ liquid fuels	L,T	L,T	3.3	Tables 3.6-3.9
7 Other sectors - CO_2 commercial, residential, agriculture liquid fuels	L,T	L,T	3.9	Tables 3.32-3.35
8 Manufacturing industries and construction - CO ₂ liquid fuels	L,T	L,T	3.4	Tables 3.10-3.13
9 Fugitive - CH4 Oil and natural gas - Natural gas	L,T	L,T	3.9	Tables 3.40-3.46
10 Other sectors - CH4 commercial, residential, agriculture biomass	L,T	L,T	3.6	Tables 3.32-3.35
11 Manufacturing industries and construction - CO ₂ solid fuels	L1,T	L1,T	3.4	Tables 3.10-3.13
12 Other sectors - CO_2 commercial, residential, agriculture other fossil fuels	5 L1,T	L1,T	3.6	Tables 3.32-3.35
13 Other sectors - N_2O commercial, residential, agriculture biomass	L2,T	L2,T	3.6	Tables 3.32-3.35
14 Transport - CO ₂ Waterborne navigation	L1	L1	3.5.4	Table 3.30
15 Fugitive - CO_2 Oil and natural gas – venting and flaring	T2	T2		Tables 3.40-3.46
16 Other sectors - N_2O commercial, residential, agriculture liquid fuels	L2		3.6	Tables 3.32-3.35
17 Other sectors - CO_2 commercial, residential, agriculture solid fuels	T1	T1	3.6	Tables 3.32-3.35
18 Transport - CH ₄ Road transportation	T2		3.5.2	Tables 3.21-3.29
19 Fugitive - CH ₄ Oil and natural gas - Other - flaring in refineries	L2, T2	L2, T2	3.9	Tables 3.40-3.46
20 Fugitive - CO_2 Oil and natural gas - Other - flaring in refineries	T2		3.9	Tables 3.40-3.46
21 Transport – CO_2 Civil aviation	L1	L1	3.5.1	Tables 3.15-3.19

Key-categories identification in the energy sector with the IPCC Approach 1 and Approach 2 for 2021

With reference to the box, thirteen key categories (n. 2-8, 10-13, 16-17) are linked to stationary combustion and to the same set of energy data: the energy sector CRF Table 1.A.1, the industrial sector, Table 1.A.2 and the civil sector Tables 1.A.4a and 1.A.4b.

Ten out of thirteen key categories refer to CO_2 emissions, two categories refer to CH_4 and N_2O emissions from the use of biomass in the residential sector, the last category refers to N_2O emissions from liquid fuels in other sectors.

All these sectors refer to the national energy balance (MASE, several years [a]) for the basic energy data and the distribution among various subsectors, even if more accurate data for the electricity production sector can be found in TERNA publications (TERNA, several years). Evolution of energy consumptions/emissions is linked to the activity data of each sector; see paragraph 3.3, 3.4 and 3.6 and Annex 2 for the detailed analysis of those sectors. Electricity production is the most "dynamic" sector and the energy emissions trend, for CO₂, N₂O and CH₄, is mainly driven by the thermoelectric production, see Tables A2.1 and A2.4 for more details.

In the following table emissions in kt of CO₂ equivalent for stationary combustion key categories at level assessment are summarized. From 1990 to 2021, an increase in use of natural gas instead of fuel oil and gas oil in stationary combustion plants is observed; it results in a decrease of CO₂ emissions from combustion of liquid fuels and an increase of emissions from gaseous fuels used in the different sectors.

Coal and coke for residential heating has been banned and reduced to 0. The increase of CH₄ emissions from other sector reflects the increase of the use of biomass for residential heating.

	1990	2021
Energy industries - CO2 liquid fuels	81,197	14,545
Energy industries - CO2 solid fuels	38,647	16,666
Other sectors - CO2 commercial, residential, agriculture liquid fuels	37,660	13,636
Other sectors - CO2 commercial, residential, agriculture gaseous fuels	36,338	59,085
Manufacturing industries and construction - CO2 liquid fuels	32,805	12,546
Manufacturing industries and construction - CO2 gaseous fuels	32,234	33,943
Manufacturing industries and construction - CO2 solid fuels	25,732	5,894
Energy industries - CO2 gaseous fuels	16,954	54,652
Other sectors - CH4 commercial, residential, agriculture biomass	1,116	2,614
Other sectors - CO2 commercial, residential, agriculture other fossil fuels	530	5,627

Table 3.5 Stationary combustion, GHG emissions in 1990 and 2021 (kt CO₂ eq)

Source: ISPRA elaborations

Another group of key categories (n. 1, 14, 18, 21) referred to the transport sector, with basic total energy consumption reported in the national energy balance and then subdivided in the different subsectors with activity data taken from various statistical sources; see paragraph 3.5, transport, for an accurate analysis of these key sources. This sector also shows a remarkable increase in emissions in the '90s, in particular CO₂ from air transport and road transport, as can be seen in Table 3.19 and Table 3.28, respectively. In the last years CO₂ emissions from road transport started to decrease as a consequence of the economical crisis and the reduction of the average fuel consumption per kilometre of the new vehicles. The trend of N₂O and CH₄ emissions is linked to technological changes occurred in the period.

Finally, the last four key categories (n. 9, 15, 19 and 20) refer to oil and gas operations. For this sector basic overall production data are reported in the national balance but emissions are calculated with more accurate data published or delivered to ISPRA by the relevant operators, see paragraph 3.9.

Most of the categories described are also key categories for the years 1990 and 2021 considering LULUCF emissions and removals.

3.2 Methodology description

Emissions are calculated by the equation:

 $E(p,s,f) = A(s,f) \times e(p,s,f)$

where

E(p,s,f) = Emission of pollutant p from source s from fuel f (kg)

A(s,f) = Consumption of fuel f by source s (TJ-t)

e(p,s,f) = Emission factor of pollutant p from source s from fuel f (kg/TJ-kg/t)

The fuels covered are listed in Table A2.2 in Annex 2, though not all fuels occur in all sources. Sector specific tables specify the emission factors used. Emission factors are expressed in terms of kg pollutant/TJ based on the net calorific value of the fuel. The carbon factors used are based on national sources and are appropriate for Italy. Most of the CO2 emission factors have been crosschecked with the results of specific studies that evaluate the carbon content of the imported/produced fossil fuels at national level.

A comparison of the current national factors with the IPCC ones has been carried out; the results suggest quite limited variations in liquid fuels and some differences in natural gas, explained by basic hydrocarbon composition, and in solid fuels.

Monitoring of the carbon content of the fuels nationally used is an ongoing activity at ISPRA. The principle is to analyse regularly the chemical composition of the used fuel or relevant activity statistics, to estimate the carbon content and the emission factor. National emission factors are reported in Table 3.12 and Table 3.21. The specific procedure followed for each primary fuel (natural gas, oil, coal) is reported in Annex 6.

In response to the review process of the Initial report of the Kyoto Protocol, N_2O and CH_4 stationary combustion emission factors were revised, in the 2006 submission, for the whole time series taking into account default IPCC (IPCC, 1997; IPCC, 2000) and CORINAIR emission factors (EMEP/CORINAIR, 2007). Then the emission factors have been compared also with those reported in the 2006 IPCC Guidelines where the default ones are more or less the same of those available in the IPCC 1996 guidelines. In the following table the comparison at fuel level is provided.

EF (g/GJ)					CH4							N2O			
												EMEP/			
										IPCC		CORINAIR			
						Emission	Emission			2006		industry		Emission	Emission
	IPCC		IPCC	EMEP/	expert	Inventory	Inventory	IPCC	IPCC	upper	EMEP/	with	expert	Inventory	Inventory
	1996		2006	CORINAIR	Judgement	electricity	industry	1996	2006	level	CORINAIR	contact	Judgement	electricity	industry
coal		1	1	1.5 - 15	2.4	1.5	1.5	1.4	1.5	5	5.0 - 30	3.0 - 12.0	1.3 - 7.5	7	1.4
natural gas		1	1	0.3 - 4	1.0 - 3	1.5	1	0.1	0.1	0.3	0.1 - 3	1.0 - 3.0	0.09 - 0.85	1.5	i 1.5
fuel oil		3	3	0.1 - 10	3	3	3	0.6	0.6	2	1.4 - 14.8	2.0 - 15.0	2.6 - 3.3	2.6	i 1.4
gasoil/orimulsion			3	0.1 - 8		1.5	0.1		0.6	2	0.6 - 14				
LPG			1	1 - 2.5		1	1		0.1		1.0 - 14			1.4	1.4
petcoke			3			1.5	1.5		0.6		1.4 - 14	3.0 - 14.0		1.4	1.4
wood	:	30	30	1.0 - 40		30	28	4	4		4.3	4.0 - 14.0		14	14
biomass/waste	:	30	30	4.0 - 40		5	5	4	4		4			9	9

The emission factors should apply for all years provided there is no change in the carbon content of fuel over time. There are exceptions to this rule:

- transportation fuels have shown a significant variation around the year 2000 due to the reformulation of gasoline and diesel to comply with the EU directive, see Table 3.21;
- the most important imported fuels, natural gas, fuel oil and coal show variations of carbon content from year to year, due to changes in the origin of imported fuel supply; a methodology has been set up to evaluate annually the carbon content of the average fuel used in Italy, see Annex 6 for details;
- derived gases produced in refineries, as petcoke, refinery gas and synthesis gas from heavy residual fuel, in iron and steel integrated plants, as coke oven gas, blast furnaces gas and oxygen converter gas, and in chemical and petrochemical plants have been calculated from 2005 on the basis of the analysis of information collected by the plants in the framework of EU ETS, see Annex 6 for details.

The activity statistics used to calculate emissions are fuel consumptions provided annually by the Ministry of Environment (MASE) in the National Energy Balance (MASE, several years [a]), by TERNA (TERNA, several years) for the power sector and some additional data sources to characterise the technologies used at sectoral level, quoted in the relevant sections.

Activity data collected in the framework of the EU ETS scheme do not cover the overall energy sector, whereas the official statistics available at national level, such as the National Energy Balance (BEN) and the energy production and consumption statistics supplied by TERNA, provide the complete basic data needed for the emission inventory. Italian energy statistics are mainly based on the National Energy

Balance. The report is reliable, by international standards, and it may be useful to summarize its main features:

- it is a balance, every year professional people carry out the exercise balancing final consumption data with import-export information;
- the balance is made on the energy value of energy carriers, taking into account transformations that may occur in the energy industries (refineries, coke plants, electricity production);
- data are collected regularly by the Ministry of Economic Development, on a monthly basis, from industrial subjects;
- oil products, natural gas and electricity used by industry, civil or transport sectors are taxed with excise duties linked to the physical quantities of the energy carriers; excise duties are differentiated in products and final consumption sectors (i.e. diesel oil for industrial use pays duties lower than for transportation use and higher than for electricity production; even bunker fuels have a specific registration paper that state that they are sold without excise duties);
- concerning energy consumption information, this scheme produces highly reliable data: BEN is based on registered quantities of energy consumption and not on estimates; uncertainties may be present in the effective final destination of the product, but total quantities are reliable;
- coal is an exception to this rule, it is not subject to excise duties; consumption information is estimated; anyway, it is nearly all imported and a limited number of operators use it and the Ministry of Economic Development monitors all of them on a monthly basis.

The energy balances of fuels used in Italy, published by the Ministry of Environment (MASE, several years [a]), compare total supply based on production, exports, imports, stock changes and known losses with the total demand; the difference between total supply and demand is reported as 'statistical difference'. In Annex 5, 2021 data communicated by Italy to the Joint Questionnaire OECD/IEA/EUROSTAT in the format revisited by EUROSTAT are reported, while the full time series is available on website: https://dgsaie.mise.gov.it/bilancio-energetico-nazionale. Some differences between data communicated to the international organizations and EUROSTAT publication have been observed and are under investigation; they should mainly due to the use of default instead of country specific energy conversion factors and different classification criteria of fuels.

Data submitted by the Ministry of Environment to the Joint Questionnaire IEA/OECD/EUROSTAT have been used for solid, liquid and gaseous fuel consumptions. At the time it was not possible to reconstruct the entire time series at category level and data from national energy balance (BEN) have been also used for this purpose. Moreover, the complete use of the energy data provided by the MASE to the Joint Questionnaire is planned in substitution, as possible, of the national energy balances.

Some inconsistencies have been found in data communicated at Eurostat and referring to the ninety years, especially in the sectoral distribution of fuels; in these cases, the information already available in the national energy balances has been maintained because of considered more reliable and consistent in the time series.

In Annex 5, 2021 data derived by the Joint Questionnaire OECD/IEA/EUROSTAT are reported in the format revisited by EUROSTAT. Some differences between data communicated to the international organizations and EUROSTAT publication have been observed and are mainly due to the use of default instead of country specific energy conversion factors and different classification criteria of fuels.

Additionally, to fossil fuel, the Joint Questionnaire reports commercial wood and straw combustion estimates for energy use, biodiesel and biogas. The estimate of GHG emissions is based on these data and on other estimates (ENEA, several years) for non commercial wood use. Carbon dioxide emissions from biomass combustion are not included in the national total as suggested in the IPCC Guidelines (IPCC, 2006) but emissions of other GHGs and other pollutants are included. CORINAIR methodology (EMEP/EEA, 2016) includes emissions from the combustion of wood in the industrial and domestic sectors as well as the combustion of biomass in agriculture.

The inventory also includes emissions from the combustion of lubricants based on data collected from waste oil recyclers and quoted in the energy balance; from 2002 onwards, this estimate is included in the column "Refinery feedstock", row "Productions" (MASE, several years [a]) Primary fuels. From 2001 onwards, it has been necessary to also use these quantities to calculate emissions in the reference approach, so as to minimize differences with sectoral approach. From 2001, the energy balances prepared by MASE include those quantities in the input while estimating final consumption; this procedure summarizes a complex stock change reporting by operators. According to the IPCC 2006 Guidelines (IPCC, 2006), in the emission inventory, in the energy sector are reported only emissions from the combustion of lubricants in two strokes engines while the other emissions are reported in the IPPU sector.

3.3 Energy industries

A detailed description of the methodology used to estimate greenhouse gas emissions from electricity production under 1.A.1.a, 1.A.1.b and 1.A.1.c is reported in Annex 2. Basic data, methodology and emission factors used to estimate emissions are derived from the same sources. In the following sub-paragraphs additional information on the specific categories are supplied.

In this category, gaseous fuels refer to natural gas while solid fuels mainly to coal used to produce energy and derived gases used in the integrated iron and steel plants; liquid fuels include residual oil fuel consumption used for energy production in power plants and different fuels used in refineries. The CO₂ implied emission factor trend for the sector is driven by the liquid fuel consumption in the petroleum refining industry (95% of the total of liquid) where many fuels, with very different emission factors, are used, such as refinery gas, that have an average emission factor value equal to 56.0 t/TJ, and petroleum coke with an average emission factor equal to 96.5 t/TJ. In the last years, a reduction in the consumption of synthesis gas from heavy residual fuels (in 2021 the average emission factors t CO₂/TJ values are about 79.6 and 97.9 for heavy residual fuels and synthesis gas respectively) is observed, resulting in the interannual variations. Emission factors time series for these fuels are reported in Annex 6.

3.3.1 Public Electricity and Heat Production

3.3.1.1 Source category description

This paragraph refers to the main electricity producers that produce electricity for the national grid. From 1998 onwards, the expansion of the industrial cogeneration of electricity and the split of the national monopoly have transformed many industrial producers into "independent producers", regularly supplying the national grid. These producers account in 2021 for 88.5% of all electricity produced with combustion processes in Italy (TERNA, several years).

In Italy, only limited data do exist about producers working for district heating grids; most of the cogenerated heat is produced and used on the same site by industrial operators. Therefore, data on heat production is prevalently reported in Table1.A(a)s2 for industry and Table1.A(a)s4 for district heating. In TERNA yearly publication, heat cogenerated while producing electricity is reported separately. Unfortunately, no details are reported on the final use of cogenerated heat, so it can be used in the inventory preparation just to cross check the total fuel amount with other sources as EU ETS or the consumption of fuels in the industry reported in BEN.

Under biomass, wood and charcoal consumption and relevant emissions are reported until 2007; CO₂ emission factor is shown in Table 3.12 while CH₄ and N₂O emission factors are equal to 30 g/GJ and 4 g/GJ respectively. From 2008 also bioliquid fuel is used and included under biomass (CH₄ and N₂O emission factors equal to 12 g/GJ and 2 g/GJ respectively), resulting in the decrease of the average emission factor.

Other fuels subcategory refer mainly to fuel consumptions of other liquid, solid and gaseous fuels such as industrial wastes (89.8 tCO₂/TJ), that are more than half of the total TJ of the subcategory, as plastics, rubber, and solvents, synthesis gas from heavy residual (97.9 tCO₂/TJ in 2021) and other liquid fuels (76.5 tCO₂/TJ in 2021); the average CO₂ emission factor has been calculated for the whole time series and it is equal to 91.0 t/TJ in 2021.

CO₂ implied emission factor trend of liquid fuels for this category is driven by the mix of high and low sulphur fuel oil consumptions that is changed in the years as a consequence of the adoption of air quality European Directives introducing air pollutants ceilings at the stacks, and the policies at national level which established stringent ceiling for new and old plants and a timing scheduled for their implementation. The CH₄ implied emission factor is the weighted average of gasoil and residual oil emission factors equal to 1.5 g/GJ and 3 g/GJ respectively. The general decreasing trend is due to the minor use of fuel oil for energy production, at the minimum in the last years, while the amount of gasoil, which is related to the start up of power plants and to the gasoil used in stationary engines, has a more stable trend.

3.3.1.2 Methodological issues

The data source on fuel consumption is the annual report "Statistical data on electricity production and power plants in Italy" ("Dati statistici sugli impianti e la produzione di energia elettrica in Italia"), edited from 1999 by the Italian Independent System Operator (TERNA, several years). The reports refer to the total of producers and the estimate of the part belonging to public electricity production is made by the inventory team on the basis of detailed electricity production statistics by industrial operators. Data on total electricity production for the year 2021 are reported in Annex 2. For the time series, see previous NIR reports. The emission factors used are listed in Table 3.12.

Another source of information is the National Energy Balance (MASE, several years [a]), which contains data on the total electricity producing sector. The data of the national energy balance (BEN) are also used to address the statistical survey of international organizations, OECD, IEA and Eurostat. Both BEN and TERNA publications could be used for the inventory preparation, as they are part of the national statistical system and published regularly.

A detailed analysis of both sources is reported in Annex 2. TERNA data appears to be more suitable for inventory preparation. From year 2005 onwards a valuable source of information is given by the reports prepared for each industrial installation subject to EU ETS scheme. These reports are prepared by independent qualified verifiers and concern the CO₂ emissions, emission factors and activity data, including fuel used. ISPRA receives copy of the reports from the competent authority (Ministry of Environment) and has been able to extract the information relative to electricity production. The information available is very useful but not fully covering the electricity production sector or the public electricity production. The EU ETS does not include all installations, only those above 20 MWe, it is made on a point source basis so the data include electricity and heat production while the corresponding data from TERNA, concerning only the fuel used for electricity production, are commercially sensitive, confidential and they are not available to the inventory team. Anyway, the comparison of data collected by TERNA with those submitted to the EU ETS allows identifying possible discrepancies in the different datasets and thus providing the Ministry of Economic Development experts with useful suggestions to improve the energy balance.

For verification purposes a rather complex calculation sheet has been used to estimate CO₂ emissions, and also N₂O and CH₄ emissions (APAT, 2003[a]). Moreover, the model has also been able to estimate the energy/emissions data related to the electricity produced and used on site by the main industrial producers. These data are reported in the other energy industries, Tables 1.A.1.b and 1.A1.c, and in the industrial sector section, Tables 1.A.2. More detailed information is supplied in Annex 2.

In Table 3.6, fuel consumptions and emissions of 1.A.1.a category are reported for the time series. Table 3.6 shows a decrease in fuel consumption and overall decrease in GHG emissions. However, a slower increase is observed in CH₄ emissions due to the increase in use of natural gas and biomass.

	1990	1995	2000	2005	2010	2015	2018	2019	2020	2021
Fuel consumption	1,441,741	1,472,753	1,554,810	1,709,208	1,480,778	1,205,336	1,147,923	1,146,779	1,056,626	1,120,719
(TJ) GHG (Gq CO ₂ eq.)	109,050	110,709	109,527	115,827	97,534	79,317	70,545	67,342	60,208	65,093
CO ₂ (Gg)	108,670	110,335	109,193	115,445	97,195	78,922	70,207	67,034	59,921	64,806
CH₄ (Gg)	3.8	4.0	3.6	4.0	3.6	4.2	4.1	4.1	4.1	4.0
N ₂ O (Gg)	1.0	1.0	0.9	1.0	0.9	1.0	0.8	0.7	0.7	0.7

Table 3.6 Public electricity and heat production: Energy data (TJ) and GHG emissions, 1990-2021

Source: ISPRA elaborations

In 2021, consumption is fairly in line with the previous year's data before the pandemic. Moreover, it has been possible to observe a shift from coal to natural gas for energy production in the last years. As the main data source refers to the whole electricity production sector, the uncertainty and time-series consistency, source-specific QA/QC and verification, recalculations and planned improvements are all addressed in Annex 2.

3.3.2 Refineries

3.3.2.1 Source category description

This subsector covers the energy emissions from the national refineries (14 plants in 2021), including the energy used to generate electricity for internal use and exported to the national grid by power plants that directly use off-gases or other residues of the refineries. These power plants are generally owned by other companies but are located inside the refinery premises or just sideway. In 2021 the power plants included in this source category have generated 5.7% of all electricity produced with combustion processes in Italy. The energy consumption and emissions are reported in CRF Table 1.A.1.b. Parts of refinery losses, flares, are reported in CRF Table 1.B.2.a and c, using IPCC emission factors.

3.3.2.2 Methodological issues

The consumption data used for refineries come from BEN (MASE, several years [a]); the same data are also reported by Unione Petrolifera, the industrial category association (UP, several years). From 2005 onwards, also the EU ETS "verified reports" cover almost the entire sector, for energy consumptions, combustion emissions and process emissions. Other sources of information are the yearly reporting obligations for the large combustion plants under European Directive (LCP) and the E-PRTR Regulation; both data collections include most of refineries but not all the emission sources.

The available data in BEN specify the quantities of refinery gas, petroleum coke and other liquid fuels (MASE, several years [a]).

For the part of the energy and related emissions due to the power plants, the source is TERNA (see Annex 2 for further details). The quota of total energy consumption from electricity production included in category 1.A.1.b is estimated by the electricity production model on the basis of fuels used and plant location.

All the fuel used in boilers and processes, the refinery "losses" and the reported losses of crude oil and other fuels (that are mostly due to statistical discrepancies) are considered to calculate emissions. Fuel lost in the distribution network is accounted for here and not in the individual end use sector. From 2002 particular attention has been paid to avoid double counting of CO₂ emissions checking if the refinery reports of emissions already include losses in their energy balances. IPCC Tier 2 emission factors and national emission factors are used as reported in Table 3.12.

From 2008, TERNA modified the detailed table of fuel consumption and related energy produced introducing a more complete list of fuels. Aim of the change was to revise the consumption values of waste fuels which are very important for estimating the contribution of renewable to electricity production and consequently greenhouse gases.

In Table 3.7, a sample calculation for the year 2021 is reported, with energy and emission data.

	Consumption,	TJ			CO ₂ emissions, Go	9		
REFINERIES	Petroleum coke	Ref. gas	Liquid fuels	Natural gas	Petroleum coke	Ref. gas	Liquid fuels	Natural gas
energy		26,801	41,241	60,167		1,501	3,280	3,520
furnaces	28,200	87,228	8,778		2,722	4,886	635	
TOTAL				252,414				16,544

Table 3.7 Refineries, CO₂ emission calculation, year 2021

Source: ISPRA elaborations

From 2005, the weighted average of CO₂ emission factor reported by operators in the context of the EU ETS scheme is used for petroleum coke, refinery gas and synthesis gas from heavy residual fuels. The trend of the implied emission factor is driven by the mix of the fuels used in the sector. The main fuels used are refinery gases, fuel oil and petroleum coke, which have very different emission factors, and every year their amount used changes resulting in an annual variation of the IEF. The increase in the last years, with respect to the nineties, of the consumption of fuels with higher carbon content, as petroleum coke and synthesis gas obtained from heavy residual fuels, explains the general growth of the IEF for liquid fuel reported in the CRF for this sector.

In the following box, liquid fuel consumptions of 1.A.1.b category disaggregated by fuel are reported.

	-	•							-	•	•	
	1990	1995	2000	2005	2010	2015	2016	2017	2018	2019	2020	2021
Refinery gas	119,123	136,305	124,549	153,036	153,739	132,688	116,862	124,126	126,697	128,601	111,499	114,029
Naphta	218	784	4,441	2,613	3,353	87	0	0	0	0	3	0
Pet coke	28,495	28,634	40,623	50,180	49,415	30,094	21,858	29,677	26,376	26,736	20,427	28,200
Synthesis gas	0	0	36,425	65,021	78,628	61,763	63,282	57,676	58,694	50,912	56,572	41,056
Fuel oil	76,881	89,310	84,589	75,301	49,275	16,296	31,134	11,231	4,855	3,657	3,684	5,380
LPG	1,243	1,151	2,026	3,408	2,717	1,704	1,566	3,089	2,471	3,346	2,497	3,576
Gasoil	43	43	5,338	11,317	897	0	0	0	0	0	0	7
Gasoline	0	0	0	0	0	0	0	0	0	0_	0_	0
Total	226,003	256,228	297,992	360,875	338,025	242,631	234,702	225,798	219,093	213,253	194,683	192,247
							<i>.</i> .	<u> </u>				

Liquid fuel consumptions in petroleum refining (TJ), 1990-2021

3.3.2.3 Uncertainty and time-series consistency

The combined uncertainty in CO₂ emissions from refineries is estimated to be about 4.2% in annual emissions; a higher uncertainty, equal to 50.1%, is calculated for CH₄ and N₂O emissions because of the uncertainty levels attributed to the related emission factors. Montecarlo analysis has been carried out to estimate uncertainty of CO₂ emissions from stationary combustion of solid, liquid and gaseous fuels emissions, resulting in 5.1%, 3.3% and 5.8%, respectively. Normal distributions were assumed for all the

parameters. A summary of the results is reported in Annex 1. In Table 3.8 GHG emissions from the sector in the years 1990, 1995, 2000, 2005, 2010, 2015, 2017-2021 are reported.

	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
CO ₂ emissions, Mt	15.8	18.0	22.2	27.9	28.3	20.9	20.6	19.7	19.0	17.4	16.5
CH₄ emissions, Gg	0.40	0.46	0.59	0.69	0.69	0.48	0.45	0.43	0.41	0.39	0.36
N ₂ O emissions, Gg	0.45	0.51	0.60	0.73	0.69	0.50	0.47	0.46	0.45	0.41	0.40
Refinery, total, Mt CO₂eq	16.0	18.1	22.4	28.1	28.5	21.1	20.8	19.8	19.1	17.6	16.7

Table 3.8 Refineries, GHG emission time series

Source: ISPRA elaborations

An upward trend in emission levels is observed from 1990 to 2010 explained by the increasing quantities of crude oil processed and the complexity of process used to produce more environmentally friendly transportation fuels. Liquid fuel consumptions have reached a plateau in 2010 and they are now in a downward trend that is expected to continue, due to the reduced quantities of crude oil processed and electricity produced and to the gradual substitution with natural gas fuel consumption.

3.3.2.4 Source-specific QA/QC and verification

Basic data to estimate emissions have been reported by national energy balance and the national grid administrator. Data collected under other reporting obligations that include refineries (EU ETS, LCP and E-PRTR databases) have been used to cross-check the energy balance data, fuels used and emission factors. Differences and problems have been analysed in detail and solved together with Ministry of Economic Development experts, who are in charge of preparing the National Energy Balance.

3.3.2.5 Source-specific recalculations

No recalculations occur for this category.

3.3.2.6 Source-specific planned improvements

No specific improvements are planned for the next submission.

3.3.3 Manufacture of Solid Fuels and Other Energy Industries

3.3.3.1 Source category description

In Italy, all the iron and steel plants are integrated, therefore there is no separated reporting for the different part of the process. A few coke and "manufactured gas" producing plants were operating in the early nineties and they have been reported here. Only one small manufactured gas producing plant is still in operation from 2002.

In this section, emissions from power plants, which use coal gases, are also reported. In particular, we refer to the electricity generated in the iron and steel plant sites (using coal gases and other fuels). In 2021 the power plants included in this source category have generated about 1.8% of all electricity produced with combustion processes in Italy.

With regard to the manufacture of other solid fuels, in Italy, charcoal was produced in the traditional way until the sixties while now it is prevalently produced in modern furnaces (e.g with the VMR system) where exhaust gases are collected and recycled to produce the energy for the furnace itself. This system ensures good management of the exhausts and the temperature, so that any waste of energy is prevented, and emissions are kept to a minimum. So CH₄ emissions from the production of charcoal are not accounted for, and the notation key NE is used in the reporting, also considering that the emission factor available in the Revised 1996 IPCC Guidelines, in Table 1-14 vol.3 (IPCC, 1997), refers to production processes in developing countries not applicable to our country anymore. Moreover, in the IPCC Good Practice Guidance as well as in the IPCC 2006 Guidelines no guidance is supplied for charcoal production.

3.3.3.2 Methodological issues

Fuel consumption data for the sector are reported in the BEN (MASE, several years [a]). Fuels used to produce energy are also reported with more detail as for fuel disaggregation level by TERNA (TERNA, several years). From 2005 onwards, also the EU ETS "verifier's reports" cover almost the entire sector, for energy consumptions, combustion emissions and process emissions. Other sources of information are the yearly reporting obligations for the large combustion plants under European Directive (LCP) and for facilities under the E-PRTR Regulation; both reporting obligations include most of the iron and steel integrated plants and the only coke producing plant but not all the emission sources.

A carbon balance is done, as suggested by the IPCC good practice guidance, to avoid over or under estimation from the sector. In Annex 3 further details on carbon balances of solid fuels and derived gases used are reported.

The high-implied emission factor for solid fuels is due to the large use of derived steel gases and in particular blast furnace gas to produce energy. These gases have been assimilated to the renewable sources and incentives are still provided for their use.

Other fuels are used in co-combustion with coal gases to produce electricity and they are reported by TERNA, see Annex 2. From 2008, natural gas and fuel oil consumptions reported in the CRF for this sector, are those communicated by the operators of the plants included in the sector in the framework of the EU ETS scheme. The consumptions of these fuels, especially for natural gas, are higher than those reported for the previous years. Fuel consumption reported in the sector is subtracted from the total fuel consumption to produce energy, guaranteeing that over and under estimation are avoided.

CH4 emissions from coke ovens are estimated on the basis of production data to take in account additional volatile emissions due to the specific process. Average emission factors are calculated on the basis of information communicated by the four (three in the last years) plants under the E-PRTR registry.

3.3.3.3 Uncertainty and time-series consistency

The combined uncertainty in CO₂ emissions from integrated iron and steel plants is estimated to be about 4.2% in annual emissions; a higher uncertainty, equal to 50.1%, is calculated for CH₄ and N₂O emissions on account of the uncertainty levels attributed to the related emission factors. Montecarlo analysis has been carried out to estimate uncertainty of CO₂ emissions from stationary combustion of solid, liquid and gaseous fuels emissions, resulting in 5.1%, 3.3% and 5.8%, respectively. Normal distributions have been assumed for all the parameters. A summary of the results is reported in Annex 1. In Table 3.9 GHG emissions from the sector in the years 1990, 1995, 2000, 2005, 2010, 2015, 2017-2021 are reported.

	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
CO ₂ emissions, Mt	12.5	11.6	12.9	15.9	11.4	5.6	5.5	5.4	5.2	3.8	4.7

	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
CH₄ emissions, Gg	4.9	3.8	2.4	1.3	0.6	0.5	0.4	0.4	0.4	0.3	0.3
N ₂ O emissions, Gg	0.12	0.10	0.09	0.12	0.08	0.04	0.04	0.04	0.04	0.03	0.03
Total, Mt CO ₂ eq	12.6	11.8	12.9	16.0	11.5	5.6	5.6	5.5	5.2	3.9	4.7

Source: ISPRA elaborations

The trend of CO₂ and N₂O emissions is driven by the production trends combined with an increase in energy consumption required by more energy intensive products. In 2009 a strong reduction of emissions is observed due to the effects of the economic recession that in 2010 and 2011 has partially recovered. In 2012 a further drop occurred for the economic crisis and for environmental constrains of the main iron and steel integrated plants that should reduce its productions. In 2015 a drop is still observed (around 1.7 Mt CO₂) consistently with the production activities reduction of the main iron and steel integrated plants.

The trend of CH₄ emissions is driven by the coke production trend, decreased from 6.4 Mt in 1990 to 1.4 Mt in 2021 and by the renewal of the production plants. In particular, the strong reduction of CH₄ emissions in the last years is the result of the renewal of the coke production plants in Taranto, started in 2005, and the implementation of best available technologies to reduce volatile organic compounds. In 2009, as well as in 2013, national coke production has reduced of about 40% with respect to the previous year, determining a loss in efficiency of the production plants and an increase of emissions by product unit (IEF) for those years.

3.3.3.4 Source-specific QA/QC and verification

Basic data to estimate emissions have been reported by national energy balance and the national grid administrator. Data collected under other reporting obligations that include integrated iron and steel plants, such as EU ETS Directive, LCP and E-PRTR databases, have been used to cross-check the energy balance data, fuels used and emission factors. Differences and problems have been analysed in detail and solved together with Ministry of Environment experts, which are in charge to prepare the National Energy Balance. In particular, in the national PRTR register the integrated plants report every year the CO₂ emitted at each stage of the process, coke production, sinter production and iron and steel production, which result from separate carbon balances calculated in each phase of the production process. Moreover, total CO₂ emissions reported in the E-PRTR by the operators are equal to those reported under the EU ETS scheme.

The detailed analysis and comparison of the different data reported improved the allocation of fuel consumption and CO_2 emissions between 1.A.1.c and 1.A.2.a sectors. From the 2010 submission, in fact, coking coal losses for transformation process and related emissions have been reallocated under 1.A.1.c instead of 1.A.2.a.

3.3.3.5 Source-specific recalculations

Minor recalculations occur from 2017, because of the update of carbon coke fuel consumptions in the Energy Balance.

3.3.3.6 Source-specific planned improvements

No specific improvements are planned for the next submission.

3.4 Manufacturing industries and construction

3.4.1 Sector overview

Included in this category are emissions which originate from energy use in the manufacturing industries included in category 1.A.2. Where emissions are released simultaneously from the production process and from combustion, as in the cement, lime and glass industry, these are estimated separately and included in category 2.A. All greenhouse gases as well as CO, NO_X, NMVOC and SO₂ emissions are estimated.

In 2021, energy use in industry account for 15.7% of total national CO₂ emissions, 0.7% of CH₄, 4.3% of N₂O. In term of CO₂ equivalent, the manufacturing industry shares 13.4 % of total national greenhouse gas emissions.

Three key categories have been identified for this sector in 2021, for level and trend assessment, using both the IPCC Approach 1 and Approach 2:

Manufacturing industries and construction - CO₂ gaseous fuels (L, T);

Manufacturing industries and construction - CO₂ solid fuels (L1, T);

Manufacturing industries and construction - CO₂ liquid fuels (L, T).

All these categories are key categories for 1990 at level assessment, with and without LULUCF. N₂O from liquid fuels, is key category for 1990 only including the uncertainty estimates.

In the following Table 3.10, GHG emissions connected to the use of fossil fuels, process emissions excluded, are reported for the years 1990, 1995, 2000, 2005, 2010, 2015 and 2017-2021. Industrial emissions show oscillations related to economic cycles.

Table 3.10 Manufacturing industry, GHG emission time series

	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
CO ₂ emissions, Gg	90,772	88,969	94,893	90,786	68,899	54,552	52,143	53,228	48,972	44,899	52,791
CH4 emissions, Gg	6.69	6.92	6.01	6.48	5.68	11.21	11.18	10.97	11.46	11.01	11.60
N ₂ O emissions, Gg	4.49	3.92	4.46	5.02	3.77	2.69	2.51	2.61	2.51	2.36	2.82
Industry, total, Gg CO2 eq	92,150	90,203	96,244	92,298	70,058	55,579	53,122	54,226	49,958	45,832	53,863

In Table 3.11 emissions are reported by pollutant for all the subsectors included in the sector.

Table 3.11 Trend in greenhouse gas emissions from the manufacturing industry sector, 1990-2021

GAS/SUBSOURCE	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
CO ₂ (Gg)											
1.A.2.a Iron and Steel	25,255	24,201	22,537	19,289	15,708	10,629	9,832	10,166	9,827	8,005	9,590
1.A.2.b Non-Ferrous Metals	735	879	1,249	1,176	1,105	999	1,080	1,140	1,114	1,036	968
1.A.2.c Chemicals	21,428	18,658	18,102	17,240	16,404	11,142	11,346	11,597	9,088	8,672	11,301
1.A.2.d Pulp, Paper and Print	3,108	4,185	4,253	5,457	5,148	4,872	5,027	4,916	4,975	4,665	5,308
1.A.2.e Food	3,891	5,095	6,282	6,017	4,132	3,444	3,705	3,517	3,455	3,472	3,815
1.A.2.f Non-metallic minerals	21,045	17,461	21,407	25,271	18,099	14,007	11,598	11,899	10,915	10,348	11,194
1.A.2.g Other	15,310	18,490	21,062	16,338	8,303	9,459	9,555	9,994	9,598	8,702	10,613
CH₄ (Mg)											
1.A.2.a Iron and Steel	3,795	4,226	3,093	3,304	2,880	2,062	1,969	1,803	1,797	1,449	1,593
1.A.2.b Non-Ferrous Metals	13	15	26	24	19	18	19	20	19	18	17

GAS/SUBSOURCE	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
1.A.2.c Chemicals	876	725	643	533	542	328	320	335	239	219	320
1.A.2.d Pulp, Paper and Print	77	93	115	154	92	107	108	105	109	98	126
1.A.2.e Food	105	127	174	429	731	7,639	7,717	7,641	8,239	8,238	8,391
1.A.2.f Non-metallic minerals	1,412	1,276	1,463	1,624	1,197	842	824	834	832	779	890
1.A.2.g Other	408	461	493	412	219	215	219	235	225	208	260
N₂O (Mg)											
1.A.2.a Iron and Steel	411	414	366	396	294	200	181	183	177	148	185
1.A.2.b Non-Ferrous Metals	13	16	24	23	20	18	19	20	19	18	17
1.A.2.c Chemicals	404	322	314	317	329	207	190	200	134	122	181
1.A.2.d Pulp, Paper and Print	64	82	80	102	90	86	87	86	87	81	92
1.A.2.e Food	52	53	76	87	47	172	176	172	180	180	184
1.A.2.f Non-metallic minerals	2,644	2,285	2,630	2,986	2,183	1,427	1,360	1,370	1,368	1,286	1,464
1.A.2.g Other	906	751	974	1,110	807	579	501	576	544	520	699

Source: ISPRA elaborations

A general trend of reduction in emissions is observed from 1990 to 2021; some sub sectors reduced sharply (iron and steel, non metallic minerals), other sub sectors (non ferrous metals, pulp and paper) increased their emissions. In 2009 an overall reduction of emissions for all the sectors occurred due to the effects of the economic recession. In 2010 production levels restored for iron and steel, but a further significant drop is noted in 2013 due to environmental constraints of the main integrated iron and steel plant in Italy, located in Taranto, which had to reduce its steel production level. Non metallic minerals emission trend is driven by the cement industry which strongly reduced its production levels in 2009 and further in 2013, in relation to the economic recession and the crisis of building construction sector; a further decrease of this sector is observed in 2016 and 2017. The increasing trend of CH₄ emissions in the last years especially for food industry is driven by the increase of biomass used as a fuel in this sector with a peak in 2014 and in 2019-2020. The decreasing trend of CO₂ and N₂O in the last years is driven by the trend of non-metallic minerals industry emissions due to the reduction trend of cement productions.

3.4.2 Source category description

The category 1.A.2 comprises seven sources: 1.A.2.a Iron and Steel, 1.A.2.b Non-Ferrous Metals, 1.A.2.c Chemicals, 1.A.2.d Pulp, Paper and Print, 1.A.2.e Food, 1.A.2.f Non-metallic minerals, 1.A.2.g Other.

Iron and steel. The main processes involved in iron and steel production are those related to sinter and blast furnace plants, to basic oxygen and electric arc furnaces and to rolling mills.

Most of emissions are connected to the integrated steel plants, while for the other plants, the main energy source is electricity (accounted for in 1.A.1.a) and the direct use of fossil fuels is limited to heating – re heating of steel in the intermediate part of the process.

There were four integrated steel plants in 1990 that from 2005 are reduced to two, with another plant that still has a limited production of pig iron. Nevertheless, the steel production in integrated plants has not changed significantly in the 1990-2008 period due to an expansion in capacity of the two operating plants. From 2015 only one integrated plant remains in operation. The maximum production was around 11 Mt/y in 1995 and in 2005-2008, with lower values in other years and the lowest of 3.4 Mt in 2020 (4Mt in 2021).

It has to be underlined that the integrated steel plants include also the cogeneration of heat and electricity using the recovered "coal gases" from various steps of the process, including steel furnace gas, BOF gas and coke oven gas. All emissions due to the "coal gases" used to produce electricity are included in the electricity grid operator's yearly reports and are accounted in the category 1.A.1.c. No detailed information is available for the heat produced, so the emissions are included in source category 1.A.2.a.

With the aim to avoid double counting process emissions resulting from the iron and steel subcategory are reported in the industrial processes sector. CH₄ emissions are estimated for each emitting activities according to the classification of activities described in the EMEP/EEA guidebook and consequently allocated at the combustion or industrial processes sector in consideration of the relevant methodological issues. More in details, CH₄ process emissions for pig iron and steel production are already allocated to the industrial processes sector as well as fugitive CH₄ emissions from coke production that are reported under fugitive emissions while CH₄ emissions from the combustion of fuels are allocated to the energy sector.

This subsector is one of the most important of 1.A.2 category and accounts, in 2021, for 18.0% of total 1.A.2 GHG emissions, and 2.3% of total national emissions.

Non-Ferrous Metals

In Italy, the production of primary aluminium stopped in 2013 (and was 232 Gg in 1990) while secondary aluminium accounts for 350 Gg in 1990 and 770 Gg in 2021. These productions, however, use electricity as the primary energy source so the emissions due to the direct use of fossil fuels are limited. The sub sector comprises also the production of other non-ferrous metals, both primary and secondary copper, lead, zinc and others; but also those productions have a limited share of emissions. Magnesium production is not occurring. The bulk of emissions are due to foundries that prepare mechanical pieces for the engineering industry or the market, using all kinds of alloys, including aluminium, steel and iron.

Chemicals

CO₂, CH₄ and N₂O emissions from chemical and petrochemical plants are included in this sector.

In Italy there are petrochemical plants integrated with a nearby refinery and stand alone plants that get the inputs from the market. Main products are Ethylene, Propylene, Styrene. In particular, ethylene and propylene are produced in petrochemical industry by steam cracking. Ethylene is used to manufacture ethylene oxide, styrene monomer and polyethylene. Propylene is used to manufacture polypropylene but also acetone and phenol. Styrene, also known as vinyl benzene, is produced on industrial scale by catalytic dehydrogenation of ethyl benzene. Styrene is used in the rubber and plastic industry to manufacture through polymerisation processes such products as polystyrene, ABS, SBR rubber, SBR latex. Except for ethylene oxide, whose production has stopped in 2002, the other productions of the above-mentioned chemicals still occur in Italy. Activity data are stable from 1990 to 2012, with limited yearly variations along the timeseries and a reduction in the last years.

Chemical industry includes non organic chemicals as chlorine/soda, sulphuric acid, nitric acid, ammonia. A limited production of fertilizers is also present in Italy. From 1990 to 2021 the sum of productions of this source category has greatly reduced: in 2021 it was less than half of the production in 1990.

This source category does include some emissions from the cogeneration of electricity. Due to the transformation of some of those plants in power plants directly connected to the grid, and so reported in category 1.A.1.a, the percentage of the category 1.A.2.c CO₂ emissions due to electricity generation has reduced from 1990 to 2021. This subsector accounts, in 2021, for 21.1% of total 1.A.2 GHG emissions, and 2.7% of total national emissions.

Pulp, Paper and Print

Emissions from the manufacturing of paper are included in this source category. In Italy the manufacture of virgin paper pulp is rather limited, with a production feeding less than 5% of the paper produced in 2019. Most of the pulp was imported in 1990, while in 2021 half of the pulp used is produced locally from recycled paper. The paper production is expanding, and activity data (total paper produced) were 6.2 Mt in 1990 and 9.6 Mt in 2021. The printing industry represents a minor part of the source category emissions.

This source category includes also the emissions from the cogeneration of electricity. Due to the transformation of some of those plants in power plants directly connected to the grid (and so reported in category 1.A.1.a), the percentage of the category 1.A.2.d CO₂ emissions due to electricity generation has strongly reduced from 1990 to 2021.

Food

Emissions from the food production are included in this source category. In Italy the food production industry is expanding. A comprehensive activity data for this sector is not available; more in detail while energy data are those reported in the national energy balance for this sector, information at subsector and technological level is not available and only few plants are part of the ETS; energy fuel consumption was estimated to be 62 PJ in 1990 and 113 PJ in 2020, about half of energy consumptions derives from biomass. Value added at constant prices has increased of 0.6% per years from 1990 to 2003 and almost constant from 2004.

This source category also includes emissions from the cogeneration of electricity. Due to the transformation of those plants in power plants directly connected to the grid, and so reported in category 1.A.1.a, the percentage of the category 1.A.2.e CO₂ emissions due to electricity generation has reduced from 1990 to 2021.

Non-metallic minerals

This sector, which refers to construction materials, is quite significant in terms of emissions due to the energy intensity of the processes involved. Construction materials subsector includes the production of cement, lime, bricks, tiles and glass. It comprises thousands of small and medium size enterprises, with only few large operators, mainly connected to cement production. Some of the production is also exported. The description of the process used to produce cement, lime and glass is reported in chapter 4, industrial processes.

The fabrication of bricks is a rather standard practice in most countries and does not need additional description; fossil source is mainly natural gas. A peculiar national circumstance is the fabrication of tiles, in which are involved many specialised "industrial districts" where many different independent small size enterprises are able to manufacture world level products for both quality and style, exported everywhere. Generally speaking, the processes implemented are efficient with reference to the average European level and use mostly natural gas as the main fossil source since the year 2000.

The activity data of industries oriented to so different markets are, of course, peculiar to each subsector and it is difficult to identify a common trend. The productions of cement, lime and glass are the most relevant from the emissions point of view.

This subsector is the most important of 1.A.2 category and accounts, in 2021, for 21.5% of total 1.A.2 GHG emissions, and 2.8% of total national emissions.

Other

This sector comprises emissions from many different industrial subsectors, some of which are quite significant in Italy in terms of both value added and export capacity.

In particular, engineering sectors (vehicles and machines manufacturing) is the main industrial sub sector in terms of value added and revenues from export and textiles was the second subsector up to year 2000.

The remaining "other industries" include furniture and other various "made in Italy" products that produce not negligible amounts of emissions.

This source category also includes emissions from the cogeneration of electricity. Due to the transformation of some of those plants in power plants directly connected to the grid, reported in category 1.A.1.a, the percentage of the category 1.A.2.g CO₂ emissions due to electricity generation has reduced in the last years. This subsector accounts, in 2021, for 20.1% of total 1.A.2 GHG emissions, and 2.6% of total national emissions.

3.4.3 Methodological issues

Energy consumption for this sector is reported in the BEN (see Annex 5). The data comprise specification of consumption for 13 sub-sectors and more than 25 fuels. These very detailed data, combined with industrial production data, allow for a good estimation of all the fuel used by most industrial sectors, with the details required by CRF format. With reference to coal used in the integrated steel production plants the quantities reported in BEN are not used as such but a procedure has been elaborated to estimate the carbon emissions linked to steel production and those attributable to the coal gases recovered for electricity generation, as already mentioned in paragraph 3.4.1. The detailed calculation procedure is described in Annex 3. Moreover, a part of the fuel input is considered in the estimation of process emissions, see chapter 4 for further details.

The balance of fuel (total consumption minus industrial processes consumption) is considered in the emission estimate; CO₂ emission factors used for 2021 are listed in Table 3.12. The procedure used to estimate the national emission factors is described in Annex 6. These factors account for the fraction of carbon oxidised equal to 1.00 for solid, liquid and gaseous fuels, as suggested by the IPCC 2006 guidelines (IPCC, 2006).

For some fuels as natural gas, coal and residual oil, country specific emission factors are available for the whole time series; so, their time series takes into account different oxidation factors according to the improving of combustion efficiency occurred in the nineties but considering the value equal to 1.00 from 2005.

For petroleum coke, synthesis gas from heavy residual, refinery gases, iron and steel derived gases, coking coal, anthracite, coke oven coke from 2005, and for residual gases from chemical processes, from 2007, CO₂ emission factors have been calculated based on the data reported by operators under the EU ETS scheme. See Annex 6 for further details. For the other fuels, where national information was not available, default emission factors provided by the IPCC 2006 Guidelines have been used (IPCC, 2006).

Table 3.12 Emission Factors for Power, Industry and Civil sector

	t CO ₂ / TJ	t CO ₂ / t	t CO ₂ / toe
Liquid fuels			
Crude oil	73.300	3.101	3.069
Jet gasoline	70.000	3.101	2.931
let kerosene	71.500	3.153	2.994
Petroleum Coke in industry*	93.331	3.126	3.908
Petroleum Coke in refineries*	96.536	3.423	4.042
Gasoil	74.100	3.186	3.102

77.000		
11.000	2.118	3.224
76.501	3.143	3.203
79.606	3.100	3.333
97.899	1.196	4.099
47.640	1.940	1.995
54.740	2.333	2.292
58.504	2.006 (sm ³)	2.449
93.078	2.334	3.897
96.100	1.816	4.024
101.000	1.202	4.229
94.757	2.938	3.967
104.131	3.021	4.360
108.616	3.155	4.548
(94.600)	(0.962)	(3.961)
56.014	2.649 (sm ³)	2.345
45.490	0.830 (sm ³)	1.905
192.710	1.397(sm ³)	8.068
247.920	0.918 (sm ³)	10.380
95.742	1.090	4.563
81.473	2.027	3.411
	79.606 97.899 47.640 54.740 58.504 93.078 96.100 101.000 94.757 104.131 108.616 (94.600) 56.014 45.490 192.710 247.920 95.742	79.606 3.100 97.899 1.196 47.640 1.940 54.740 2.333 58.504 $2.006 (sm^3)$ 93.078 2.334 96.100 1.816 101.000 1.202 94.757 2.938 104.131 3.021 108.616 3.155 (94.600) (0.962) 56.014 $2.649 (sm^3)$ 45.490 $0.830 (sm^3)$ 192.710 $1.397 (sm^3)$ 247.920 $0.918 (sm^3)$ 95.742 1.090

Source: ISPRA elaborations

Other sources of information are the yearly survey performed for the E-PRTR, since 2003, and the EU ETS; both surveys include main industrial operators, but not all emission sources. In particular from 2005 onwards the detailed reports by operators subject to EU ETS constitute a valuable source of data, as already said above with reference to oxidation factors and average emission factors.

In general, in the industrial sector, the ETS data source is used for cross checking BEN data. Energy/emissions data from EU ETS survey of industrial sectors should be normally lower than the corresponding BEN data because only part of the installations / sources of a certain industrial sub sector are subject to EU ETS. In case of missing sources or lower figures in the BEN than ETS, at fuel sector level, a verification procedure is carried out.

Since 2007 data, ISPRA verifies actual data from both sources and communicates potential discrepancies to MASE. Thus, a verification procedure is started that can eventually modify BEN data. However, we underline that EU ETS data do not include all industrial installations and cannot be used directly to estimate sectoral emissions for a series of reasons that will be analyzed in the following, sector by sector.

Biomass fuel consumption in the sector is driven by the use of wood in the non-metallic subcategory and biogas from agriculture residues in the food subcategory. The trend of the implied emission factors is driven in the last years by the exponential increase of the biogas fuel consumption, observed mainly in the food processing industry, and the strong decrease of wood consumption in industry, as supplied by the national energy balance (MASE, several years [a]).

Other fuels include industrial waste fuel consumption reported in the non-metallic mineral sub category. The use of industrial waste in manufacturing industries is linked to the use in the last 10 years in cement production plants and refers to the consumption of RDF (Refuse-derived Fuel), plastics, tyres, waste oils and solvents. The average emission factor time series is reported in Table A6.12 of Annex 6 and it has been derived from data reported to the ETS by the plants using that fuel.

Iron and steel

For this sector, all main installations are included in EU ETS, but only from 2013 all sources of emissions are included. In the previous years only part of the processes of integrated steel making was subject to EU ETS, in particular the manufacturing process after the production of row steel was excluded up to 2007 and only the lamination processes have been included from 2008.

So the EU ETS data have been of limited use for this subsector and the procedure set up starting from the total carbon input to the steel making process, is the most comprehensive one to estimate the emissions to be reported in 1.A.2.a, see Annex 3 for further details. Of course, data available from EU ETS are used for cross-checking the national energy balance data, with an aim to improve the consistency of the data set. These plants are also reported in E-PRTR, but not all sources are included.

The low implied emission factors and annual variations in the average CO₂ emission factor for solid fuel are due to the fact that both activity data and emissions reported under this category include the results of the carbon balance (see Annex 3 for further details). The implied emission factor for 2021 is equal to 52.9 t/TJ and the trend is quite stable with figures around 70 t/TJ. CH₄ implied emission factor is equal to 14.8 kg/TJ in 2021 and it is higher than the default emission factors because of the specificities of the inprocess combustion activities. The sintering process is a pre-treatment step in the production of iron in which metal ores, coke and other materials are roasted under burners, involving the mixing of combustion products and/or the fuel with the product or raw materials (EMEP/EEA, 2019). Apart from combustion emissions, the heating of plant feedstock and product can lead to substantial CH₄ emissions which are to be accounted for in the combustion process.

Non-Ferrous Metals

These plants are mostly excluded from EU ETS; primary aluminum producing plants should have been included from 2013, but the only Italian plant closed in the same year. These production processes are also in the scope of the E-PRTR survey, which collects also information concerning emissions to air, but since these facilities usually do not exceed the emission thresholds for mandatory reporting the information regarding emissions to air is not reported by the operators.

Chemicals

The use of EU ETS data for this subsector is rather complex because generally chemical plants are excluded from EU ETS while petrochemical plants, which report also under the E-PRTR, are included from 2013. In this case, the data set is used for cross checking BEN data. As mentioned in paragraph 3.4.1, also a small amount of emissions connected to the production of electricity for the onsite use is reported in source 1.A.2.c, basic data are taken from TERNA reports and the relative subsector amount is estimated with a model.

In this category, biomass refers to the steam wood fuel consumption as available in the BEN. The relevant CO_2 emission factor is reported in Table 3.12 above.

Fuel consumptions of derived chemical and petrochemical fuels, which could be considered as petrol derived fuels, were reported in the past in the "other fossil fuels" category for chemicals industries. With the aim to improve the comparison between reference and sectoral approaches, these fuels have been reported under the liquid fuel category. The average CO_2 emission factor at sectoral level for liquid fuels is driven by the weight of synthesis gases from chemical processes fuel consumptions. The relevant CO_2 emission factor is reported in Table 3.12 above.

Pulp, Paper and Print

Most of the operators in the paper and pulp sector are included in EU ETS, while only a few of the printing installations are included.

CH₄ and N₂O emissions from biomass fuel consumption in the sector, are included in the inventory on the basis of the biomass fuel consumption reported in the annual environmental report by the industrial association (ASSOCARTA, several years) and to the EU ETS. Statistics on biomass fuel consumption appears from 1998. According to the information supplied by the industrial association of the sector, ASSOCARTA, a few plants started to use biomass from 1998. The use of biomass has an increasing trend till 2008 while in 2009 the use of biomass sharply reduced with a further reduction in the following years to return in the last years at the same level of 2009. From 2008 information is directly reported by the production plants in the framework of the EU ETS and a reduction in the IEF is observed as a consequence of increase in energy efficiency of the biomass fuel used. For the years from 1990 to 1997 the use of biomass fuel consumption includes especially black liquor, from 1998 to 2007, but also industrial sludge and biogas from industrial organic wastes. From 2013 only biogas is included and, in 2021, CO₂ emission factor is equal to 58.5 t/TJ.

Food

Emissions from the food production are included in this source category. A comprehensive activity data for this sector is not available; the subsector comprises many small and medium size enterprises, with thousands of different products. Limited info on this sector can be found in ETS survey, the sector is not included in the scope of ETS.

Liquid fuel refers to fuel oil and LPG fuel consumption driving the variability of the average emission factors.

For the years up to 2002, solid fuel consumption was mainly related to the consumption of coke and small amount of lignite. From 2012 the fuel consumption and relevant emission factors refers only to anthracite.

Biomass includes fuel consumption of steam wood and biogas from food industrial residual. The CH₄ implied emission factor time series is driven by the mix of these fuels. In this sector emissions are prevalently from biogas from food industry residual or in the paper industry, with an EF of CH₄ equal to 152 kg/TJ, while in the other manufacturing industries biomass refers to wood and similar with an emission factor for CH₄ equal to 28 kg/TJ.

CH₄ emissions from biogas fuel combustion take in account the technology used to produce energy and heat from biogas combustion, usually stationary engines, which is not fully efficient and results in higher emissions of VOC, CO and PM. The emission factor is reported in the Corinair Guidebook (EMEP/CORINAIR, 2007) as the maximum for stationary engines. We plan to collect the relevant information at plant level to update this emission factor taking into account the improvement in technology in the last years with respect to the nineties. Biogas has an emission factor for N₂O, equal to 3 kg/TJ.

Non-metallic minerals

This sector comprises emissions from many different industrial subsectors, some of which are subject to EU ETS and some not. Construction material subsector is energy intensive, and it is subject to EU ETS. In the national energy database, the data for construction material are reported separately and they can be cross cheeked with ETS survey. However, in the construction material subsector, there are many small and medium size enterprises, so the operators subject to ETS are only a part of the total.

Biomass includes wood fuel consumption and other non conventional fuels especially used in the construction material subsector. CH₄ emission factor is equal to 27.5 kg/TJ and refers to the use of these non conventional fuels for the cement production (EMEP/EEA, 2009).

Industrial waste fuel consumption is also included in this subcategory; CH₄ and N₂O emission factors are equal to 3 kg/TJ and 15 kg/TJ respectively.

Other

This sector comprises emissions from many different industrial subsectors, mainly not subject to EU ETS.

3.4.4 Uncertainty and time-series consistency

The combined uncertainty in CO₂ emissions for this category is estimated to be about 4% in annual emissions; a higher uncertainty is calculated for CH₄ and N₂O emissions on account of the uncertainty levels attributed to the related emission factors and the difference in emission factors between the industrial subsectors, sources 1.a.2.a-g. Montecarlo analysis has been carried out to estimate uncertainty of CO₂ emissions from stationary combustion of solid, liquid and gaseous fuels emissions, resulting in 5.1%, 3.3% and 5.8%, respectively. Normal distributions have been assumed for all the parameters. A summary of the results is reported in previous NIRs.

Time series of the industrial energy consumption data are contained in the BEN time series and in the CRFs and are reported in the following table.

	1990	1995	2000	2005	2010	2015	2018	2019	2020	2021
1.A.2 Manufacturing Industries and Construction	1,367,598	1,393,148	1,506,841	1,464,862	1,116,234	913,309	911,496	859,287	794,853	916,473
a. Iron and Steel	397,841	378,482	373,499	371,192	299,536	182,846	175,448	169,960	139,913	173,667
b. Non-Ferrous Metals	11,916	14,708	20,276	19,774	18,537	16,968	18,612	18,240	17,309	16,106
c. Chemicals	320,112	288,273	279,930	257,657	241,697	169,257	176,039	142,626	138,585	172,055
d. Pulp, Paper and Print	50,730	70,189	73,713	94,498	88,256	83,986	84,964	86,227	80,591	90,886
e. Food Processing, Beverages and Tobacco	62,370	84,987	103,004	99,007	73,493	108,704	109,709	113,370	113,441	119,797
f. Non-metallic minerals	278,929	255,293	306,930	363,170	261,735	201,447	186,520	172,083	163,314	173,860

Table 3.13 Fuel consumptions for Manufacturing Industry sector, 1990-2021 (TJ)

	1990	1995	2000	2005	2010	2015	2018	2019	2020	2021
g. Other	245,699	301,216	349,489	259,564	132,980	150,100	160,204	156,782	141,700	170,102

Source: ISPRA elaborations

Emission levels observed from 1990 to 2005 are nearly constant with some oscillations, linked to the economic cycles and reflecting the develop of national sectoral industries, as paper and food. After year 2005 the general trend is downward, with oscillations due to the economic cycles industries but also reflecting the delocalisation of productions in some specific sectors as chemicals and textile industry, see Table 3.11 above. The underlining reason for the reduced emissions is the reduced industrial output, and the increase in energy efficiency. For the iron and steel sector as well as for the non metallic minerals sector, a drop is observed in the last years coherent with the reduction of the production activities in the main national iron and steel integrated plants and in the cement production industry respectively.

3.4.5 Source-specific QA/QC and verification

Basic data to estimate emissions have been reported by national energy balance and the national grid administrator. Data collected by other surveys that include EU-ETS and E-PRTR surveys have been used to cross – check the energy balance data, fuels used and EFs. Differences and problems have been analysed in detail and solved together with MASE experts.

The energy data used to estimate emissions reported in Table 1.A.2 have two different levels of accuracy:

- in general, they are quite reliable, and their uncertainty is the same of the BEN; as reported in Annex 4 the BEN survey covers 100% of import, export and production of energy; the total industrial consumption estimate is obtained subtracting from the total the known energy quantities (obtained by specialized surveys) used in electricity production, refineries and the civil sector.
- the energy consumption at sub sectoral level (sources 1.A.2.a-g) is estimated by MASE on the basis of sample surveys, actual production and economic data; therefore, the internal distribution on energy consumption has not the same grade of accuracy of the total data.

3.4.6 Source-specific recalculations

Recalculations occur in the last years because of the update of carbon balance for iron and steel sector due to the update of coking coal fuel consumption in the national Energy Balance.

3.4.7 Source-specific planned improvements

With the aim to improve the comparison with the international statistics and the relevant definition and classification of fuels we are progressively updating the emission inventory adopting the energy balance activity data provided by the Italian Ministry of Economic Development to the international organization after verification that these time series data reflect the relevant emission inventory categories.

A revision of biomass and waste fuel consumption time series is planned for the next submission on the basis of energy data communicated by the Ministry of Economic Development to the Joint Questionnaire

OECD/IEA/EUROSTAT, after a verification and comparison with data up to now used and available in the National Energy Balance reports (MASE, several years [a]). National Energy Balances are available in Italy from 1970 with the same format and comparable data. The submissions to the international questionnaire in some cases follow different rules and different allocation of fuel consumptions. The comparison is oriented to avoid that the use of international statistics results in a loss of information already used for the emission inventory. Moreover, we will check where along the time series changes occurred and for which matter (simple updates of annual data or something related to the different reporting rules).

3.5 Transport

This sector shows a decrease in emissions only in the last years, reflecting the trend observed in fuel consumption for road transportation, which accounts for about 92.9% of GHG sectoral emissions. The mobility demand and, particularly, the road transportation share have increased in the period from 1990 to 2019, although since 2008 emissions from this sector begin to decrease. Due the pandemic occurred during year 2020, the mobility demand sharply lowered, mainly corresponding to the lockdown periods. In 2021 the sector shows a recovery, and it is responsible of 24.7% of total national GHG emissions and 31.0% of the GHG energy sector emissions.

Emissions increase of about 26.9% from 1990 to 2007 and show a decrease of about 18.0% from 2007 to 2019; despite of an inversion of the trend between 2013 and 2014, a further reduction is observed between 2015 and 2017, while 2018-2019 emissions show an upward trend because of a general growth of economy. Year 2021 shows an increase of 19.3% and 1.1% in comparison with the years 2020 and 1990 respectively. Year 2021 has a decrease of 2.9% in comparison of 2019, before the pandemic occurred. In 2012 a drop is observed in CO₂ emissions due to a sharp reduction of gasoline and diesel fuel consumption for road transport, explained mainly by the economic crisis, contributing to the reduction of movements of passengers and goods, and in a minor way by the penetration in the market of low consumption vehicles.

The time series of CO₂, CH₄ and N₂O emissions, in Mt CO₂ equivalent, is reported in Table 3.14; figures comprise all the emissions reported in table 1.A.(a)s3 of the CRF. Emission estimates are discussed below for each sub sector. The trend of CH₄ and N₂O emissions is impacted by the evolution of the technologies in the road transport sector and the distribution between the different fuels consumption.

	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
CO ₂ Mt CO ₂ eq	100.32	111.53	121.64	126.78	114.63	105.59	100.47	104.04	105.23	85.64	102.20
CH₄ Mt CO₂eq	1.01	1.14	0.86	0.57	0.35	0.25	0.23	0.22	0.23	0.19	0.22
N ₂ O Mt CO ₂ eq	0.86	1.55	1.44	1.01	0.93	0.85	0.84	0.87	0.88	0.73	0.86
Total, Mt CO₂ eq.	102.19	114.22	123.94	128.36	115.91	106.69	101.54	105.13	106.34	86.56	103.28

Table 3.14 GHG emissions for	the transport sector (Mt CO ₂ eq.)
------------------------------	---

Source: ISPRA elaborations

 CO_2 from road vehicles is key category both in 1990 and 2021, in level and trend (Tier 1 and Tier 2) with and without LULUCF. CO_2 from waterborne navigation is key category both in 1990 and 2021, in level (Tier 1) with and without LULUCF. CO2 from civil aviation is key category in 2021, in level (Tier 1) with and without LULUCF.

3.5.1 Aviation

3.5.1.1 Source category description

The IPCC methodology requires the estimation of emissions for category 1.A.3.a.i International Aviation and 1.A.3.a.ii Domestic Aviation, including figures both for the cruise phase of the flight and the landing and take-off cycles (LTO). Emissions from international aviation are reported as a memo item and are not included in national totals.

Civil aviation contributes mainly to rising CO₂ emissions. CH₄ and N₂O emissions also occur and are estimated in this category but their contribution is insignificant. In 2021 total GHG emissions from this source category were about 1.7% of the national total emissions from transport, and about 0.4% of the GHG national total (in terms of CO₂ only, the share is almost the same).

From 1990 to 2019, GHG emissions from the sector increased by 59.3%, due to the expansion of the aviation transport mode. Considering the sharp movements' reduction occurred in year 2020 due to the global pandemic, the aviation sector decreased by 20% in comparison with 1990. Since 2010 to 2019 a reduction is observed in GHG emissions, equal to -19.6% due both to the reduction of domestic flights and to an increase of energy efficiency in the new aircrafts. Considering the year 2021, the total reduction amounts to -42.4%, in comparison with 2010 emissions. Focusing on the period 2010-2021, after the minimum GHGs emissions registered in years 2015-2016, there is a rise in the emissions from aviation in years 2017-2019, related to the growth rates in the number of domestic flights. Year 2020 is thus to be considered apart because of the exceptional global conditions. GHGs emissions in year 2021 are 43% higher in comparison to year 2020: there is a recover from the first year of pandemic, yet emissions are 28% lower than in year 2019. CO₂ emissions deriving from civil aviation represent a key category in 2021in level, with and without LULUCF.

3.5.1.2 Methodological issues

According to the IPCC Guidelines and Good Practice Guidance (IPCC, 1997; IPCC, 2000; IPCC, 2006) and the Guidebook (EMEP/CORINAIR, 2007; EMEP/EEA, 2019), a national technique has been developed and applied to estimate emissions.

The current method estimates emissions from the following assumptions and information.

Activity data comprise both fuel consumptions and aircraft movements, which are available in different level of aggregation and derive from different sources as specified here below:

- Total inland deliveries of aviation gasoline and jet fuel are provided in the national energy balance (MASE, several years [a]). This figure is the best approximation of aviation fuel consumption, for international and domestic use, but it is reported as a total and not split between domestic and international and include fuel used for engines and airframe testing;
- Data on annual arrivals and departures of domestic and international landing and take-off cycles at Italian airports are reported by different sources: National Institute of Statistics in the statistics yearbooks (ISTAT, several years [a]), Ministry of Transport in the national transport statistics yearbooks (MIT, several years), the Italian civil aviation in the national aviation statistics yearbooks (ENAC/MIT, several years), which report total national and international commercial air traffic, scheduled and not scheduled flights including charter and air taxi, EUROCONTROL flights data time series 2002 – 2021 (EUROCONTROL, several years).

An overall assessment and comparison with EUROCONTROL emission estimates was carried out which led to an update of the methodology used by Italy for this category. Data on the number of flights, fuel consumption and emission factors were provided by EUROCONTROL in the framework of a specific project funded by the European Commission, and quality checked by the European Environmental Agency and its relevant Topic Centre (ETC/ACM), aimed at improving the reporting and the quality of emission

estimates from the aviation sector of each EU Member State under both the UNFCCC and LRTAP conventions. The Advanced Emissions Model (AEM) was applied by EUROCONTROL to derive these figures, according to a Tier 3 methodology (EMEP/EEA, 2019).

EUROCONTROL fuel and emissions time series cover the period 2005-2021, while the number of flights is available since 2002. In this year submission, EUROCONTROL data, related to the number of flights in Italy, have been used to update the national inventory from 2002, while fuel and emissions data have been used since 2005.

For the time series from 1990 to 1999, figures for emission and consumption factors are derived by the EMEP/CORINAIR guidebook (EMEP/CORINAIR, 2007), both for LTO cycles and cruise phases, considering national specificities. These specificities derived from the results of a national study which, taking into account detailed information on the Italian air fleet and the origin-destination flights for the year 1999, calculated national values for both domestic and international flights for the same year (Romano et al., 1999; ANPA, 2001; Trozzi et al., 2002 (a)) on the basis of the default emission and consumption factors reported in the EMEP/CORINAIR guidebook. These national average emissions and consumption factors were therefore used to estimate emissions for LTO cycles and cruise both for domestic and international flights from 1990 to 1999.

Specifically, for the year referred to in the survey, the method estimates emissions from the number of aircraft movements broken down by aircraft and engine type (derived from ICAO database if not specified) at each of the principal Italian airports; information about whether the flight is international or domestic and the related distance travelled has also been considered.

A Tier 3 method has been applied for 1999. In fact, figures on the number of flights, destination, aircraft fleet and engines have been provided by the local airport authorities, national airlines and EUROCONTROL, covering about 80% of the national official statistics on aircraft movements for the relevant years. Data on 'Times in mode' have also been supplied by the four principal airports and estimates for the other minor airports have been carried out based on previous sectoral studies at local level. Consumption and emission factors are those derived from the EMEP/CORINAIR guidebook (EMEP/CORINAIR, 2007). Based on sample information, estimates have been carried out at national level from 1990 to 1999 considering the official statistics of the aviation sector (ENAC/MIT, several years) and applying the average consumption and emission factors.

From 2005, fuel consumption and emission factors were derived from the database made available to EU Member States by EUROCONTROL, as previously described. These data were used for updating fuel consumption factors, and emission factors of all pollutants. For the period between 1999 and 2005, where relevant, a linear interpolation has been applied to calculate these parameters.

Estimates were carried out applying the consumption and emission factors to the national official aviation statistics (ENAC/MIT, several years) and EUROCONTROL data on movements from 2002 (EUROCONTROL, several years). In general, to carry out national estimates of greenhouse gases and other pollutants in the Italian inventory for LTO cycles, both domestic and international, consumptions and emissions are calculated for the complete time series using the average consumption and emission factors multiplied by the total number of flights. The same method is used to estimate emissions for domestic cruise; on the other hand, for international cruise, consumptions are derived by difference from the total fuel consumption reported in the national energy balance and the estimated values as described above and emissions are therefore calculated. The fuel split between national and international fuel use in aviation is then supplied to the Ministry of the Economic Development to be included in the official international submission of energy statistics to the IEA in the framework of the Joint Questionnaire OECD/EUROSTAT/IEA compilation together with other energy data.

Data on domestic and international aircraft movements from 1990 to 2021 are shown in Table 3.15 where domestic flights are those entirely within Italy. Since 2002, emission time series have been updated on the basis of EUROCONTROL flights data, considering departures from and arrivals to all airports in Italy,

regarding flights flying under instrument flight rules (IFR), including civil helicopters flights and excluding flights flagged as military, when the above flights they can be identified while, from 1990 to 2001, data from ENAC have been used (ENAC/MIT, several years).

Table 3.15 Aircraft Movement Data (LTO cycles)

Domestic flights 172,148 185,220 319,748 350,140 354,520 280,645 281,498	281 498 284 62	7 200 470	151 156	200 721
-	201,130 204,02	/ 200,470	151,150	209,721
International flights 147,875 198,848 303,608 381,206 406,990 425,410 462,896	162,896 484,76	4 502,764	172,835	232,750

Source: ISTAT, several years [a]; ENAC/MIT, several years; Eurocontrol, several years.

Emission factors are reported in Table 3.16 and Table 3.17. CO₂ and SO₂, emission factors (in kg/TJ) depend on the fuel quality, and they have been assumed according to the information available in literature that the quality of jet fuel does not change in the period. CO₂ emission factors are those in the 2006 IPCC Guidelines (IPCC, 2006), while SO₂ emission factor is equal to 1 kg/t of fuel. For N₂O, because of emission factors are not available at engine/airplane level in the relevant EMEP and IPCC Guidelines which are based on the ICAO database, and the 2006 IPCC Guidelines default value has been used, equal to 2 kg/TJ (IPCC, 2006). For the other gases, including CH₄, emission factors depend on the technologies and vary in the time series according to the surveys as already described in this paragraph.

Table 3.16 CO2 and SO2 emission factors for Aviation (kg/t) 1990-2021

	CO ₂ ª	SO ₂
Aviation jet fuel	849	1.0
Aviation gasoline	839	1.0

a Emission factor as kg carbon/t.

Table 3.17 Non-CO₂ emission factors for Aviation (2021)

	Units	CH₄	N₂O	NOx	СО	NMVOC	Fuel
Domestic LTO	kg/LTO	0.125	0.050	7.602	5.906	0.878	585.289
International LTO	kg/LTO	0.149	0.059	10.011	6.353	0.875	695.034
Domestic Cruise	kg/t fuel	-	0.087	15.106	4.444	0.635	-
International Cruise	kg/t fuel	-	0.077	15.994	2.005	0.267	-
Aircraft Military ^a	kg/t fuel	0.400	0.200	15.800	126.000	3.600	-

Source: (a) EMEP/CORINAIR, 2007; EMEP/EEA 2019; Eurocontrol, several years

Total fuel consumptions, both domestic and international, are reported by LTO and cruise in Table 3.18.

Table 3.18 Aviation jet fuel consumptions for domestic and international flights (Gg)

	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
					Gg						
Domestic LTO	111	120	208	233	227	168	169	179	180	89	123
International LTO	130	175	258	269	296	328	355	382	399	130	162
Domestic cruise	357	384	654	666	704	526	544	563	580	291	421
International cruise	1,246	1,688	2,297	2,456	2,534	2,745	3,230	3,461	3,584	1,087	1,432

Source: ISPRA elaborations

Emissions from military aircrafts are also estimated and reported under category 1.A.5.b Other. The methodology to estimate military aviation emissions is simpler than the one described for civil aviation since LTO data are not available in this case. As for activity data, total consumption for military aviation is

published in the petrochemical bulletin (MASE, several years [b]) by fuel. Emission factors are those provided in the EMEP/CORINAIR guidebook (EMEP/CORINAIR, 2007). CO₂ and SO₂ emission factors depend on fuel properties; as regards CO₂, according to the adoption of the 2006 IPCC Guidelines, emission factors have been calculated assuming that 100% of the fuel carbon is oxidized to CO₂. Therefore, emissions are calculated by multiplying military fuel consumption data for the EMEP/CORINAIR default emission factors shown in Table 3.17.

3.5.1.3 Uncertainty and time-series consistency

The combined uncertainty in CO₂ emissions from aviation is estimated to be about 3% in annual emissions; a higher uncertainty is calculated for CH₄ and N₂O emissions on account of the uncertainty levels attributed to the related emission factors. Time series of domestic emissions from the aviation sector is reported in Table 3.19. An upward trend in emission levels is observed from 1990 to 2019 which is explained by the increasing number of LTO cycles. Nevertheless, the propagation of more modern aircrafts in the fleet slows down the trend in the most recent years. In year 2020 is observed the lowest emissions level due the pandemic, while in year 2021 there is upward trend, due to an increasing number of flights.

Table 3.19 GHG emissions from domestic aviation

		1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
CO ₂	Gg	1,493.1	1,588.5	2,718.2	2,839.4	2,958.5	2,166.8	2,226.5	2,321.1	2,378.8	1,194.8	1,703.4
CH ₄	Mg	26. 9	27.7	47.9	52.8	52.7	36.5	36.7	39.0	39.4	19.8	27.1
N ₂ O	Mg	41.8	44.4	76.0	79.4	82.8	60.6	62.3	64.9	66.5	33.4	47.7

Source: ISPRA elaborations

3.5.1.4 Source-specific QA/QC and verification

Data used for estimating emissions from the aviation sector derive from different sources: local airport authorities, national airlines operators, EUROCONTROL and official statistics by different Ministries and national authorities. Different QA/QC and verification activities are carried out for this category.

As regards past years, the results of the national studies and methodologies, applied at national and airport level, were shared with national experts in the framework of an *ad hoc* working group on air emissions instituted by the National Aviation Authority (ENAC). The group, chaired by ISPRA, included participants from ENAC, Ministry of Environment, Land and Sea, Ministry of Transport, national airlines and local airport authorities. The results reflected differences between airports, aircrafts used and times in mode spent for each operation. Currently, verification and comparison activities regard activity data and emission factors. In particular, the number of flights has been compared considering different sources: ENAC, ASSAEROPORTI, ISTAT, EUROCONTROL and verification activities have been performed on the basis of the updated EUROCONTROL data on fuel consumption and emission factors resulting in an update and improving of the national inventory. Furthermore, there is an ongoing collaboration and data exchange with regional environmental agencies on this issue.

3.5.1.5 Source-specific recalculations

No recalculations occurred respect to last submission.

3.5.1.6 Source-specific planned improvements

Improvements for next submissions are planned based on the outcome of the ongoing quality assurance and quality control activities, in particular regarding the results of investigation about data and information deriving from different sources, in particular further assessment of EUROCONTROL data, and comparison with ISTAT information.

3.5.2 Road Transport

3.5.2.1 Source category description

This section addresses the estimation of emissions related to category 1.A.3.b Road transportation. In 2021, total GHG emissions from this category were about 92.9% of the total national emissions from transport, 28.8% of the energy sector and about 23.0% of the GHG national total.

From 1990 to 2021, GHG emissions from the sector increased by 2.1%. This trend is explained by multiple factors: on one side a strong increase starting from 1990 until 2007 (27.7%), due to the increase of vehicle fleet, total mileage and consequently fuel consumptions and on the other side, in the last years, from 2007 onwards, a decrease in fuel consumption and emissions basically due to the economic crisis (emissions from 2007 to 2019 decrease of about -18.7%); then from 2019 to 2020, there has been a sharp reduction in emissions, amounting to approximately -19.4%, as a result of the pandemic crisis; finally, during last year, the post pandemic recovery in mobility and consumption has led to an increase in GHG emissions of about 22.0%.

CO₂ emissions from road transport are key category, both in 1990 and in 2021, with approach 1 and approach 2, with and without LULUCF, at level and trend assessment.

CH₄ emissions are key category: in 1990 in level with approach 2 with and without LULUCF; in trend with approach 2 with and without LULUCF.

Emissions from road transport are calculated either from a combination of total fuel consumption data and fuel properties or from a combination of drive related emission factors and road traffic data.

Emissions from biomass fuel consumption are included and reported: as regards biodiesel, under diesel fuel category, as regards bioethanol under gasoline fuel category and as regards biogas under natural gas fuel category. Biomass fuel refers prevalently to the use of biodiesel which is mixed with diesel fuel, to the use of bioethanol mixed with gasoline fuel and to the use of biogas mixed with natural gas.

CO₂ emissions are calculated based on the amount of carbon in the fuel. In the model used to calculate emissions, the fuel consumption input, which is balanced with the fuel consumption estimated by the model, includes both fossil and bio fuels; then CO₂ emissions related to biomass are subtracted to the total with the aim to be reported under biomass. CH₄ and N₂O emissions depend on the technology of vehicles and have been calculated on the basis of more detailed information regarding the type and technology of vehicles and the associated fuel consumption. Methane emission trend is due to the combined effect of technological improvements that limit VOCs from tail pipe and the expansion of the fleet. It has to be underlined that in Italy there is a remarkable fleet of motorbikes and mopeds (about 10 million vehicles in 2021) that use gasoline and it increased of about 52% since 1990 (this fleet not completely complies with strict VOC emissions controls).

3.5.2.2 Methodological issues

According to the IPCC Guidelines and Good Practice Guidance (IPCC, 1997; IPCC, 2000; IPCC, 2006) and the EMEP/EEA air pollutant emission inventory guidebook 2019 (EMEP/EEA, 2019), a national methodology has been developed and applied to estimate emissions; COPERT methodology is used and country specificities are taken into account according to Tier 3 of IPCC Guidelines, such as the physic-chemical characterization of fossil fuels used in Italy and the peculiar structure of the circulating fleet.

The model COPERT 5 (updated version 5.6.1, September 2022) has been used and applied for the whole time series in 2023 submission. COPERT 5 introduced over the years upgrades both from software and

methodological point of view (https://www.emisia.com/utilities/copert/versions/). Several new methodological features had been introduced respect to the previous model COPERT 4.

As regards fuel, updates concerned: fuel energy instead of fuel mass calculations; distinction between primary and end (blends) fuels, automated energy balance. Regarding vehicle types, updated vehicle category naming, new vehicle types and emission control technology level, have been introduced. As regards emission factors, one function type and the possibility to distinguish between peak/off-peak urban, have been implemented.

Main methodological innovations introduced in version 5.6.1 respect to version 5.5.1, used in last submission, relate: the revision of degradation methodology; the revision of non-exhaust emission factors; updated emission factors of CO, NOx, VOC and SPN23 for Euro 6 LPG passenger cars; updated cold parameters of CO, NOx, VOC for Euro 6 PCs and LCVs; the introduction of cold emissions of CO, NOx and VOC for Euro V and VI diesel HDVs and buses; the new vehicle category "Battery electric passenger cars" and emission factors have been added.

As regards the software, revisions relate the trip length and duration per vehicle category, labels of forms and headers have been also improved.

Furthermore various bugs have been corrected regarding: PM and SPN23 hot emission factors of HDVs and buses; PM hot emission factors of PHEV petrol passenger cars; the calculation for cold PM and SPN23 emissions of Euro 6 PCs and LCVs; the hot emission factors of for LCVs N1-I; the ratios of TSP of brake and tyre non-exhaust heavy metal emissions; the N₂O emissions of petrol hybrid and petrol PHEV Euro 5 and 6 PCs; the cold EC emissions for small petrol hybrid PCs; other minor corrections.

Italian road vehicles electricity consumption data, introduced recently in COPERT in relation to the evolution of the fleet, derive from Eurostat database (<u>https://ec.europa.eu/eurostat/data/database</u>).

As regards CO₂ emissions from catalytic converters using urea (reported under category 2.D.3), Italian road transport emissions estimation about CO₂ from urea-based catalysts is implemented in the model used. For diesel passenger cars Euro 6 and light duty trucks Euro 6, the consumption of urea is assumed to be equal to 2% of fuel consumption; for diesel heavy duty trucks and buses, the consumption of urea is assumed to be equal to 6% of fuel consumption at Euro 4 and Euro 5 level and equal to 3.5% at Euro 6 level. Regarding the purity (the mass fraction of urea in the urea-based additive), the default value of thirty-two and half percent has been used (IPCC, 2006).

Methodologies are described in the following, distinguishing emissions calculated from fuel consumption and traffic data.

Fuel-based emissions

Emissions of carbon dioxide and sulphur dioxide from road transport are calculated from the consumption of gasoline, diesel, liquefied petroleum gas (LPG) and natural gas and the carbon or sulphur content of the fuels consumed. Consumption data have been updated according to data officially communicated to the Joint Questionnaire OECD/IEA/EUROSTAT.

Consumption data for the fuel consumed by road transport in Italy are taken from the BEN (Ministry of Environment, Ministry of Industry, several years [a]), in physical units (considering the use in road transportation, in machinery as regards gasoline, in commercial and public service, and subtracting the quantities for military use in diesel oil and off-road uses in petrol).

Monitoring of the carbon content of the fuels used in Italy is an ongoing activity at ISPRA (Italian Institute for Environmental Protection and Research). The purpose is to regularly analyse the chemical composition of the used fuels or relevant commercial statistics to estimate the carbon content/emission factor (EF) of the fuels. With reference to the whole inventory, for each primary fuel, a specific procedure has been established.

As regards road transport, Italy country-specific CO₂ emission factors values for gasoline, diesel fuel and LPG, derive from ad hoc studies about the properties of transportation fuels sold in Italy and whose results are representative and applicable with reference to four different time phases: 1990 – 1999; 2000 – 2012; 2013 – 2019; since 2020 (Innovhub – Fuel Experimental Station surveys, several years).

As regards natural gas, the national market is characterized by the commercialisation of gases with different chemical composition in variable quantities from one year to the other. The methodology used to estimate the average EF for natural gas per year is based on the available consumption data, referring to the lower heat value (each year the quantities of natural gas imported or produced in Italy are published on the web at https://dgsaie.mise.gov.it/bilancio-gas-naturale, Ministry of Environment, Ministry of Industry, several years).

Emissions of CO₂, expressed as kg carbon per ton of fuel, are based on the H/C and O/C ratios of the fuel. The increase in fuel consumption due to air conditioning use implies that extra CO₂ emissions in g/km are calculated as a function of temperature and relative humidity; nevertheless because of CO₂ emissions depend on total statistical fuel consumption, there is not impact on the CO₂ officially reported but instead on other pollutants.

Emissions of SO₂ are based on the sulphur content of the fuel, on the assumption that all the sulphur in the fuel is transformed completely into SO₂. As regards heavy metals (exhaust emissions of lead have been dropped because of the introduction of unleaded gasoline), apparent fuel metal contents (COPERT default) are used in the emissions calculation; for the non-exhaust share, values consider also of lubricant content and engine wear (EMEP/EEA, 2019).

Fuel consumption data derive basically from the National Energy Balance (Ministry of Environment, Ministry of Industry, several years [a]); supplementary information is taken from the Oil Bulletin (Ministry of Environment, Ministry of Industry, several years [b]). As regards biofuels, the consumption has increased in view of the targets to be respected by Italy and set in the framework of the European directive 20-20-20. The trend of biodiesel is explained by the fact that this biofuel has been tested since 1994 to 1996 before entering in production since 1998. The consumption of bioethanol is introduced since 2008, according to data resulting in the BEN. Values of the fuel-based emission factors for CO₂ from consumption of petrol and diesel fuels are shown in Table 3.21. These factors account for the fraction of carbon oxidised for liquid fuels equal to 1, as suggested by the 2006 IPCC guidelines (IPCC, 2006). From the nineties, different directives regulating the fuel quality in Europe have been implemented (Directive 93/12/EC, Directive 98/70/EC, Directive 2003/17/EC and Directive 2009/30/EC), in parallel with the evolution of vehicle fleet technologies; this resulted in remarkable differences in the characteristic of the fuels, including the content of carbon, hydrogen and oxygenates, parameters needed to derive the CO₂ emission factors.

The final report on the physic-chemical characterization of fossil fuels used in Italy, carried out by the Fuel Experimental Station, that is an Italian Institute operating in the framework of the Department of Industry, has been used since 2015 submission, with the aim to improve fuel quality specifications. Fuel information is also updated based on the annual reports published by ISPRA about the fuel quality in Italy.

The COPERT tool "CO₂ Correction" aimed at CO₂ correction based on type approval CO₂ emission factors, has been applied for passenger cars, from Euro 4 onwards. Since 2010 data published by EEA have been used about monitoring CO₂ emissions from new passenger cars (<u>https://www.eea.europa.eu/data-and-maps/data/co2-cars-emission-22</u>). For the years 2006 – 2009, Italian Ministry of Transport data have been used.

A specific survey was also conducted to characterize the national fuel used in 2000-2001.

Regarding 1990-1999, a study has been done to evaluate the use of the default emission factors reported in the IPCC Guidelines 1996 in consideration of the available information on national fuels. Emission factors from the Guidelines have been considered representative for diesel and LPG while for gasoline a country specific emission factor has been calculated considering the IPCC default values and the specific energy content of the national fuels. For further details see the relevant paragraph in Annex 6.

Values for SO₂ vary annually as the sulphur-content of fuels change and are calculated every year for gasoline and gas oil and officially communicated to the European Commission in the framework of European Directives on fuel quality (ISPRA, several years); these figures are also published by the refineries industrial association (UNEM, several years). Directive 2003/17/EC introduced for 2005 new limit for S content in the fuels, both gasoline and diesel, 50% lower than the previous ones.

National emission factors	Mg CO ₂ /TJ	Mg CO ₂ /Mg
Mtbe	73.072	-
Gasoline, 1990-'99, interpolated emission factor	71.034	3.123
Gasoline, test data, 2000-2012 ^{b, c}	71.864	3.143
Gasoline, test data, 2013-2019 ^c	73.338	3.140
Gasoline, test data, since 2020 ^c	73.081	3.152
Gas oil, 1990-'99, IPCC OECD ^a	73.274	3.129
Gas oil, engines, test data, 2000-2012 ^{b,c}	73.892	3.171
Gas oil, engines, test data, 2013-2019 ^c	73.648	3.151
Gas oil, engines, test data, since 2020 ^c	73.510	3.150
LPG, 1990-'99, IPCCª Europe	64.350	3.000
LPG, test data, 2000-2019 ^{b, c}	65.592	3.026
LPG, test data, since 2020 ^c	65.984	3.026
Natural gas (dry) 1990	55.822	-
Natural gas (dry) 2021	58.504	-

Table 3.20 Fuel-Based Emission Factors for Road Transport

a Revised 1996 IPCC Guidelines for National GHG Inventories, Reference Manual, ch1, tables 1-36 to 1-42

b APAT, 2003 [b]

c Emission factor in kg carbon/ton, based on Fuel Experimental Station (Innovhub, several years)

Emissions of CO₂ and SO₂ can be broken down by vehicle type based on estimated fuel consumption factors and traffic data in a manner similar to the traffic-based emissions described below for other pollutants. The current inventory used fuel consumption factors expressed as grams of fuel per kilometer for each vehicle type and average speed calculated from the emission functions and speed-coefficients provided by the model COPERT 5 (EMISIA SA, 2022). Mileage and fuel consumptions calculated from COPERT functions are shown in Table 3.21 for each vehicle, fuel and road type in Italy in 2021.

Table 3.21 Average fuel consumption and mileage for main vehicle category and road type, year 2021

		Fu	el Consum	ption (TJ)			Mileage (kveh_km)					
		Urban	Rural	Highway	TOTAL	Urban	Rural	Highway	TOTAL			
Passenger Cars	Petrol	80,545	117,635	44,044	242,224	23,014,650	63,246,397	22,730,391	108,991,439			
Passenger Cars	Petrol Hybrid	7,152	6,212	3,557	16,921	2,720,739	4,353,182	1,995,208	9,069,129			
Passenger Cars	Petrol PHEV	1,103	902	624	2,629	418,222	669,156	306,696	1,394,075			
Passenger Cars	Diesel	120,488	265,175	135,380	521,043	37,506,962	127,860,517	64,713,614	230,081,093			
Passenger Cars	Diesel Hybrid	769	1,647	1,542	3,958	284,399	1,004,877	606,718	1,895,995			
Passenger Cars	LPG Bifuel	22,540	25,560	16,421	64,521	6,196,213	12,285,680	6,189,545	24,671,438			
Passenger Cars	CNG Bifuel	18,402	13,779	9,401	41,581	4,064,671	5,826,029	3,658,204	13,548,904			
Passenger Cars	Battery Electric	170	338	238	746	316,172	505,876	231,860	1,053,908			

		Fu	el Consum	ption (TJ)			Mileage ((kveh_km)	
		Urban	Rural	Highway	TOTAL	Urban	Rural	Highway	TOTAL
						-	-	-	-
Light Commercial Vehicles	Petrol	1,648	1,525	538	3,711	274,423	603,730	219,538	1,097,690
Light Commercial Vehicles	Diesel	52,327	71,848	33,698	157,874	11,976,084	26,347,384	9,580,867	47,904,334
						-	-	-	-
Heavy Duty Trucks	Petrol	2	5	2	8	237	711	237	1,185
Heavy Duty Trucks	Diesel	29,953	61,455	150,000	241,408	2,296,736	7,335,069	17,065,117	26,696,921
						-	-	-	-
Buses	Diesel	9,413	7,361	19,077	35,851	641,918	768,112	2,361,352	3,771,381
Buses	Diesel Hybrid	266	17	-	283	18,966	2,107	-	21,073
Buses	CNG	4,135	302	-	4,437	213,522	23,725	-	237,247
						-	-	-	-
Mopeds	Petrol	2,156	924	-	3,081	2,970,891	1,273,239	-	4,244,130
Motorcycles	Petrol	22,789	11,009	1,936	35,734	14,573,107	8,500,979	1,214,426	24,288,512

Source: ISPRA elaborations

Notes: Biodiesel included in diesel; bioethanol included in gasoline; biogas included in natural gas.

Biofuels used and fossil fuel fraction in biodiesel

In Italy, biodiesel, biogasoline and biogas are used in road transportation and the respective emissions have been estimated in the Inventory. As regards biodiesel and biogasoline, almost all the commercial gasoline is practically still substantially an E0 (in 2021 the share of biogasoline is 0.4%, respect to the total road gasoline consumption), while the distributed diesel reaches up to 5-7% by volume of biodiesel in diesel fuel (in 2021 the share of biodiesel is 6.1%, respect to the total road diesel consumption). That is because Italian producers/refineries have decided since the beginning of the introduction of the obligations on biofuels to focus on biodiesel rather than on ethanol to comply with the European/Italian obligations to introduce biofuels on the market.

Biogasoline represents to date a minimum percentage out of the total gasoline including biogasoline consumption. According to the Renewable energy Directive (2009/28/EC) the amount of biogasoline reported in the Energy balance is equal to the renewable part of the fuel, calculated as the 37% of the total volume placed on the market.

Biodiesel has been tested since 1994 to 1996 before entering in production since 1998.

Until 2020 submission, biodiesel emissions from the fossil component of the fuel were calculated based on the percentage 5.5% indicated in the IPCC Working Group I "Note on fossil carbon content in biofuels" (prepared by Ioannis Sempos, 10 October 2018), according to which the "the fossil part of the FAME ranges from 5.3 to 5.5%". Since submission 2021, the assessment of the biofuel origin has been carried out and CO₂ emissions from fossil fuel content of biofuels in Italy have been estimated by the implementation of the COPERT tool "fossil fuel fraction in biodiesel". In particular, the estimation is based on the Country specific data regarding the share of FAME in biodiesel (equal to 89.3% in 2021), deriving from data and information reported by Italy under Council Directive (EU) 2015/652 laying down calculation methods and reporting requirements pursuant to Directive 98/70/EC of the European Parliament and of the Council relating to the quality of petrol and diesel fuels.

Moreover, biogas road consumption has been considered in the Inventory, representing about 16% of total road natural gas consumption in 2021. It is reported since 2020 in the IEA - Eurostat – UNECE Energy Questionnaire.

The fuel balance process

An automatic fuel balancing procedure is implemented in COPERT 5 to ensure that the breakdown of fuel consumption by each vehicle type calculated on the basis of the fuel consumption factors once added up matches the BEN figures for total fuel consumption in Italy (adjusted for off-road consumption).

In COPERT 5 the automatic energy balance process has been introduced and it has been applied for this submission. This simulation is started up having the target to equalize calculated and statistical consumptions, separately for fuel, at national level, with the aim to obtain final estimates the most accurate as possible. Once all data and input parameters have been inserted and all options have been set reflecting the peculiar situation of the Country, emissions and consumptions are calculated by the model in the detail of the vehicle category legislation standard; then the aggregated consumption values so calculated are compared with the input statistical national aggregated values (deriving basically from the National Energy Balance, as described above), with the aim to minimize the deviation.

Traffic-based emissions

Emissions of NMVOC, NO_X, CO, CH₄ and N₂O are calculated from emission factors expressed in grams per kilometer and road traffic statistics estimated by ISPRA on the basis of data released from: Ministry of Transport (MIMS, several years), the Automobile Club of Italy (ACI, several years), the National Association of Cycle-Motorcycle Accessories (ANCMA, several years), the National Institute of Statistics (ISTAT), the National Association of concessionaries of motorways and tunnels (AISCAT).

The emission factors are based on experimental measurements of emissions from in-service vehicles of different types driven under test cycles with different average speeds calculated from the emission functions and speed-coefficients provided by COPERT 5 (EMISIA SA, 2022). This source provides emission functions and coefficients relating emission factors (in g/km) to average speed for each vehicle type and Euro emission standard derived by fitting experimental measurements to polynomial functions. These functions were then used to calculate emission factor values for each vehicle type and Euro emission standard at each of the average speeds of the road and area types.

Country specific hot emission factors for Euro 6 Small and Medium LPG passenger cars, deriving from tests on five Euro 6 b/c bifuel LPG passenger cars (national survey carried out by Innovhub in 2018), have been implemented in COPERT 5 v.5.6.1.

N₂O emission factors derive from the application of COPERT 5 v.5.6.1 model (EMISIA SA, 2022). Tier 3 is implemented, according to which N₂O is connected to the aftertreatment devices, such as catalytic converters and diesel particle filters. N₂O emissions are significant for catalyst vehicles, in particular when the catalyst is under partially oxidizing conditions, when the catalyst has not reached its light-off temperature yet or when the catalyst is aged. So N₂O emissions depend on the vehicle age or cumulative mileage. Moreover, aftertreatment ageing depends upon the fuel sulphur level. Hence, different emission factors are explained by the variation in fuel sulphur content and in the driving conditions (EMEP/EEA, 2019). COPERT model version 5.6.1 reports an emission factor equal to 0 for conventional LPG passenger cars, for conventional diesel passenger cars and light duty vehicles and for CNG Buses, while for heavy duty and diesel buses vehicles, as well as for CNG passenger cars, for gasoline passenger cars, light and heavy duty vehicles, mopeds and motorcycles, emission factors are available in the model. Because of those zero values, noticeable variations may appear between IEF referred to consecutive years where the fleet consists just of conventional vehicles and Euro 1 vehicles; such differences are then explained by the different share of Euro 1 vehicles out of the total. As regards newer vehicles, N₂O emissions may derive as a byproduct from SCR systems, this issue needs to be monitored to reveal how much this is could be a problem in real world conditions (EMEP/EEA, 2019).

The road traffic data used are vehicle kilometer estimates for the different vehicle types and different road classifications in the national road network. These data have to be further broken down by composition

of each vehicle fleet in terms of the fraction of vehicles on the road powered by different fuels and in terms of the fraction of vehicles on the road relating to the different emission regulations which applied when the vehicle was first registered. These are related to the age profile of the vehicle fleet.

It is beyond the scope of this paper to illustrate in detail the COPERT 5 methodology: in brief, the emissions from motor vehicles fall into three different types calculated as hot exhaust emissions, cold-start emissions, and evaporative emissions for NMVOC; in addition, not exhaust emissions for PM, BC and heavy metals deriving from road vehicle tyre and brake wear and road abrasion are contemplated.

Hot exhaust emissions are emissions from the vehicle exhaust when the engine has warmed up to its normal operating temperature. Emissions depend on the type of vehicle, type of fuel the engine runs on, the driving profile of the vehicle on a journey and the emission regulations applied when the vehicle was first registered as this defines the type of technology the vehicle is equipped with.

For a particular vehicle, the drive cycle over a journey is the key factor which determines the amount of pollutant emitted.

Key parameters affecting emissions are acceleration, deceleration, steady speed and idling characteristics of the journey, as well as other factors affecting load on the engine such as road gradient and vehicle weight. However, studies have shown that for modelling vehicle emissions over a road network at national scale, it is sufficient to calculate emissions from emission factors in g/km related to the average speed of the vehicle in the drive cycle (EMISIA, 2022). Emission factors for average speeds on the road network are then combined with the national road traffic data. Emissions are calculated from vehicles of the following types:

- Gasoline passenger cars
- Diesel passenger cars
- LPG passenger cars
- CNG passenger cars
- Petrol Hybrid passenger cars
- Petrol PHEV passenger cars
- Diesel Hybrid passenger cars
- Battery electric passenger cars
- Gasoline Light Commercial Vehicles (Gross Vehicle Weight (GVW) <= 3.5 tonnes)
- Diesel Light Commercial Vehicles (Gross Vehicle Weight (GVW) <= 3.5 tonnes)
- Rigid-axle Heavy Duty Trucks (GVW > 3.5 tonnes)
- Articulated Heavy Duty Trucks (GVW > 3.5 tonnes)
- Diesel Buses and coaches
- Diesel Hybrid Buses
- CNG Buses
- Mopeds and motorcycles.

Basic data derive from different sources. Detailed data on the national fleet composition are found in the yearly report from ACI (ACI, several years), used from 1990 to 2006, except for mopeds for which estimates have been elaborated based on National Association of Cycle-Motorcycle Accessories data on mopeds fleet composition and mileages (ANCMA, several years).

Starting from 2013 submission, specific fleet composition data were provided by the Ministry of Transport for all vehicle categories from 2007 onwards. The Ministry of Transport in the national transport yearbook (Ministry of Transport, several years) reports mileages time series. Furthermore, since 2015 Ministry of Transport supplies information relating the distribution of old gasoline cars over the detailed vehicles categories (PRE ECE; ECE 15/00-01; ECE 15/02; ECE 15/03; ECE 15/04; information obtained from the registration year; data used for the updating of the time series since 2007).

Since 2014, Ministry of Transport supplies updated information relating the reallocation of not defined vehicles categories (data used for the updating of the time series since 2007). Ministry of Transport data have been used relating to: the passenger cars ("Petrol Hybrid" passenger cars category are introduced from 2007 onwards, the mini petrol (Gasoline < 0.8 l) passenger cars subsector is introduced since 2012 and diesel small (Diesel < 1.4 l) subsector since 2007 onwards, in addition to the gasoline, diesel, LPG, CNG traditional ones); the diesel and gasoline light commercial vehicles; the breakdown of the heavy duty trucks, buses and coaches fleet according to the different weight classes and fuels (for HDT almost exclusively diesel, a negligible share consists of gasoline HDT vehicles; diesel for coaches; diesel, diesel hybrid and CNG for buses); the motorcycles fleet in the detail of subsector and legislation standard of both 2-stroke and 4-stroke categories.

Fleet values for urban buses have been updated according to the updating of the data on urban public buses, published on CNIT (Ministry of Transport, several years). The National Institute of Statistics carries out annually a survey on heavy goods vehicles, including annual mileages (ISTAT, several years [b]). The National Association of concessionaries of motorways and tunnels produces monthly statistics on highway mileages by light and heavy vehicles (AISCAT, several years). The National General Confederation of Transport and Logistics (CONFETRA, several years) and the national Central Committee of road transporters (Giordano, 2007) supplied useful information and statistics about heavy goods vehicles fleet composition and mileages.

In the following Tables 3.22, 3.23, 3.24 and 3.25 detailed data on the relevant vehicle mileages in the circulating fleet are reported, subdivided according to the main emission regulations.

	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
a. Gasoline cars technological evolution											
PRE ECE, pre-1973	0.04	0.03	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ECE 15/00-01, 1973-1978	0.10	0.04	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ECE 15/02-03, 1978-1984	0.30	0.15	0.03	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.00
ECE 15/04, 1985-1992	0.55	0.55	0.28	0.10	0.04	0.03	0.02	0.02	0.02	0.02	0.02
PC Euro 1 - 91/441/EEC, from 1/1/93	0.00	0.24	0.27	0.17	0.05	0.02	0.01	0.01	0.01	0.01	0.01
PC Euro 2 - 94/12/EEC, from 1/1/97	-	-	0.39	0.32	0.21	0.12	0.09	0.08	0.07	0.06	0.05
PC Euro 3 - 98/69/EC Stage2000, from 1/1/2001	-	-	-	0.31	0.20	0.13	0.11	0.10	0.09	0.08	0.07
PC Euro 4 - 98/69/EC Stage2005, from 1/1/2006	-	-	-	0.09	0.44	0.37	0.33	0.31	0.28	0.27	0.25
PC Euro 5 - EC 715/2007, from 1/1/2011	-	-	-	-	0.04	0.25	0.23	0.21	0.18	0.17	0.17
PC Euro 6 (Since EC 715/2007, from 9/1/2015)											
- Euro 6 a/b/c	-	-	-	-	-	0.06	0.19	0.26	0.25	0.24	0.23
- Euro 6 d-temp (2019 - 2020)	-	-	-	-	-	-	-	-	0.09	0.14	0.14
- Euro 6 d (since 2021)	-	-	-	-	-	-	-	-	-	-	0.05
Total	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
b. Diesel cars technological evolution											
	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
Conventional, pre-1993	1.00	0.92	0.36	0.06	0.01	0.00	0.00	0.00	0.00	0.00	0.00
PC Euro 1 - 91/441/EEC, from 1/1/93	-	0.08	0.10	0.03	0.01	0.00	0.00	0.00	0.00	0.00	0.00
PC Euro 2 - 94/12/EEC, from 1/1/97	-	-	0.54	0.22	0.05	0.02	0.01	0.01	0.01	0.01	0.01
PC Euro 3 - 98/69/EC Stage2000, from 1/1/2001	-	-	-	0.57	0.31	0.15	0.11	0.09	0.08	0.08	0.07
PC Euro 4 - 98/69/EC Stage2005, from 1/1/2006	-	-	-	0.12	0.55	0.41	0.37	0.30	0.28	0.26	0.25
PC Euro 5 - EC 715/2007, from 1/1/2011	-	-	-	-	0.07	0.36	0.30	0.30	0.28	0.27	0.27
PC Euro 6 (Since EC 715/2007, from 9/1/2015)				_	0.00	0.05	0.21	0.29	0.28	0.27	0.27
- Euro 6 a/b/c	-	-	-	-	0.00	0.05	0.21	0.29	0.20	0.27	0.27
- Euro 6 d-temp (2019 - 2020)	-	-	-	-	-	-	-	-	0.06	0.10	0.10
- Euro 6 d (since 2021)	-	-	-	-	-	-	-	-	-	-	0.03
Total	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
c. Lpg cars technological evolution											

Table 3.22 Passenger Cars technological evolution: circulating fleet calculated as stock data multiplied by effective
mileage (%)

	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
Conventional, pre-1993	1.00	0.90	0.71	0.47	0.04	0.01	0.01	0.01	0.01	0.01	0.01
PC Euro 1 - 91/441/EEC, from 1/1/93	-	0.10	0.20	0.26	0.02	0.01	0.01	0.01	0.00	0.00	0.00
PC Euro 2 - 94/12/EEC, from 1/1/97	-	-	0.09	0.19	0.08	0.03	0.02	0.02	0.02	0.01	0.01
PC Euro 3 - 98/69/EC Stage2000, from 1/1/2001	-	-	-	0.06	0.08	0.05	0.04	0.03	0.03	0.02	0.02
PC Euro 4 - 98/69/EC Stage2005, from 1/1/2006	-	-	-	0.01	0.75	0.46	0.38	0.35	0.31	0.29	0.26
PC Euro 5 - EC 715/2007, from 1/1/2011	-	-	-	-	0.03	0.36	0.32	0.30	0.28	0.26	0.25
PC Euro 6 (Since EC 715/2007, from 9/1/2015)					-	0.08	0.09	0.11	0.13	0.13	0.12
- Euro 6 a/b/c	-	-	-	-	-	0.08	0.09	0.11	0.15	0.15	0.12
- Euro 6 d-temp (2017-2019)	-	-	-	-	-	-	0.14	0.18	0.23	0.22	0.21
- Euro 6 d (2020 and later)	-	-	-	-	-	-	-	-	-	0.05	0.10
Total	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
d. CNG cars technological evolution											
	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
PC Conventional - Euro 4	1.00	1.00	1.00	1.00	0.91	0.58	0.51	0.47	0.44	0.42	0.39
PC Euro 5 - EC 715/2007, from 1/1/2011	-	-	-	-	0.09	0.32	0.31	0.30	0.29	0.29	0.28
PC Euro 6 (Since EC 715/2007, from 9/1/2015)						0.10	0.10	0.12	0.1.4	0.1.4	0.10
- Euro 6 a/b/c	-	-	-	-	-	0.10	0.10	0.12	0.14	0.14	0.13
- Euro 6 d-temp (2017-2019)	-	-	-	-	-	-	0.08	0.10	0.13	0.12	0.12
- Euro 6 d (2020 and later)	-	-	-	-	-	-	-	-	-	0.04	0.07
Total	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
e. Hybrid Gasoline cars technological evolution	(from 2	007 on	wards)								
		2007	2008	2009	2010	2015	2017	2018	2019	2020	2021
PC Euro 4 - 98/69/EC Stage2005, from 1/1/2006		1.00	1.00	0.65	0.54	0.11	0.04	0.03	0.02	0.01	0.01
PC Euro 5 - EC 715/2007, from 1/1/2011		-	-	0.35	0.46	0.74	0.28	0.19	0.12	0.07	0.04
PC Euro 6 (Since EC 715/2007, from 9/1/2015)											
PC Euro 6 (Since EC 715/2007, from 9/1/2015) - Euro 6 a/b/c		-	-	-	-	0.15	0.33	0.22	0.16	0.09	0.05
		-	-	-	-			0.22	0.16	0.09	0.05
- Euro 6 a/b/c		-	-	-	-						
- Euro 6 a/b/c - Euro 6 d-temp (2017-2019)		- - 1.00	- - 1.00	- - 1.00	- - 1.00	(0.56	0.71	0.44	0.24
 Euro 6 a/b/c Euro 6 d-temp (2017-2019) Euro 6 d (2020 and later) 		- - 1.00			-	-).35 -	0.56 -	0.71 -	0.44 0.38	0.24 0.66
 Euro 6 a/b/c Euro 6 d-temp (2017-2019) Euro 6 d (2020 and later) 	m 2013		1.00		-	-).35 -	0.56 -	0.71 -	0.44 0.38	0.24 0.66
 Euro 6 a/b/c Euro 6 d-temp (2017-2019) Euro 6 d (2020 and later) Total 	m 2013		1.00		-	-).35 -	0.56 -	0.71 -	0.44 0.38	0.24 0.66
 Euro 6 a/b/c Euro 6 d-temp (2017-2019) Euro 6 d (2020 and later) Total 	m 2013		1.00	1.00	- 1.00	- 1.00).35 - 1.00	0.56 - 1.00	0.71 - 1.00	0.44 0.38 1.00	0.24 0.66 1.00
Euro 6 a/b/c Euro 6 d-temp (2017-2019) Euro 6 d (2020 and later) Total f. Petrol PHEV cars technological evolution (from	m 2013		1.00	1.00	- 1.00	- 1.00).35 - 1.00	0.56 - 1.00	0.71 - 1.00	0.44 0.38 1.00	0.24 0.66 1.00
 Euro 6 a/b/c Euro 6 d-temp (2017-2019) Euro 6 d (2020 and later) Total f. Petrol PHEV cars technological evolution (fro PC Euro 6 (Since EC 715/2007, from 9/1/2015) 	m 2013		1.00	1.00 2013	- 1.00 2014	- 1.00 2015 1.00).35 - 1.00 2017 0.37	0.56 - 1.00 2018	0.71 - 1.00 2019	0.44 0.38 1.00 2020	0.24 0.66 1.00 2021
 Euro 6 a/b/c Euro 6 d-temp (2017-2019) Euro 6 d (2020 and later) Total F. Petrol PHEV cars technological evolution (from PC Euro 6 (Since EC 715/2007, from 9/1/2015) Euro 6 a/b/c Euro 6 d-temp (2017-2019) 	m 2013		1.00	1.00 2013	- 1.00 2014	- 1.00 2015 1.00).35 - 1.00 2017 0.37	0.56 - 1.00 2018 0.21	0.71 - 1.00 2019 0.14	0.44 0.38 1.00 2020 0.08 0.41	0.24 0.66 1.00 2021 0.05 0.24
 Euro 6 a/b/c Euro 6 d-temp (2017-2019) Euro 6 d (2020 and later) Total f. Petrol PHEV cars technological evolution (from PC Euro 6 (Since EC 715/2007, from 9/1/2015) Euro 6 a/b/c Euro 6 d-temp (2017-2019) Euro 6 d (2020 and later) 	m 2013		1.00	1.00 2013 1.00 -	- 1.00 2014 1.00	 1.00 2015 1.00).35 - 1.00 2017 0.37).63 -	0.56 - 1.00 2018 0.21 0.79 -	0.71 - 1.00 2019 0.14 0.86 -	0.44 0.38 1.00 2020 0.08 0.41 0.50	0.24 0.66 1.00 2021 0.05 0.24 0.71
- Euro 6 a/b/c - Euro 6 d-temp (2017-2019) - Euro 6 d (2020 and later) Total - f. Petrol PHEV cars technological evolution (from PC Euro 6 (Since EC 715/2007, from 9/1/2015) - Euro 6 a/b/c - Euro 6 d-temp (2017-2019) - Euro 6 d (2020 and later) Total -		onwarc	1.00 Is)	1.00 2013 1.00	- 1.00 2014	- 1.00 2015 1.00).35 - 1.00 2017 0.37	0.56 - 1.00 2018 0.21	0.71 - 1.00 2019 0.14	0.44 0.38 1.00 2020 0.08 0.41	0.24 0.66 1.00 2021 0.05 0.24
 Euro 6 a/b/c Euro 6 d-temp (2017-2019) Euro 6 d (2020 and later) Total f. Petrol PHEV cars technological evolution (from PC Euro 6 (Since EC 715/2007, from 9/1/2015) Euro 6 a/b/c Euro 6 d-temp (2017-2019) Euro 6 d (2020 and later) 		onwarc	1.00 Is)	1.00 2013 1.00 - 1.00	- 1.00 2014 1.00 - 1.00	- 1.00 2015 1.00 (- 1.00).35 - 1.00 2017 0.37 0.63 - 1.00	0.56 - 1.00 2018 0.21 0.79 - 1.00	0.71 - 1.00 2019 0.14 0.86 - 1.00	0.44 0.38 1.00 2020 0.08 0.41 0.50 1.00	0.24 0.66 1.00 2021 0.05 0.24 0.71 1.00
 Euro 6 a/b/c Euro 6 d-temp (2017-2019) Euro 6 d (2020 and later) Total f. Petrol PHEV cars technological evolution (from PC Euro 6 (Since EC 715/2007, from 9/1/2015) Euro 6 a/b/c Euro 6 d-temp (2017-2019) Euro 6 d (2020 and later) Total g. Hybrid Diesel cars technological evolution (from		onwarc 7 onwa 2007	1.00 is) rds) 2008	1.00 2013 1.00 - 1.00 2009	- 1.00 2014 1.00 - 1.00 2010	- 1.00 2015 1.00 - 1.00 2015).35 - 1.00 2017 0.37).63 - 1.00 2017	0.56 - 1.00 2018 0.21 0.79 - 1.00 2018	0.71 - 1.00 2019 0.14 0.86 -	0.44 0.38 1.00 2020 0.08 0.41 0.50	0.24 0.66 1.00 2021 0.05 0.24 0.71
 Euro 6 a/b/c Euro 6 d-temp (2017-2019) Euro 6 d (2020 and later) Total f. Petrol PHEV cars technological evolution (fro PC Euro 6 (Since EC 715/2007, from 9/1/2015) - Euro 6 a/b/c - Euro 6 d (2020 and later) - Euro 6 a/b/c - Euro 6 d-temp (2017-2019) - Euro 6 d (2020 and later) Total g. Hybrid Diesel cars technological evolution (fro PC Euro 6 (Since EC 715/2007, from 9/1/2015)		onwarc	1.00 Is)	1.00 2013 1.00 - 1.00	- 1.00 2014 1.00 - 1.00	- 1.00 2015 1.00 (- 1.00).35 - 1.00 2017 0.37 0.63 - 1.00	0.56 - 1.00 2018 0.21 0.79 - 1.00	0.71 - 1.00 2019 0.14 0.86 - 1.00	0.44 0.38 1.00 2020 0.08 0.41 0.50 1.00	0.24 0.66 1.00 2021 0.05 0.24 0.71 1.00
 Euro 6 a/b/c Euro 6 d-temp (2017-2019) Euro 6 d (2020 and later) Total F. Petrol PHEV cars technological evolution (fro PC Euro 6 (Since EC 715/2007, from 9/1/2015) - Euro 6 a/b/c - Euro 6 d (2020 and later) - Euro 6 a/b/c - Euro 6 d-temp (2017-2019) - Euro 6 d (2020 and later) Total g. Hybrid Diesel cars technological evolution (fro PC Euro 6 (Since EC 715/2007, from 9/1/2015) - Euro 6 d (Since EC 715/2007, from 9/1/2015)		onwarc 7 onwa 2007 1.00	1.00 Is) rds) 2008 1.00	1.00 2013 1.00 - 1.00 2009 1.00	- 1.00 2014 1.00 - 1.00 2010 1.00	- 1.00 2015 1.00 (- 1.00 2015 1.00).35 - 1.00 2017 0.37 0.63 - 1.00 2017 0.69	0.56 - 1.00 2018 0.21 0.79 - 1.00 2018 0.42	0.71 - 1.00 2019 0.14 0.86 - 1.00 2019 0.11	0.44 0.38 1.00 2020 0.08 0.41 0.50 1.00 2020 0.04	0.24 0.66 1.00 2021 0.05 0.24 0.71 1.00 2021 0.02
 Euro 6 a/b/c Euro 6 d-temp (2017-2019) Euro 6 d (2020 and later) Total f. Petrol PHEV cars technological evolution (fro PC Euro 6 (Since EC 715/2007, from 9/1/2015) - Euro 6 a/b/c - Euro 6 d (2020 and later) - Euro 6 a/b/c - Euro 6 d-temp (2017-2019) - Euro 6 d (2020 and later) Total g. Hybrid Diesel cars technological evolution (fro PC Euro 6 (Since EC 715/2007, from 9/1/2015)		onwarc 7 onwa 2007	1.00 is) rds) 2008	1.00 2013 1.00 - 1.00 2009	- 1.00 2014 1.00 - 1.00 2010	- 1.00 2015 1.00 - 1.00 2015).35 - 1.00 2017 0.37).63 - 1.00 2017	0.56 - 1.00 2018 0.21 0.79 - 1.00 2018	0.71 - 1.00 2019 0.14 0.86 - 1.00 2019	0.44 0.38 1.00 2020 0.08 0.41 0.50 1.00 2020	0.24 0.66 1.00 2021 0.05 0.24 0.71 1.00 2021

Source: ISPRA elaborations on ACI and Ministry of Transport data

Table 3.23 Light Duty Vehicles technological evolution: circulating fleet calculated as stock data multiplied by effective mileage (%)

	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021	
a. Gasoline Light Commercial Vehicles technological evolution												
Conventional, pre 10/1/94	1.00	0.93	0.63	0.35	0.08	0.06	0.06	0.05	0.03	0.03	0.03	
LCV Euro 1 - 93/59/EEC, from 10/1/94	-	0.07	0.22	0.17	0.10	0.04	0.04	0.03	0.02	0.02	0.02	
LCV Euro 2 - 96/69/EEC, from 10/1/98	-	-	0.15	0.15	0.30	0.15	0.14	0.12	0.06	0.05	0.05	
LCV Euro 3 - 98/69/EC Stage2000, from 1/1/2002	-	-	-	0.31	0.26	0.19	0.18	0.15	0.11	0.10	0.09	

	1000	1005	2000	2005	2010	2015	2017	2010	2010	2020	2021
	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	
LCV Euro 4 - 98/69/EC Stage2005, from 1/1/2007	-	-	-	0.01	0.25	0.32	0.32	0.28	0.24	0.23	0.19
LCV Euro 5 - 2008 Standards 715/2007/EC, from											
1/1/2012	-	-	-	-	0.00	0.22	0.17	0.19	0.17	0.16	0.14
LCV Euro 6 (Since 2007/715/EC, from 9/1/2016)											
- Euro 6 a/b/c	-	-	-	-	-	0.02	0.09	0.06	0.11	0.10	0.09
- Euro 6 d-temp (2018 - 2020)	-	-	-	-	-	-	-	0.11	0.25	0.30	0.30
- Euro 6 d (since 2021)	-	-	-	-	-	-	-	-	-	-	0.09
Total	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
b. Diesel Light Commercial Vehicles technologic	al evolu	ition									
	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
Conventional, pre 10/1/94	1.00	0.92	0.55	0.23	0.07	0.02	0.02	0.01	0.01	0.01	0.01
LCV Euro 1 - 93/59/EEC, from 10/1/94	-	0.08	0.21	0.11	0.05	0.02	0.01	0.01	0.01	0.01	0.01
LCV Euro 2 - 96/69/EEC, from 10/1/98	-	-	0.23	0.20	0.18	0.07	0.04	0.03	0.02	0.01	0.02
LCV Euro 3 - 98/69/EC Stage2000, from 1/1/2002	-	-	-	0.45	0.34	0.21	0.12	0.09	0.07	0.06	0.05
LCV Euro 4 - 98/69/EC Stage2005, from 1/1/2007	-	-	-	0.01	0.34	0.33	0.27	0.23	0.18	0.18	0.16
LCV Euro 5 - 2008 Standards 715/2007/EC, from											
1/1/2012	-	-	-	-	0.01	0.35	0.35	0.34	0.33	0.29	0.27
LCV Euro 6 (Since 2007/715/EC, from 9/1/2016)											
- Euro 6 a/b/c	-	-	-	-	0.00	0.01	0.19	0.12	0.17	0.15	0.14
- Euro 6 d-temp (2018 - 2020)	-	-	-	-	-	-	-	0.16	0.22	0.30	0.26
- Euro 6 d (since 2021)	-	-	-	-	-	-	-	-	-	-	0.09
Total	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

Source: ISPRA elaborations on ACI and Ministry of Transport data

Table 3.24 Heavy Duty Trucks and Buses technological evolution: circulating fleet calculated as stock data multiplied by effective mileage (%)

1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
1.00	0.90	0.67	0.39	0.20	0.02	0.02	0.02	0.01	0.01	0.01
-	0.10	0.10	0.06	0.04	0.01	0.01	0.01	0.01	0.01	0.00
-	-	0.22	0.27	0.15	0.08	0.06	0.05	0.05	0.04	0.04
-	-	-	0.27	0.36	0.34	0.28	0.25	0.22	0.20	0.18
-	-	-	-	0.07	0.10	0.08	0.08	0.07	0.07	0.06
-	-	-	-	0.18	0.38	0.36	0.34	0.33	0.32	0.30
-	-	-	-	-	0.07	0.19	0.25	0.25	0.23	0.22
-	-	-	-	-	-	-	-	0.06	0.12	0.18
1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
1.00	0.93	0.65	0.34	0.13	0.01	0.01	0.01	0.01	0.00	0.00
-	0.07	0.07	0.08	0.04	0.01	0.01	0.00	0.01	0.01	0.00
-	-	0.28	0.32	0.27	0.14	0.11	0.08	0.08	0.07	0.06
-	-	-	0.26	0.34	0.38	0.32	0.28	0.25	0.26	0.21
-	-	-	-	0.12	0.13	0.11	0.11	0.11	0.11	0.10
	_			0.11	0.28	0.29	0.27	0.27	0.25	0.26
	1.00 - - - - - - 1.00 1990 1.00 - - -	1.00 0.90 - 0.10 - - - - - - - - - - - - - - - - - - - - 1.00 1.00 1.00 0.93 1.00 0.93 - 0.07 - - - - - - - - - - - 0.07 - - - -	1.00 0.90 0.67 - 0.10 0.10 - - 0.22 - - 0.22 - - - - - - - - - - - - - - - - - - - - - 1.00 1.00 1.00 1.00 0.93 0.65 - 0.07 0.07 - - 0.28 - - -	1.00 0.90 0.67 0.39 - 0.10 0.06 - 0.22 0.27 - - 0.22 - - 0.27 - - 0.27 - - 0.27 - - 0.27 - - 0.27 - - 0.27 - - - - - 0.27 - - - - - 0.27 - - - - - - - - - - - - - - - - 1.00 1.00 1.00 1.00 1.00 0.93 0.65 0.34 - 0.28 0.32 - - 0.28 0.32	1.00 0.90 0.67 0.39 0.20 - 0.10 0.06 0.04 - 0.2 0.27 0.15 - - 0.22 0.27 0.36 - - 0.22 0.27 0.36 - - 0.2 0.27 0.36 - - - 0.27 0.36 - - - 0.27 0.36 - - - 0.07 0.36 - - - 0.07 0.36 - - - - 0.07 - - - - - - - - - - 1.00 1.00 1.00 1.00 1.00 1.00 0.93 0.65 0.34 0.13 - - 0.28 0.32 0.27 - - - 0.26 0.34 - - - 0.26 0.34	1.00 0.90 0.67 0.39 0.20 0.02 - 0.10 0.06 0.04 0.01 - 0.22 0.27 0.15 0.08 - - 0.22 0.27 0.36 0.34 - - 0.27 0.36 0.34 - - 0.27 0.36 0.34 - - 0.27 0.36 0.34 - - 0.27 0.36 0.34 - - 0.27 0.36 0.34 - - 0.27 0.36 0.34 - - - 0.07 0.10 - - - 0.07 0.18 0.38 - - - - - - 1.00 1.00 1.00 1.00 1.00 1.00 - - - - - - - 1.00 0.93 0.65 0.34 0.13 0.01 - - 0.26 0.	1.000.900.670.390.200.020.02-0.100.100.060.040.010.010.220.270.150.080.060.220.270.360.340.280.270.360.340.280.070.100.080.070.100.080.070.100.080.070.180.380.070.190.070.191.001.001.001.001.001.001.001.001.001.001.001.001.000.930.650.340.130.01-0.070.070.080.040.010.280.320.270.140.110.260.340.380.320.260.340.380.32	1.00 0.90 0.67 0.39 0.20 0.02 0.02 0.02 - 0.10 0.10 0.06 0.04 0.01 0.01 0.01 - 0.10 0.10 0.06 0.04 0.01 0.01 0.01 - 0.22 0.27 0.15 0.08 0.06 0.05 - - 0.22 0.27 0.36 0.34 0.28 0.25 - - 0.27 0.36 0.34 0.28 0.25 - - - 0.07 0.10 0.08 0.08 - - - 0.07 0.19 0.25 0.34 0.38 0.34 0.34 - - - - 0.07 0.19 0.25 -<	1.00 0.90 0.67 0.39 0.20 0.02 0.02 0.02 0.01 - 0.10 0.10 0.06 0.04 0.01 0.01 0.01 - 0.10 0.12 0.27 0.15 0.08 0.06 0.05 0.05 - - 0.22 0.27 0.36 0.34 0.28 0.25 0.22 - - 0.27 0.36 0.34 0.28 0.25 0.22 - - - 0.27 0.36 0.34 0.28 0.25 0.22 - - - 0.07 0.10 0.08 0.08 0.07 - - - 0.07 0.18 0.38 0.36 0.34 0.33 - - - - 0.07 0.18 0.38 0.36 0.25 - - - - - 0.07 0.01 0.01 0.01 0.01	1.00 0.90 0.67 0.39 0.20 0.02 0.02 0.01 0.01 0.01 - 0.10 0.10 0.06 0.04 0.01 0.01 0.01 0.01 0.01 - 0.10 0.22 0.27 0.15 0.08 0.06 0.05 0.05 0.04 - - 0.22 0.27 0.15 0.08 0.06 0.05 0.05 0.04 - - 0.22 0.27 0.36 0.34 0.28 0.25 0.22 0.20 - - 0.27 0.36 0.34 0.28 0.25 0.22 0.20 - - - 0.07 0.10 0.08 0.34 0.33 0.32 - - - - 0.18 0.38 0.36 0.34 0.33 0.32 - - - - - - - 0.25 0.25 0.25

	1000	1005	2000	2005	2010	2015	2017	2010	2010	2020	2021
	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
Buses Euro VI (Since 2009/595/EC, from 12/31/2013)											
- Euro VI A/B/C		_			-	0.05	0.16	0.24	0.22	0.20	0.21
- Euro VI D/E	_		-	-		-	0.10	- 0.24	0.22	0.20	0.21
Total	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Total	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
c. CNG Buses technological evolution											
	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
Urban CNG Buses Conventional, pre 10/1/93;											
Urban CNG Buses Euro I - 91/542/EEC Stage											
l, from 10/1/93	1.00	1.00	0.11	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Urban CNG Buses Euro II - 91/542/EEC Stage											
II, from 10/1/96	-	-	0.89	0.20	0.10	0.05	0.04	0.03	0.03	0.02	0.01
Urban CNG Buses Euro III - 2000 Standards,											
99/96/EC, from 10/1/2001; Urban CNG Buses											
Euro IV - 2005 Standards, 99/96/EC, from											
10/1/2006	-	-	-	0.79	0.09	0.07	0.07	0.06	0.06	0.05	0.04
Euro V - 2008 Standards, 99/96/EC, from											
10/1/2009; EEV (Enhanced environmentally											
friendly vehicle; ref. 2001/27/EC and											
1999/96/EC line C, optional limit emission values); Urban CNG Buses Euro VI – EC											
595/2009, from 12/31/2013	_	-	_	-	0.81	0.88	0.89	0.90	0.91	0.93	0.94
Total	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
d. Diesel Hybrid Buses technological evolut					1.00	1.00	1.00	1.00	1.00	1.00	1.00
a. Dieser Hybria bases technological evolut		2007	2008	<u>2009</u>	2010	2015	2017	2018	2019	2020	2021
Buses Euro VI (Since 2009/595/EC, from		1007	1000	1005		1010		2010	1010		
12/31/2013)											
- Euro VI A/B/C		1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.21	0.16	0.10
- Euro VI D/E		-	-	-	-	-	-	-	0.79	0.84	0.90
Total		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

Source: ISPRA elaborations on ACI and Ministry of Transport data

Table 3.25 Mopeds and motorcycles technological evolution: circulating fleet calculated as stock data multiplied by effective mileage (%)

	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
Mopeds and motorcycles -											
Conventional	1.00	1.00	0.86	0.43	0.18	0.11	0.11	0.11	0.11	0.10	0.09
Mopeds and motorcycles - Euro 1	-	-	0.14	0.30	0.20	0.14	0.13	0.11	0.11	0.10	0.09
Mopeds and motorcycles - Euro 2	-	-	-	0.22	0.35	0.34	0.30	0.30	0.23	0.22	0.20
Mopeds and motorcycles - Euro 3	-	-	-	0.04	0.27	0.42	0.41	0.38	0.41	0.40	0.38
Mopeds and motorcycles - Euro 4	-	-	-	-	-	-	0.05	0.10	0.14	0.17	0.18
Mopeds and motorcycles - Euro 5	-	-	-	-	-	-	0.00	0.00	0.00	0.01	0.05
Total	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

Source: ISPRA elaborations on ACI, ANCMA and Ministry of Transport data

Average emission factors are calculated for average speeds by three driving modes: urban, rural and motorway, combined with the vehicle kilometres travelled and vehicle categories. ISPRA estimates total annual vehicle kilometres for the road network in Italy by vehicle type, see Table 3.26, based on data from various sources:

- Ministry of Transport (several years) for rural roads and on other motorways; the latter estimates are based on traffic counts from the rotating census and core census surveys of ANAS;
- highway industrial association for fee-motorway (AISCAT, several years);
- local authorities for built-up areas (urban).

Table 3.26 Evolution of fleet consistency and mileage

	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
All passenger vehicles (including moto), total mileage (10 ⁹ veh-km/y)	350	412	455	453	450	444	447	442	445	344	423
Car fleet (10 ⁶)	27	30	32	34	36	37	38	39	40	40	40
Moto, total mileage (10 ⁹ veh-km/y)	30	41	42	42	36	33	28	27	28	26	29
Moto fleet (10 ⁶)	7	7	9	9	9	10	10	10	10	10	10
Goods transport, total mileage (10 ⁹ veh- km/y)	69	76	83	104	83	62	51	65	66	64	76
Truck fleet (10 ⁶), including LDV	2	3	3	4	5	5	5	5	5	5	5

Source: ISPRA elaborations

Notes: The passenger vehicles include passenger cars, buses and moto; the moto fleet includes mopeds and motorcycles; in the goods transport light commercial vehicles and heavy duty trucks are included.

When a vehicle engine is cold, it emits at a higher rate than when it has warmed up to its designed operating temperature. This is particularly true for gasoline engines and the effect is even more severe for cars fitted with three-way catalysts, as the catalyst does not function properly until the catalyst is also warmed up. Emission factors have been derived for cars and LCVs from tests performed with the engine starting cold and warmed up. The difference between the two measurements can be regarded as an additional cold-start penalty paid on each trip a vehicle is started with the engine (and catalyst) cold.

Evaporative emissions of gasoline fuel vapour from the tank and fuel delivery system in vehicles constitute a significant fraction of total NMVOC and methane emissions from road transport. Nevertheless, the contribution of evaporative emissions to total NMVOC emissions decreased significantly since the introduction of carbon canisters. Breathing losses through the tank vent and fuel permeations and leakages are considered the most important sources of evaporative emissions (depending on daily temperature variations), running losses (during the vehicles use) and hot soak emissions (following the vehicles use). The process of fuelling of vehicles is not considered here. The procedure for estimating evaporative emissions of NMVOCs takes account of gasoline volatility, the absolute ambient temperature and temperature changes, the characteristics of vehicles design; the driving pattern is also significant for hot soak emissions and running losses (EMEP/EEA, 2019).

3.5.2.3 Uncertainty and time-series consistency

The combined uncertainty in CO₂ emissions from road transport is estimated to be about 4% in annual emissions; a higher uncertainty is calculated for CH₄ and N₂O emissions because of the uncertainty levels attributed to the related emission factors. A Montecarlo analysis was carried out by EMISIA⁸ on behalf of the Joint Research Centre (Kouridis et al., 2010) in the framework of the study "Uncertainty estimates and guidance for road transport emission calculations" for 2005 emissions; the study shows an uncertainty assessment, at Italian level, for road transport emissions based on 2005 input parameters of the COPERT 4 model (v. 7.0).

The following Table 3.27 summarizes the time series of GHG emissions in CO₂ equivalent from road transport, highlighting the evolution of this source, characterized by an upward trend in CO₂ emission levels from 1990 to 2007, which is explained by the increasing of the fleet, total mileages, and fuel consumptions and by a decreasing trend from 2007 onwards, due, on one side, to the economic crisis, and on another side, to the propagation of the number of vehicles with low fuel consumption per kilometre. In subsequent years, with respect to 2007, a reduction in total mileages, fuel consumptions (gasoline and diesel) and consequently CO₂ emissions has been noted. Since 2017 emissions increase until 2019, then from 2019 to 2020 there has been a sharp reduction in emissions, amounting to

⁸ EMISIA: https://www.emisia.com/

approximately -19.4%, as a result of the pandemic crisis. Finally, during last year 2020 - 2021 a recovery of about +22.0% has been registered in GHG emissions.

CH₄ and N₂O emission trends are consequence of the penetration of new technologies according to the main emission regulations. Specifically, CH₄ and more in general VOC emissions have reduced along the time series due to the introduction of VOC abatement devices on vehicles, in agreement with the legislation emission limits, and the rate of penetration of the new vehicles into the national fleet. The time series of N₂O emissions and implied emission factors are prevalently driven by the fleet composition and the penetration rate of the new vehicles/technologies. Moreover, in the COPERT model, N₂O emission factors depend also on the sulphur content of the fuel. Significant drops of emissions and implied emission factors are observed in 1999-2000 and in 2004-2005 which are explained by the different fuel specifications in those years due to the application of the relevant European Directives on fuel quality. The sulphur content (%wt) in gasoline was 0.04 and 0.007 respectively in 1999 and 2000, 0.0055 and 0.0025 respectively in 2004 and 2005, 0.0012 and 0.0005 in 2008 and 2009 and for diesel oil changed from 0.0226 in 2004 to 0.0035 in 2005 and from 0.0028 in 2008 to 0.0008 in 2009.

1	able 3.27 GHG emiss	sions from r	oad trans	sport (kt C	O ₂ equiva	lent)	
	1.7						

		1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
CO ₂	Gg	92,331.7	103,532.1	111,524.5	117,111.9	104,658.7	98,346.6	92,743.9	95,773.4	96,604.1	77,837.3	94,995.5
CH_4	Gg CO₂ eq	971.2	1,092.8	817.4	526.1	312.1	233.1	204.3	201.2	208.8	170.7	196.8
N_2O	Gg CO₂ eq	745.3	1,433.9	1,323.7	911.7	839.1	792.0	769.1	791.9	799.6	654.3	796.1
Total	Gg CO₂ eq	94,048.2	106,058.8	113,665.6	118,549.7	105,809.9	99,371.7	93,717.3	96,766.6	97,612.5	78,662.3	95,988.4
a	ICDD4 11											

Source: ISPRA elaborations

3.5.2.4 Source-specific QA/QC and verification

Data used for estimating emissions from the road transport sector derive from different sources, including official statistics providers and industrial associations. A specific procedure undertaken for improving the inventory in the sector regards the establishment of a national expert panel in road transport which involves, on a voluntary basis, different institutions, local agencies and industrial associations cooperating for improving activity data and emission factors accuracy. In this group, emission estimates are presented annually, and new methodologies are shared and discussed. Reports and data of the meetings can be following address: http://groupware.sinanet.isprambiente.it/expert_panel/library; found at the presentations of 2022 meeting can be found at: http://www.stems.cnr.it/?page_id=2004. In addition, road shared publicly available transport emission factors are and on the website https://fetransp.isprambiente.it/#/.

Besides, time series resulting from the recalculation due to the application of COPERT have been discussed over time with national experts in the framework of an ad hoc working group on air emissions inventories. The group is chaired by ISPRA and includes participants from the local authorities responsible for the preparation of local inventories, sectoral experts, the Ministry of Environment, and air quality model experts. Recalculations are comparable with those resulting from application of the model at local level. Top-down and bottom-up approaches have been compared with the aim to identify the major problems and future possible improvements in the methodology to be addressed (emission estimates at the link: https://emissioni.sina.isprambiente.it/serie-storiche-emissioni/).

3.5.2.5 Source-specific recalculations

The annual update of the emissions time series from road transport implies a periodic review process.

In 2023 submission the historical series has been revised mainly as a result of the upgrade of COPERT model version used (from version 5.5.1 in last submission to 5.6.1 in submission 2023), which resulted in

various methodological updates, the main ones being: the revision of degradation methodology; the revision of non-exhaust emission factors; updated emission factors of CO, NOx, VOC and SPN23 for Euro 6 LPG passenger cars; updated cold parameters of CO, NOx, VOC for Euro 6 PCs and LCVs; the introduction of cold emissions of CO, NOx and VOC for Euro V and VI diesel HDVs and buses; the new vehicle category "Battery electric passenger cars" and emission factors have been added.

As regards the software, revisions relate the trip length and duration per vehicle category, labels of forms and headers have been also improved.

Furthermore various bugs have been corrected regarding: PM and SPN23 hot emission factors of HDVs and buses; PM hot emission factors of PHEV petrol passenger cars; the calculation for cold PM and SPN23 emissions of Euro 6 PCs and LCVs; the hot emission factors of for LCVs N1-I; the ratios of TSP of brake and tyre non-exhaust heavy metal emissions; the N₂O emissions of petrol hybrid and petrol PHEV Euro 5 and 6 PCs; the cold EC emissions for small petrol hybrid PCs; other minor corrections.

Country specific emission factors for Euro 6 LPG passenger cars, deriving from Innovhub survey, until 2022 submission inserted in the model as user values, are now implemented in COPERT model.

Italian vehicles electricity road consumption data derive from Eurostat database (https://ec.europa.eu/eurostat/data/database). COPERT input road electricity consumption data have been calibrated on the basis of the vehicles categories using electricity actually included in COPERT classification. In 2023 submission two new categories have been included: battery electric passenger cars (model update) and Petrol PHEV passenger cars (new detail information supplied by the Ministry of Transport); these new categories inclusion resulted in a different balance of mileage and in a revision of estimated electricity consumptions since 2007, respect to previous submission.

Mileage balance has been also revised in 2020 in consequence of a revision of transport statistics data published by the Ministry of Transport regarding the circulating urban buses fleet and the tons-km as regards freight transport. The estimate of total on road freight transport 2020 data has been revised upwards and the most recent estimate of tons-km published for 2021 results higher than in last ten years.

The analysis is based on the results of the survey, carried out by Innovhub, on the fuels used in road transport in Italy. The results of the studies, carried out over the years, about the properties of transportation fuels sold in Italy, for consistency reasons respect to the procedure applied for the other Inventory sectors, are considered representative with reference to four different time phases: 1990 – 1999; 2000 – 2012; 2013 – 2019; since 2020 (Innovhub – Fuel Experimental Station surveys, several years). The results obtained for biodiesel in 2020 have been used to update the entire fuel specifications historical series (previously, in the absence of country specific parameters, Eurostat Energy Balance parameters were used).

Biogas road consumption has been considered in the Inventory, reported only for the last two reporting year 2020 and 2021 in the IEA - Eurostat – UNECE Energy Questionnaire (about 11% and 16% of total road natural gas consumption in 2020 and 2021 respectively).

Natural gas estimates have been revised since 2020 according to the revision of parameters applied for the estimation of emissions from this fuel for the whole Inventory.

The CO₂ correction procedure has been updated for 2021 considering that from 2021 onwards, the emission targets for manufacturers is based on the new WLTP emission test procedure, while for previous years the CO₂ emission values corresponding to the NEDC cycle were considered.

According to the 2006 IPCC Guidelines, emission estimates from lubricants have been reported under IPPU except lubricants used in two stroke engines in road transport; so, CO₂ emissions from lubricants have been detailed and attributed just to the two stroke engines in road transport ("1.A.3.b.iv, Other liquid fuels"), calculated by COPERT model, while the remaining share has been considered in the IPPU sector.

Differences between 2023 and previous submission, for road transport GHG emissions, account for 0.01% in 1990 and -0.1% in 2020; the recalculations registered for the driver carbon dioxide values are 0% in

1990 and +0.01% in 2020; as regards methane, discrepancies vary from 0% in 1990 to +3.07% in 2020; emissions of nitrous oxide show variations of 0% in 1990 and -0.22% in 2020. In Table 3.28 the recalculation time series is reported for all gases (recalculations calculated on individual gases emissions values, without considering the effect of the application of new GWP values).

Year	CO ₂	CH₄	N ₂ O
1990	0.00%	0.00%	0.00%
1991	0.00%	0.00%	0.00%
1992	0.00%	0.00%	0.00%
1993	0.00%	0.00%	0.00%
1994	0.00%	0.00%	0.00%
1995	0.00%	0.00%	0.00%
1996	0.00%	0.00%	0.00%
1997	0.00%	0.00%	0.00%
1998	0.00%	0.00%	0.00%
1999	0.00%	0.00%	0.00%
2000	0.00%	0.00%	0.00%
2001	0.00%	0.00%	0.00%
2002	0.00%	0.00%	0.00%
2003	0.00%	0.00%	0.00%
2004	0.00%	0.00%	0.00%
2005	0.00%	0.00%	0.00%
2006	0.00%	0.00%	0.00%
2007	0.00%	0.00%	0.00%
2008	0.00%	0.00%	0.00%
2009	0.00%	0.00%	0.00%
2010	0.00%	0.00%	0.00%
2011	0.00%	0.00%	0.00%
2012	0.00%	0.00%	-0.01%
2013	0.00%	0.00%	-0.01%
2014	0.00%	0.00%	-0.01%
2015	0.00%	0.01%	-0.02%
2016	0.00%	0.02%	-0.03%
2017	0.00%	0.01%	-0.04%
2018	0.00%	0.01%	-0.06%
2019	0.00%	0.01%	-0.09%
2020	0.01%	3.07%	-0.22%

 Table 3.28 Emission recalculations in road transport 1990 - 2020 (%)

3.5.2.6 Source-specific planned improvements

Improvements for the next submission will be connected to the possible new availability of data and information regarding activity data, calculation factors and parameters, new developments of the methodology and the update of the software.

3.5.3 Railways

The electricity used by the railways for electric traction is supplied from the public distribution system, so the emissions arising from its generation are reported under category 1.A.1.a Public Electricity.

Emissions from diesel trains are reported under the IPCC category 1.A.3.c Railways. Estimates are based on the gasoil consumption for railways reported in BEN (MASE, several years [a]), and on the methodology Tier1, and emission factors from the EMEP/EEA Emission Inventory Guidebook 2019 (EMEP/EEA, 2019).

As regards the use of lubricants in diesel locomotives in railways, according to the review process and to the 2006 IPCC Guidelines, emission estimates from lubricants have been reported under IPPU instead of under the energy sector, except for lubricants related to the use in two stroke engines in road transport.

Fuel consumption data are collected by the Ministry of Economic Development, responsible of the energy balance, from the companies with diesel railways. The activity is present only in those areas without electrified railways, which are limited in the national territory. The trend reflects the decrease of the use of these railways. Because of low values, emissions from railways do not represent a key category.

Carbon dioxide and sulphur dioxide emissions are calculated on fuel based emission factors using fuel consumption data from BEN. The CO₂ emission factors for diesel fuel derive from ad hoc studies about the properties of transportation fuels sold in Italy, performed by ISPRA since the nineties, and whose results are representative and applicable with reference to three different time phases: 1990 – 1999; 2000 – 2011; 2012 – 2019; since 2020 (Innovhub, several years).

Values for SO₂ vary annually according to the variation of the sulphur-content of fuels produced, imported and commercialized, and it is yearly monitored according to legislative constraints; moreover, it is officially communicated to the European Commission in the framework of European Directives on fuel quality (ISPRA, several years). Emissions of CO, NMVOC, NO_x, N₂O and methane are based on the EMEP/EEA methodology (EMEP/EEA, 2019) considering the implementation of the relevant European Directives to reduce atmospheric pollutants. The emission factors shown in Table 3.29 are aggregate factors so that all factors are reported on the common basis of fuel consumption.

Table 3.29 Emission factors for railway in 2021 (kg/t)

	CO ₂	CH₄	N ₂ O	NO _x kg/t	СО	NMVOC	SO ₂
Diesel trains	3,140	0.18	1.24	52.4	10.7	4.65	0.015

Source: EMEP/EEA,2019; IPCC, 2006

GHG emissions from railways accounted in 2021 for about 0.13% of the total transport sector emissions. No recalculation occurred in this submission. No specific improvements are planned for the next submission.

3.5.4 Navigation

3.5.4.1 Source category description

This source category includes all emissions from fuels delivered to water-borne navigation. Mainly CO₂ emissions derive from this category, whereas CH₄ and N₂O emissions are less important. Emissions from navigation constituted 4.4% of the total GHG in the transport sector in 2020 and about 1.1% of the national total (considering CO₂ only, the share of emissions from navigation out of the total is almost the same). GHG emissions decreased by -17.4% from 1990 to 2021, because of the reduction in fuel consumed in harbour and navigation activities. GHGs emissions from national navigation are 22% lower than in year 2020. CO₂ from waterborne navigation is key category both in 1990 and 2021, in level (Tier 1) with and without LULUCF.

3.5.4.2 Methodological issues

Emissions of the Italian inventory from the navigation sector are carried out according to the IPCC Guidelines and Good Practice Guidance (IPCC, 1997; IPCC, 2000; IPCC 2006) and the EMEP/EEA Guidebook (EMEP/EEA, 2019). A national methodology has been developed following the EMEP/EEA Guidebook

which provides details to estimate emissions from domestic navigation, specifying recreational craft and inland waterways, ocean-going ships by cruise and harbour activities; emissions from international navigation are also estimated and included as memo item but not included in national totals (EMEP/EEA, 2019). Inland, coastal, and deep-sea fishing are estimated and reported under 1.A.4.c. International inland waterways do not occur in Italy.

The methodology developed to estimate emissions is based on the following assumptions and information. Activity data comprise both fuel consumptions and ship movements, which are available in different level of aggregation and derive from different sources as specified here below:

Total deliveries of fuel oil, gas oil and marine diesel oil to marine transport are given in national energy balance (MASE, several years (a)) but the split between domestic and international is not provided;

Naval fuel consumption for inland waterways, ferries connecting mainland to islands and leisure boats, is also reported in the national energy balance as it is the fuel for shipping (MASE, several years (a));

Data on annual arrivals and departures of domestic and international shipping calling at Italian harbours are reported by the National Institute of Statistics in the statistics yearbooks (ISTAT, several years (a)) and Ministry of Transport in the national transport statistics yearbooks (MIT, several years).

As for emission and consumption factors, figures are derived by the EMEP/EEA guidebook (EMEP/EEA, 2019), both for recreational and harbour activities and national cruise, considering national specificities as the structural characteristic of national harbours, including typical times for manoeuvring and time spent in the harbour as well as the distribution of ships in terms of ferries, container ships, cargo. These specificities derive from the results of a national study which, taking into account detailed information on the Italian marine fleet and the origin-destination movement matrix for the year 1997, calculated national values (ANPA, 2001; Trozzi et al., 2002 (b)) on the basis of the default emission and consumption factors reported in the EMEP/CORINAIR guidebook (EMEP/CORINAIR, 2007) and they have not been changed too much in the last years.

National average emissions and consumption factors were therefore estimated for harbour and cruise activities both for domestic and international shipping from 1990 to 1999. In 2009 submission the study was updated for the years 2004, 2005 and 2006 to consider most recent trends in the maritime sector both in terms of modelling between domestic and international consumptions and improvements of operational activities in harbour (TECHNE, 2009). Based on the results, national average emissions and consumption factors were updated from 2000.

Specifically, for the years referred to in the surveys, the current method estimates emissions from the number of ships movements broken down by ship type at each of the principal Italian ports considering the information of whether the ship movement is international or domestic, the average tonnage and the relevant distance travelled.

For those years, in fact, figures on the number of arrivals, destination, and fleet composition have been provided by the local port authorities and by the National Institute of Statistics (ISTAT, 2009), covering about 90% of the official national statistics on ship movements for the relevant years. Consumption and emission factors are those derived from the EMEP/CORINAIR guidebook (EMEP/CORINAIR, 2007) and refer to the Tier 3 ship movement methodology that takes into account origin-destination ship movements matrices as well as technical information on the ships, as engine size, gross tonnage of ships and operational times in harbours. Based on sample information, estimates have been carried out at national level for the relevant years considering the official statistics of the maritime sector. Moreover, a recent study has been conducted in some Italian ports, which allows to update emission factors in ports, where hoteling emission factors have been updated from year 2008 (ISPRA, 2023).

In general, to carry out national estimates of greenhouse gases and other pollutants in the Italian inventory for harbour and domestic cruise activities, consumptions and emissions are calculated for the complete time series using the average consumption and emission factors multiplied by the total number

of movements. On the other hand, for international cruise, consumptions are derived by difference from the total fuel consumption reported in the national energy balance and the estimated values as described above and emissions are therefore calculated.

For maritime transportation only by Directive 1999/32/EC European Union started to examine environmental impact of navigation and in particular the sulphur content of fuels. This directive was amended by Directive 2005/33/EC that designated Baltic sea, English channel and north sea as sulphur emission control areas (SECA) limiting the content of sulphur in the fuel for these areas and introducing a limit of 0.1% of the sulphur content in the fuel used in EU harbours from 2010.

EU legislation combined with national normative resulted in the introduction of a limit of sulphur content in maritime gasoil equal to 0.2% (2% before) from 2002 and 0.1% from 2010 while for fuel oil some limits occur only from 2008 (maximum sulphur content of 1.5% in harbour) and from 2010, 2% in domestic waters and 1% in harbour. For inland waterways, which include the navigation on the Po river and ferryboats in the Venice lagoon, the same legislation is applied.

The composition of the fleet of gasoline-fueled recreational craft distinguished in two strokes and four strokes engine distribution is provided by the industrial category association (UCINA, several years); the trend of the average emission factors considers the switch from two strokes to four strokes engines of the national fleet due to the introduction in the market of new models. In 2000, the composition of the fleet was 90% two stroke engine equipped and 10% four stroke while in the last year four strokes engines are about 53% of the fleet. Gasoline fuel consumption for recreational crafts is not available on the National Energy balance for the last years so it is estimated based on the fleet which has not significantly changed in the last years.

The fuel split between national and international use in maritime transportation is then supplied to the Ministry of the Economical Development to be included in the official international submission of energy statistics to the IEA in the context of the Joint Questionnaire OECD/EUROSTAT/IEA compilation together with other energy data. A discrepancy with the international bunkers reported to the IEA still remains, especially for the nineties, because the time series of the energy statistics to the IEA are not updated.

3.5.4.3 Uncertainty and time-series consistency

The combined uncertainty in CO₂ emissions from maritime is estimated to be about 3% in annual emissions; a higher uncertainty is calculated for CH₄ and N₂O emissions on account of the uncertainty levels attributed to the related emission factors. Estimates of fuel consumption for domestic use, in the national harbours or for travel within two Italian destinations, and bunker fuels used for international travels are reported in Table 3.30. Time series of domestic GHG emissions for waterborne navigation are also shown in the same table. An upward trend in emission levels is observed from 1990 to 2000, explained by the increasing number of ship movements. Nevertheless, the operational improvements in harbour activities and a reduction in ship domestic movements inverted the tendency in the last years.

Table 3.30 Marine fuel consumptions in domestic navigation and international bunkers (Gg) and GHG emissions from domestic navigation (Gg CO₂ eq.)

	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
Gasoline for recreational craft (Gg)	182	210	213	199	169	90	88	88	87	86	84
Diesel oil for inland waterways (Gg)	20	23	20	77	62	54	48	28	24	19	22
Fuels used in domestic cruise navigation (Gg)	778	706	811	740	725	525	533	578	621	667	511
Fuel in harbours (dom+int ships) (Gg)	748	693	818	759	844	733	793	886	981	1,057	807
Fuel in international Bunkers (Gg)	1,348	1,241	1,306	2,095	2,562	1,563	1,862	1,934	1,702	1,321	1,774

Emissions from National Navigation (Gg)

	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
	1990	1995	2000	2005	2010	2015	2017	2010	2019	2020	2021
CO ₂ (Gg)	5,470	5,163	6,103	5,623	5,705	4,448	4,639	5,013	5,435	5,798	4,532
CH4 (Gg CO2 eq.)	39	42	43	38	33	20	20	21	22	22	19
N ₂ O (Gg CO ₂ eq.)	34	31	37	35	36	29	30	33	36	38	30
Total (Gg CO ₂ eq.)	5,543	5,236	6,183	5,696	5,774	4,497	4,689	5,066	5,492	5,858	4,581

Source: ISPRA elaborations

3.5.4.4 Source-specific QA/QC and verification

Basic data to estimate emissions are reconstructed starting from information on ship movements and fleet composition coming from different sources. Data collected in the framework of the national study from the local port authorities, carried out in 2009 (TECHNE, 2009), were compared with the official statistics supplied by ISTAT, which are collected from maritime operators with a yearly survey and communicated at international level to EUROSTAT. Differences and problems were analyzed in details and solved together with ISTAT experts. Different sources of data are usually used and compared during the compilation of the annual inventory. Besides, time series resulting from the recalculation have been presented to the national experts in the framework of an ad hoc working group on air emissions inventories. The group is chaired by ISPRA and includes participants from the local authorities responsible for the preparation of local inventories, sectoral experts, the Ministry of Environment, Land and Sea, and air quality model experts. Top-down and bottom-up approaches have been compared with the aim to identify the potential problems and future improvements to be addressed. There is also an ongoing collaboration and data exchange with regional environmental agencies on this issue.

3.5.4.5 Source-specific recalculations

Recalculations, respect to the previous submission occurred. For 1.A.3.dii national navigation, emission factors from 2009 have been recalculated on the basis of an application of Tier3 to the main national harbours resulting in a different distribution of residual oil and diesel oil both in harbor and navigation and in a general increase of domestic consumption and emission estimates for all the relevant pollutants. Moreover, activity data for inland waterways have been updated by 1999 to 2018 according to the national energy statistics provided to the international organizations.

3.5.4.6 Source-specific planned improvements

Further improvements will regard a verification of activity data on ship movements and emission estimates with regional environmental agencies, especially with those more affected by maritime pollution. In particular, we plan to build an emission estimation database which calculate every year emissions at harbor level taking in account of the information officially provided by Italy to Eurostat per type of ship, class of tonnage and movement statistics.

3.5.5 Other transportation

3.5.5.1 Source category description

This category includes all emissions from fuels delivered to the transportation by pipelines and storage of natural gas. Mainly CO_2 emissions derive from this category, as well as the other relevant pollutants typical of a combustion process, such as SO_X , NO_X , CO and PM. CH_4 and N_2O emissions are also estimated. This category is not a key category.

3.5.5.2 Methodological issues

Emissions from pipeline compressors are carried out according to the IPCC Guidelines and are estimated on the basis of natural gas fuel consumption used for the compressors and the relevant emission factors.

The amount of fuel consumption is estimated on the basis of data supplied for the whole time series by the national operators of natural gas distribution (SNAM, several years; STOGIT, several years) and refers to the fuel consumption for the gas storage and transportation; this consumption is part of the fuel consumption reported in the national energy balance in the consumption and losses sheet (MASE, several years [a]). Emission factors are those reported in the EMEP/EEA Guidebook for gas turbines (EMEP/CORINAIR, 2007), except for CO₂ for natural gas which is the country specific value used for the whole energy sector reported in Table 3.12. Emissions communicated by the national operators in their environmental reports are also considered to estimate air pollutants.

3.5.5.3 Uncertainty and time-series consistency

The combined uncertainty is estimated to be about 3% in annual emissions; a higher uncertainty is calculated for CH_4 and N_2O emissions on account of the uncertainty levels attributed to the related emission factors. Fluctuations and time series are driven both by the general trend of total natural gas fuel consumed (and transported) and by the annual fluctuation of the storage activities, which are driven by the price fluctuation of the natural gas. Natural gas fuel consumption for pipeline compressors increased from 7,359 TJ in 1990 to 14,549 TJ in 2021 with a peak of 19,098 TJ in 2010. GHG emissions follow the same trend of fuel consumption.

		-	-			-	-				
Pipeline transport	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
Consumption (TJ)	7,359	11,556	15,367	15,940	19,098	9,662	13,141	13,770	11,739	11,646	14,549
Emissions from Pipelines (Gg)											
CO2 (Gg CO2 eq.)	410.78	646.63	864.51	900.21	1,106.63	556.84	762.19	796.56	677.87	674.45	851.19
CH4 (Gg CO2 eq.)	0.52	0.81	1.08	1.12	1.34	0.68	0.92	0.96	0.82	0.82	1.02
N2O (Gg CO2 eq.)	5.85	9.19	12.22	12.67	15.18	7.68	10.45	10.95	9.33	9.26	11.57
Total (Gg CO2 eq.)	417.15	656.62	877.80	914.00	1,123.15	565.20	773.56	808.47	688.03	684.52	863.77

Table 3.31 Pipelines transport consumptions (Tj)) and GHG emissions (Gg CO ₂ eq.)
--	--

Source: ISPRA elaborations

3.5.5.4 Source-specific QA/QC and verification

Basic data to estimate emissions are reconstructed starting from information on fuel consumptions coming from different sources. Fuel consumptions reported by the national operators for this activity are compared with the amount of natural gas internal consumption and losses reported in the energy balance. Starting from the length of pipelines, the average energy consumptions by kilometer are calculated and used for verification of data collected by the operators. Energy consumptions and emissions by kilometer calculated on the basis of data supplied by the main national operator (SNAM, several years) are used to estimate the figures for the other operators when their annual data are not available.

3.5.5.5 Source-specific recalculations

No specific recalculations were performed concerning this source.

3.5.5.6 Source-specific planned improvements

No further improvements are planned.

3.6 Other sectors

3.6.1 Sector overview

In this paragraph sectoral emissions are reported, which originate from energy use in the civil sector included in category 1.A.4. Commercial, institutional, residential, agriculture/forestry/fisheries, and emissions from military mobile activities which are also included in category 1.A.5. All greenhouse gases as well as CO, NOx, NMVOC and SO₂ emissions are estimated.

In 2021, energy use in other sectors accounts for 18.8% of CO₂, 5.8% of CH₄, 12.8% of N₂O of total national emissions. In term of CO₂ equivalent, other sectors share 20.0% of total national greenhouse gas emissions and 25.1% of total GHG emissions of the energy sector.

The trend of greenhouse gas emissions is summarized in Table 3.32. Emissions are reported in Gg for CO₂, and in Mg for CH₄ and N₂O. A general increase in emissions is observed from 1990 to 2000, due to the increase in activity data (numbers and size of building with heating); a sharp increase of CO2 emissions is observed in 2005 due to exceptionally cold weather conditions. CH₄ and N₂O emissions increase in the period is due to the growing use of woody biomass and biogas for heating. CH₄ and N₂O emissions of category 1.A.4.c are driven by the use of biomass in the agriculture sector, both wood and biogas, for heating of greenhouse and aquaculture plants; according to the national energy balance, wood biomass fuel started to be consumed in 2000 while biogas from agriculture residues sharply increased in the last years. Details on the total amount of crop residues generated and the share of the crop residue amounts used for different purposes (for energy referring to permanent crops residues) are reported in Annex 7, Figure A.7.1.

GAS/SUBSOURCE	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
CO ₂ (Gg)											
1.A.4a. Commercial/ Institutional	11,902	14,070	17,230	23,424	28,296	22,766	23,235	24,897	24,471	23,459	24,603
1.A.4b. Residential	55,788	52,756	53,824	60,441	55,267	47,982	47,998	46,395	44,729	44,063	46,678
1.A.4c. Agriculture/ Forestry/ Fisheries	8,352	8,754	8,115	8,459	7,345	6,935	7,031	7,428	7,029	7,065	7,066
1.A.5 Other (Not elsewhere specified)	1,071	1,496	837	1,233	652	459	326	341	453	625	299
CH₄ (Mg)											
1.A.4a. Commercial/ Institutional	604	879	1,993	3,068	3,978	4,473	4,556	4,512	4,559	4,226	4,285
1.A.4b. Residential	43,781	50,032	52,554	55,508	98,593	87,873	92,672	85,859	85,634	82,509	89.776
1.A.4c. Agriculture/ Forestry/ Fisheries	1,264	946	669	592	774	2,383	2,570	2,622	2,710	2,791	2,821
1.A.5 Other (Not elsewhere specified)	173	223	126	160	65	54	39	42	56	79	38
N₂O (Mg)											
1.A.4a. Commercial/ Institutional	311	413	614	911	1,167	1,143	1,148	1,197	1,184	1,147	1,162
1.A.4b. Residential	3,014	3,172	3,303	3,521	5,261	4,659	4,859	4,540	4,501	4,348	4,701
1.A.4c. Agriculture/ Forestry/ Fisheries	2,515	2,757	2,610	2,685	2,373	2,327	2,396	2,535	2,391	2,413	2,386
1.A.5 Other (Not elsewhere specified)	225	215	135	291	131	59	43	32	43	49	25

Table 3.32 Trend in	greenhouse gas e	emissions from	the other sectors,	1990-2021
---------------------	------------------	----------------	--------------------	-----------

Source: ISPRA elaborations

Seven key categories have been identified for this sector for 2021, for level and trend assessment, using both the IPCC Approach 1 and Approach 2:

Other sectors - CO₂ commercial, residential, agriculture gaseous fuels (L, T);

Other sectors - CO₂ commercial, residential, agriculture liquid fuels (L, T);

Other sectors - CO₂ commercial, residential, agriculture other fossil fuels (L1, T);

Other sectors - CH₄ commercial, residential, agriculture biomass (L, T);

Other sectors - N₂O commercial, residential, agriculture biomass (L2, T);

Other sectors - N2O commercial, residential, agriculture liquid fuels (L2);

Other sectors - CO₂ commercial, residential, agriculture solid fuels (T1).

All these categories, except N₂O emissions from liquid fuels and CO₂ emissions from solid fuels, are also key category including the LULUCF estimates in the key category assessment.

3.6.2 Source category description

This category includes four sources: 1.A.4.a. Commercial/ Institutional, 1.A.4.b. Residential, 1.A.4.c. Agriculture/ Forestry/ Fisheries and 1.A.5 Other (Military). The estimation procedure follows that of the basic combustion data sheet. Emissions are estimated from the energy consumption data and the emission factor illustrated in Table 3.12. Emissions from off-road sources are estimated and they are reported under the relevant sectors. The methodology of these estimates is discussed in the next paragraph 3.6.3 *Others*.

Commercial/Institutional

Emissions from this sector arise from the energy used directly in the institutional, service and commercial buildings, mainly for heating. Additionally, this category includes all emissions due to the non-renewable part of wastes used in electricity generation.

In the other fuel subcategory, the amount of fossil waste burnt in incinerators with energy recovery is reported. Emissions from these plants are allocated in the commercial /institutional category because of the final use of heat and electricity production which is mainly used for district heating of commercial buildings or is auto consumed in the plant. In fact, until the early 2000s, electricity and heat produced by incinerators have been prevalently used to satisfy the energy demand from connected activities: heating of buildings, domestic hot water, and electricity for offices. This is still true for industrial and hospital incinerators, meanwhile municipal solid waste incinerators have increased the amount of energy provided to the grid from the early 2000s until now. Although there are not data or a robust estimate of the share of waste used to produce electricity the available literature (ENEA-federAmbiente, 2012), provide that in 2010 the gross electricity production by urban waste incinerators was equal to 3,887 GWh (net 3,190 GWh) and the amount sent to the network was equal to only 121 GWh.

Biomass refers to the consumption of biomass waste, biogas recovered for energy purposes from landfill and sludge treatments and wood and steam wood; from 2002 to 2005 minor amounts of biodiesel fuel consumption are also included. In Table 7.12 in the waste sector chapter the amount of waste and biogas fuel consumptions for 2021 are reported. In 2021, this sector has a share of 6.0% of total GHG national emissions excluding LULUCF.

Residential

Emissions from this sector arise from the energy used directly in residential buildings, mainly for heating. The sector includes emission from off-road household and gardening machinery. Biomass refers to wood and steam wood fuel consumption. In 2021, this sector has a share of 12.1% of total GHG national emissions, excluding LULUCF.

Agriculture/ Forestry/ Fisheries

This subsector includes all emissions due to the direct fossil fuel use in agriculture, mainly to produce mechanical energy, the fuel use in fisheries and for the machinery used in the forestry sector.

Up to 1999, biomass included only biogas recovered for energy purposes from the storage of animal manure and agriculture residuals, while from 2000, as reported in the National Energy Balance, a huge amount of wood has been consumed affecting implied emission factors. In 2021, this sector has a share of 1.9% of total GHG national emissions, excluding LULUCF.

Others

Emissions from military aircraft and naval vessels are reported under 1A.5.b Mobile. The methods of estimation are discussed in paragraphs 3.5.1 and 3.5.4 for aviation and maritime respectively. In 2021, this sector has a share of 0.1% of total GHG national emissions, excluding LULUCF.

3.6.3 Methodological issues

For this sector, energy consumptions are reported in the national energy balance separating commercial and public services, residential and agriculture-fisheries.

Emissions from 1.A.4.b Residential and 1.A.4.c Agriculture/Forestry/Fishing are disaggregated into those arising from stationary combustion and those from off-road vehicles and other machinery. Emissions estimations from off-road sources are discussed later in this paragraph. Emissions from fishing vessels are estimated from fuel consumption data (MASE, several years [a]). Emission factors are shown in Table 3.12.

In the solid fuel subcategory, the following fuels are included: steam coal, coke oven coke and gas work gas. Since eighties there has been a sharp reduction in the use of these fuels due to air quality national legislation (in 1990 they accounted for about 1.1 % of total energy consumption of 1.A.4 category) and a further decrease is observed between 1997 and 1998 in consequence of the banning of coal used in residential heating in urban areas.

CH₄ emission factors used are those reported in the 1996 CORINAIR handbook, vol.1, for coal, equal to 200 kg/TJ (EMEP/CORINAIR, 1996), and in the EMEP/CORINAIR Guidebook for coke oven coke, equal to 15 kg/TJ which is the maximum value of emission factor for solid fuels without specification, and gas work gas, equal to 5 kg/TJ assuming the maximum value for natural gas (EMEP/CORINAIR, 2007). No more solid fuels are used for heating purposes from 2013.

The EMEP/CORINAIR Guidebook, now EMEP/EEA, is updated every two-three years, according to the resources available but only for air pollutants emission factors; for greenhouse gas emission factors a general reference to the IPCC Guidelines is provided. For non-CO₂ GHG emissions, at the detailed level of fuel and technology, EMEP/CORINAIR remains the best source of information.

For liquid fuel, the average emission factors are driven by the mix of fuel consumptions used in heating boilers, prevalently LPG, but also gasoil and fuel oil which was used especially in the past.

For these fuels the respective CH₄ emission factors have been used: LPG 1 kg/TJ, fuel oil 3 kg/TJ and gasoil 7 kg/TJ. Regarding natural gas, the country specific CH₄ emission factor is equal to 2.5 kg/TJ.

All these emission factors have been calculated on the basis of the default and range emission factors published in the Guidebook EMEP/CORINAIR, taking into account country specific circumstances by means of the type of boilers where these fuels are burnt. In the 2006 IPCC Guidelines emission factors for residential/commercial/institutional boilers are equal to those reported for manufacturing industrial boilers (e.g., natural gas default emission factor is equal to 1 for all the sources of combustion) while it is assumed that these emissions should be different according to the technology and size of the boilers.

The EMEP/CORINAIR Guidebook takes in account these differences and for that they have been used as a reference.

In the following box the default emission factors reported in the Guidebook EMEP/CORINAIR are shown and compared with the national ones.

Fuel	EMEP/CORINAIR default EF	Range	IPCC default EF	National EF
LPG	-	1 - 2.5	1	1
Gasoil	0.6	0.1 - 8	3	7
Fuel oil	1.6	0.1 - 10	3	3
Natural gas	1.2	0.3 - 4	1	2.5

Liquid and gaseous fuel CH4 default emission factors(kg/TJ) (EMEP/CORINAIR, 2007)

Average implied emission factors for other fuels, which refer to fossil waste, vary on an annual basis. For CO_2 , the variation occurs from 1990, as a consequence of the mix of wastes used in incinerators, such as urban wastes, industrial, hospital, and oil wastes; for non- CO_2 gases, emission factors reported in EMEP/EEA (EMEP/EEA, 2016) applied at plant level have been considered, but specifically for CH₄ and N₂O this use does not result in changes of the implied emission factors because values are the same for the different kind of wastes, and emission factors are equal to 5.3 kg/TJ and 8.8 kg/TJ, respectively. In 2021 CO_2 , average emission factor was equal to 96.0 kg/GJ.

Regarding biomass fuel consumption in the following box CO₂, CH₄ and N₂O emission factors used in the national inventory for the different type of fuels are reported. CH₄ and N₂O emission factors derive from the EMEP/CORINAIR Guidebook (EMEP/CORINAIR, 2007), and the implied emission factors fluctuate as a function of the mix of fuels (wood, biogas, waste and biodiesel).

Regarding CO₂ from waste, fossil fraction emissions are distinguished by biomass to include them in the national totals. CO₂ emission factors are built based on carbon content in each type of waste: municipal waste, industrial waste, oil, sludge and hospital. Biogas emission factors are calculated starting from the stoichiometric carbon value equal to 750 kg C/t and annual energy efficiencies provided by Terna (Terna, several years) for the respective use in commercial and agriculture sectors. Wood and steam wood average CO₂ emission factor is derived taking in account the typical national wood used and it is applied for the whole timeseries. Implied emission factors result from the mix of biomass fuels used for each category (1A4a, 1A4b, 1A4c).

Fuel	CO ₂	CH4	N ₂ O
Wood	94600	320	14
Biogas landfills and sludge treatment	50442	153	3
Biogas agricolture residuos	53921	153	3
Waste	82096	5	9
Biodiesel	79600	12	2

Biomass CO₂, CH₄ and N₂O emission factor for 2021 (kg/TJ)

Others

In this paragraph, the methodology used to estimate emissions from a range of portable or mobile equipment powered by reciprocating diesel or petrol driven engines is summarized. They include agricultural equipment such as tractors and combined harvesters; construction equipment such as bulldozers and excavators; domestic lawn mowers; aircraft support equipment; and industrial machines such as portable generators and compressors. In the CORINAIR inventory, they are grouped into four main categories (EMEP/CORINAIR, 2007):

- domestic house & garden
- agricultural power units (includes forestry)
- industrial off-road (includes construction and quarrying)
- aircraft support.

Those categories are mapped to the appropriate IPCC classes: Aircraft support is mapped to Other Transport and the other categories map to the off-road vehicle subcategories of Residential, Agriculture and Manufacturing Industries and Construction. Estimates are calculated using a modification of the methodology given in EMEP/CORINAIR (EMEP/CORINAIR, 2007). This involves the estimation of emissions from around seventy classes of off-road source using the following equation for each class:

$$Ej = Nj \cdot Hj \cdot Pj \cdot Lj \cdot Wj \cdot (1 + Yj \cdot aj /2) \cdot ej$$

where

Ej = Emission of pollutant from class j	(kg/y)
Nj = Population of class j	
Hj = Annual usage of class j	(hours/year)
Pj = Average power rating of class j	(kW)
Lj = Load factor of class j	
Yj = Lifetime of class j	(years)
Wj = Engine design factor of class j	
aj = Age factor of class j	(y⁻¹)
ej = Emission factor of class j	(kg/kWh)
For assoling engine sources, evaporative NM	IVOC emissions ar

For gasoline engine sources, evaporative NMVOC emissions are also estimated as:

$$Evj = Nj \cdot Hj \cdot evj$$

where

Evj = Evaporative emission from class j	kg
evj = Evaporative emission factor for class j	kg/h

Population data have been revised based on a survey of machinery sales (Frustaci, 1999). Machinery lifetime is estimated on the European averages, see EMEP/CORINAIR (EMEP/CORINAIR, 2007), the annual usage data were taken either from industry or published data (EEA, 2000). The emission factors used came mostly from EMEP/CORINAIR and from Samaras (EEA, 2000). The load factors were taken from Samaras (EEA, 2000). It was possible to calculate fuel consumptions for each class based on fuel consumption factors given in EMEP/CORINAIR (EMEP/CORINAIR, 2007). Comparison with known fuel consumption for certain groups of classes (e.g., agriculture and construction) suggested that the population method overestimated fuel consumption by factors of 2-3, especially for industrial vehicles. Estimates were derived for fuel consumptions for the years 1990-2021 for each of the main categories:

- A. Agricultural power units: Data on gas oil consumption were taken from ENEA (ENEA, several years). The consumption of gasoline was estimated using the population method for 1995 without correction. Time series is reconstructed in relation to the fuel used in agriculture.
- B. Industrial off-road: The construction component of the gas oil consumption was calculated from the Ministry of Environment data (MASE, several years [a]) on buildings and constructions. The industrial component of gas oil was estimated from the population approach for 1995. Time series is reconstructed in relation to the fuel use in industry.
- C. Domestic house & garden: gasoline and diesel oil consumption were estimated from the EMEP/CORINAIR population approach for 1995. Time series is reconstructed in relation to the fuel use in agriculture.

Emissions from off-road sources are particularly uncertain. The revisions in the population data produced higher fuel consumption estimates. The gasoline consumptions increased markedly but they are still only a tiny proportion of total gasoline sales.

3.6.4 Uncertainty and time-series consistency

The combined uncertainty in CO₂ emissions in "Other sectors" is estimated to be about 3% in annual emissions; a higher uncertainty is calculated for CH₄ and N₂O emissions on account of the uncertainty levels attributed to the related emission factors. Montecarlo analysis has been carried out to estimate uncertainty of CO₂ emissions from stationary combustion of solid, liquid and gaseous fuels emissions, resulting in 5.1%, 3.3% and 5.8%, respectively. Normal distributions have been assumed for all the parameters. A summary of the results is reported in Annex 1. Estimates of fuel consumption used by other sectors in 2021 are reported in Table 3.33.

	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
					τJ						
1.A.4a. Commercial/ Institutional	206,427	247,440	306,088	419,507	489,018	400,596	402,594	428,941	422,663	402,696	420,446
1.A.4b. Residential	994,058	998,974	1,035,148	1,171,579	1,222,200	1,078,843	1,093,421	1,045,110	1,019,668	997,264	1,057,883
1.A.4c. Agriculture/ Forestry/ Fisheries	114,638	121,163	111,486	116,486	103,172	107,101	109,423	115,090	110,434	111,532	111,955
1.A.5 Other	14,840	20,814	11,595	16,947	9,001	6,388	4,531	4,754	6,317	8,733	4,182

Table 3.33 Trend in fuel consumption for the other sector, 1990-2021 (TJ)

Source: ISPRA elaborations

In the following Table 3.34, total GHG emissions connected to the use of fossil fuels and waste derived fuels are reported for the whole time series. Total emissions from the sector are reported in Gg for CO_2 , and in Mg for CH_4 and N_2O . An increase in emissions is observed from 1990 to 2000, due to the increase in activity data (numbers and size of building with heating); a sharp increase can be observed in 2005 due to exceptionally cold weather conditions. CH_4 and N_2O emissions increase in the period due to the growing use of woody biomass for heating.

Table 3.34 Other sectors, GHG emission time series 1990-2021

	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
CO ₂ (Gg)	76,499	76,701	79,860	93,498	91,532	78,140	78,584	79,062	76,682	75,212	78,647
CH4 (Mg)	45,762	52,043	55,328	59,324	103,406	94,783	99,837	93,035	92,959	89,606	96,920
N ₂ O (Mg)	6,048	6,547	6,658	7,406	8,931	8,188	8,445	8,304	8,119	7,958	8,274
GHG (Gg CO ₂ eq)	79,383	79,893	83,174	97,122	96,794	82,964	83,617	83,867	81,436	79,830	83,553

Source: ISPRA elaborations

In Table 3.35, other sectors emissions are summarized according to main categories. From 1990 to 2021, an increase in the use of natural gas instead of fuel oil and gas oil in stationary combustion plants is observed; it results in a decrease of CO₂ emissions from combustion of liquid fuels and an increase of emissions from gaseous fuels. CH₄ and N₂O emissions increase in the period due to the increasing use of woody biomass for heating.

		1990	2021
CO ₂ other sectors liquid fuels	Gg	38,732	13,935
CO ₂ other sectors solid fuels	Gg	899	0
CO ₂ other sectors gaseous fuels	Gg	36,338	59,085
CO ₂ other sectors other fuels	Gg	530	5,627
CH ₄ other sectors	Mg	45,762	96,920
N ₂ O other sectors	Mg	6,048	8,274

Table 3.35 Other sectors, GHG emissions in 1990 and 2021

Source: ISPRA elaborations

3.6.5 Source-specific QA/QC and verification

Basic data to estimate emissions are reported by national energy balance and the national grid administrator (for the waste used to generate electricity). The energy data used to estimate emissions reported in table 1.A.4 have different levels of accuracy:

- the overall sum of residential and institutional/service/commercial energy consumption is quite reliable, and their uncertainty is the same of the BEN; the quantities of fuels used for those economic sectors are routinely reported by main suppliers and the data are well documented;
- the energy consumption for agriculture and fisheries is also routinely reported by energy statistics and the underlying data are quite reliable because the energy use for those sectors has special taxation regimes and they are accounted for separately;
- The energy use for military and off roads is instead partly reported and partly estimated with models, as described in paragraph 3.6.3 others.

3.6.6 Source-specific recalculations

Some recalculations have been done in this submission. The NCV for LPG and gasoil have been updated based on country specific data. Waste fuel consumption for commercial heating activity data has been updated from 2018 because of the update of activity data for some industrial waste plants resulting in further recalculations. The emission factor for CO₂ has been modified for year 2012.

3.6.7 Source-specific planned improvements

The implementation of updated emission factors from small combustion of biomass is planned.

3.7 International bunkers

The methodology used to estimate the quantity of fuels used from international bunkers in aviation and maritime navigation has been illustrated in the relevant transport paragraphs, 3.5.1 and 3.5.4. The methodology implements the IPCC guidelines according to the available statistical data.

3.8 Feedstock and non-energy use of fuels

3.8.1 Source category description

In Table 3.36 and 3.37 detailed data on petrochemical and other non-energy use for the year 2021 are given. The tables refer to all products produced starting from fossil fuels, solid, gas or liquid, and used for "non energy" purposes. A national methodology is used for the reporting and estimation of avoided emissions.

3.8.2 Methodological issues

The quantities of fuels stored in products in the petrochemical plants are calculated on the basis of information contained in a detailed yearly report, the petrochemical bulletin, by Ministry of Environment (MASE, several years [b]). The report elaborates results from a detailed questionnaire that all operators in Italy fill out monthly. The data are more detailed than those normally available by international statistics and refer to:

- input to plants;
- quantities of fuels returned to the market;
- fuels used internally for combustion;
- quantities stored in products.

National petrochemical balance includes information on petrochemical input entering the process and used for the production of petrochemical products, and petrochemical plants output, returns to the market, losses and internal consumption. Due to chemical reactions in the petrochemical transformation process, the output quantity of some fuels could be greater than the input quantity; in particular, it occurs for light products as LPG, gasoline and refinery gas, and for fuel oil. Therefore, for these fuels it is possible to have negative values of the balance. For this matter, with the aim to allow the reporting on CRF tables, these fuels have been added to naphtha. The amount of fuels recovered from the petrochemical processes and returning on the market are considered as an output, because consumed for transportation or in the industrial sectors, and no carbon is stored.

In Table 3.36 and Table 3.37 the overall results and details by product are reported respectively. In Table 3.36 the breakdown of total petrochemical process is reported; the percentages referring to the "net" input are calculated on the basis of the total input subtracting the quantity of fuels as gasoil, LPG, fuel oil and gasoline which return on the market because produced from the petrochemical processes. In Table 3.37 the input to the petrochemical processes in petrochemical plants and the relevant losses, internal consumption and return to the market are reported, at fuel level, allowing the calculation of the quantity stored in products, subtracting the output (returns to the market, losses and internal consumption) from the input (petrochemical input). Carbon stored, for all the fuels, is therefore calculated from the amounts of fuels stored (in tonnes) multiplied by the relevant emission factors (tC/t) reported in Table 3.37.

An attempt was made to estimate the quantities stored in products according to the IPCC 1996 Guidelines, Reference Manual, ch1, tables 1-5 (IPCC, 1997), multiplying the IPCC percentage values in tables 1-5 of the Guidelines by the amount of fuels reported as "petrochemical input" in Table 3.37. The resulting estimate of about 4,836 Gg of products, for the year 2021, is 57% larger than the quantities reported, 3,086 Gg.

Non-energy products amount stored from refineries, and other manufacturers, are reported in the national energy balance (MASE, several years [a]) and the carbon stored is estimated with emission factors reported in Table 3.38. For lubricants the net carbon stored results from the difference between the amount of lubricants and the amount of recovered lubricant oils. The energy content has been calculated

on the basis of the IPCC default values. Minor differences in the overall energy content of these products occur if the calculation is based on national parameters instead of IPCC default values.

In the CRF tables the fuel input amount is reported so that the fractions of carbon stored could be derived. As these fractions are derived from actual measurements, they do not correspond to any default values and may vary over time.

Table 3.36 Other non-energy uses, year 2021

Breakdown of total petrochemical	flow			
	Petrochemical Input	Returns to refinery/market	Internal consumption / losses	Quantity stored in products
ALL ENERGY CARRIERS, Gg	7,931	3,311	1,535	3,086
% of total input		41.7%	19.3%	38.9%
% of net input			33.2%	66.8%

Source: ISPRA elaborations

Table 3.37 Petrochemical, detailed data from MASE, year 2021 (MASE, detailed petrochemical breakdown)

FUEL TYPE	Petroch. Input	Returns to refinery/ market	Internal consumption / losses	Quantity stored in products	% on total input	% on net input	Emission factor (IPCC)
	Gg	Gg	Gg	Gg			tC/t
LPG	287	398	9	-121			0.8146
Refinery gas	244	167	692	-614			0.7781
Virgin naphtha	3,798	0	0	3,798			0.8900
Gasoline	1,187	1,618	0	-432			0.8379
Kerosene	757	617	0	141			0.8606
Gas oil	315	242	7	66			0.8696
Fuel oil	290	130	109	51			0.8534
Petroleum coke	0	0	0	0			0.8666
Others (feedstock)	376	138	53	185			0.8462
Losses	0	0	0	0			0.8462
Natural gas	676	0	664	11			0.7666
total	7,931	3,311	1,535	3,086	39%	67%	

Source: ISPRA elaborations

Table 3.38 Other non-energy uses, year 2021, MASE several years [a]

NON ENERGY FROM REFINERIES	Quantity stored in products	Energy content IPCC '96	Total energy content	Emission factor	
	Gg	TJ/Gg	PJ	Gg C / Gg	
Bitumen + tar	3,017	40.19	121.3	0.8841	
lubricants	1,012	40.19	40.7	0.8038	
recovered lubricant oils	125	40.19	5.0	0.8038	
paraffin	96	40.19	3.8	0.8368	
others (benzene, others)	586	40.19	23.6	0.8368	
Totals	4,836		194.4		

Source: ISPRA elaborations

At national level, this methodology seems the most precise according to the available data. The European Project "Non Energy use-CO₂ emissions" ENV4-CT98-0776 has analysed our methodology performing a

mass balance between input fuels and output products in a sample year. The results of the project confirm the reliability of the reported data (Patel and Tosato, 1997).

3.8.3 Uncertainty and time-series consistency

In Annex 4, the time series for comparison between reference and sectoral approach are reported showing percentage differences in a limited range.

3.8.4 Source-specific QA/QC and verification

Basic data to estimate emissions are directly provided to ISPRA by MASE. The energy data used to estimate emissions have a high level of accuracy because they summarize the results of a 100% legally binding monthly survey of all the concerned operators.

3.8.5 Source-specific recalculations

No recalculation occurred in the 2023 submission.

3.9 Fugitive emissions from solid fuels, oil and natural gas

3.9.1 Source category description

Fugitive emissions of GHG arise during the stages of fuel production, from extraction of fossil fuels to their final use. Emissions are mainly due to leaks or other irregular releases of gases from the production and transformation of solid fuels, the production of oil and gas, the transmission and distribution of gas and from oil refining. Solid fuels category implies mainly methane emissions, while oil and natural gas categories include carbon dioxide and nitrous oxide too.

In 2021, GHG emissions from this source category account for 1.4% out of the total emissions and 1.7% of emissions in the energy sector. Trends in fugitive emissions are summarised in Table 3.46. The results of key category analysis are shown in the following box.

Year		IPCC category	without LULUCF	with LULUCF
2021	CH4	Oil and natural gas - Natural gas	L, T	L, T
	CH ₄	Oil and natural gas – Flaring in refineries	L2, T2	L2, T2
	CO ₂	Oil and natural gas – Venting and flaring	T2	T2
	CO ₂	Oil and natural gas – Flaring in refineries	Т2	T2
1990	CH4	Oil and natural gas - Natural gas	L	L
	CO ₂	Oil and natural gas – Oil	L1	L1
	CO ₂	Oil and natural gas - Venting and flaring	L2	L2
	CO ₂	Oil and natural gas – Flaring in refineries	L2	-

Key-category identification in the fugitive sector with the IPCC Approach 1 and Approach 2

As for 2021 CH₄ emissions are key categories for natural gas according to level and trend assessment with Approach 1 and Approach 2, with and without LULUCF; CH₄ emissions for flaring in refineries are key categories according to level and trend assessment with Approach 2, with and without LULUCF; CO₂ emissions for venting and flaring as well as for flaring in refineries are key categories for trend with Approach 2, with and without LULUCF.

As for the base year, CH₄ emissions are key categories for natural gas following both the Approaches, with and without LULUCF; CO₂ emissions are key categories for oil only with Approach 1, while CO₂ emissions are key categories for venting and flaring only with Approach 2 (both with and without LULUCF);

CO₂ emissions from flaring in refineries are key category with Approach 2 only without LULUCF. Fugitive CH₄ and CO₂ emissions reported in 1.B.1 refer to coal mining for only two mines with very low production in the last ten years. One mine is underground and produces coal and the other one, a surface mine, produces lignite. The underground mine stopped the extraction activities between 1994 and 1999, whereas the surface mine stopped the activity in 2001.

CH₄ emissions from solid fuel transformation refer to fugitive emission from coke production in the iron and steel industry, which is also decreasing in the last years. N₂O emissions from 1.B.1 are not occurring.

Fugitive CO₂ emissions reported in 1.B.2 refer prevalently to fugitive emissions in refineries during petroleum production processes, e.g. fluid catalytic cracking and sulphur recovery plants and flaring, but include also emissions from the exploration, production, transport and distribution of oil and natural gas.

 CH_4 emissions reported in 1.B.2 refer mainly to the production of oil and natural gas and to the transmission in pipelines and distribution of natural gas, while N₂O emissions refer to flaring in the production of oil and natural gas and in refineries and emission from exploration.

For the completeness of the related CRF tables, in particular 1.B.2, the N₂O emissions in refining and storage are reported under flaring in refineries as shown in the following Table 3.39.

1.B. 2.a. Oil		
iv. Refining/storage	N ₂ O	Included in 1.B.2.d flaring in refineries

3.9.2 Methodological issues

Coal mining and handling

CH₄ emissions from coal mining have been estimated based on activity data published on the national energy balance (MASE, several years [a]) and emission factors provided by the IPCC guidelines (IPCC, 2006). Mining and post mining emissions have been calculated. As for CH₄ emissions from mining and post mining the average emission factors of the 2006 IPCC Guidelines (IPCC, 2006) have been selected, 18m³/t and 2.5m³/t, respectively. As concerns CO₂ emissions the calculations have been carried out considering the species profile in coal mine gas by literature data (EMEP/CORINAIR, 2007). The coal gas composition considered is 80% of CH₄ and 6% of CO₂ by volume (Williams, 1993).

As for closed or abandoned mines there are no methods for estimating emissions from surface mines at present (IPCC, 2006). As for the only one underground mine closed from 1994 to 1999, there are no data for a country-based approach to estimate fugitive emissions during the closure period. The emission estimations are carried out applying Tier 2 of the 2006 IPCC Guidelines for bituminous mines with 100% of gassy parameter.

Solid fuel transformation

CH₄ emissions from coke production have been estimated on the basis of activity data published in the national statistical yearbooks (ISTAT, several years [a]) and emission factors reported in the EMEP/CORINAIR Guidebook (EMEP/CORINAIR, 2007) taking in account the information provided by the relevant operators in the framework of the EPRTR registry and the ETS, as addressed in paragraph 3.3.3 of this chapter.

With regard to the manufacture of other solid fuels, in Italy charcoal was produced in the traditional way until the sixties while now it is prevalently produced in modern furnaces (e.g with the VMR system) where exhaust gases are collected and recycled to produce the energy for the furnace itself. This system ensures good management of the exhausts and the temperature, so that any waste of energy is prevented and

emissions are kept to a minimum. So CH₄ emissions from the production of charcoal are not accounted for also considering that the emission factor available in the Revised 1996 IPCC Guidelines, in Table 1-14 vol.3 (IPCC, 1997), refers to production processes in developing countries not applicable to our country anymore. Moreover, in the IPCC Good Practice Guidance as well as in the IPCC 2006 Guidelines no guidance is supplied for charcoal production.

Oil transport and storage and refining

Fugitive emissions from oil refining are estimated starting from the total crude oil losses as reported in the national energy balance. Emissions have been reported in the Refining/Storage category (1.B.2.a.iv); they occur prevalently from processes in refineries.

Fugitive emissions from oil transport have been calculated according with the amount of transported oil (MIT, several years) and emission factors published on the IPCC guidelines (IPCC, 2006).

Most of the crude oil is imported in Italy by shipment and delivered at the refineries by pipelines as offshore national production of crude oil. Table 3.40 provides the length of pipelines for oil and the amount of oil products transported since 1990.

	1990	1995	2000	2005	2010	2015	2016	2017	2018	2019	2020	2021*
Length of pipelines (km)	4,140	4,235	4,346	4,328	4,291	4,022	4,012	4,021	4,018	4,018	3,931	3,955
Amount transported (Gg)	94,600	102,274	116,803	133,024	128,854	110,369	112,031	114,124	115,685	114,451	99,295	103,824
Source: MIT												

*provisional values

Emissions in refineries have been estimated based on activity data published in the national energy balance (MASE, several years [a]) or supplied by oil and gas industry association (UP, several years) and operators especially in the framework of the European Emissions Trading Scheme (EU-ETS), and emission factors published on the IPCC Guidelines (IPCC, 2006).

Fugitive CO₂ emissions in refineries are mainly due to catalytic cracking production processes, sulphur recovery plants, flaring and emissions by other production processes including transport of crude oil and oil products. Emissions are calculated on the basis of the total crude oil losses reported in the national energy balance. These emissions are then distributed among the different processes based on average emission factors agreed and verified with the association of industrial operators (UP) and yearly updated, from 2000, on the basis of data supplied by the plants in the framework of the European Emissions Trading Scheme. In particular in the EU-ETS context, refineries report CO₂ emissions for flaring and for processes separately.

In Table 3.41, the time series of crude oil losses published in the BEN and crude oil processed in Italian refineries are shown.

Table 3.41 Refineries activities and losses

	1990	1995	2000	2005	2010	2015	2016	2017	2018	2019	2020	2021
Crude Oil losses (Mg)	1,004	937	757	576	584	664	574	627	603	767	550	474
Crude oil processing (Gg)	93,711	91,014	98,003	106,542	94,944	79,148	77,510	80,312	78,878	77,605	65,51 7	70,581

Source: MASE, UP

Oil and gas exploration

CO₂, CH₄, and N₂O fugitive emissions from oil and natural gas exploration have been calculated according with the number of exploration wells (MASE, several years [c]) and emission factors published on the IPCC

Good practice Guidance (IPCC, 2000) as no emission factors for number of wells were available in 2006 IPCC guidelines. There are no EFs in the 2006 IPCC Guidelines when the only activity data available are the number of wells. In the IPCC good practice guidance, the tier 1 methodology and default EFs are based on the number of wells, whereas in the 2006 IPCC Guidelines, they are based on the volume of oil production. If overall oil production were used as a proxy in estimating emissions from oil and gas exploration, there would be an overestimation. Moreover, current oil production is mainly onshore, while exploration is now being done offshore, and the methodology in the 2006 IPCC Guidelines does not reflect this situation. The relationship between exploration/drilling activity and production volume applies when the two activities occur within the same bed. In the case of onshore production and offshore exploration, the onshore production is not necessarily related to the exploration, and only offshore exploration is recorded.

Emissions factors for drilling, testing and servicing have been used for productive wells, while only emissions factor for drilling has been used for non productive wells.

Oil and gas production and processing

CH₄ emissions from the production of oil and natural gas as well for natural gas processing have been calculated according with activity data published on national energy balance (MASE, several years [a]), data by oil and gas industry association (UP, several years), data supplied by operators, and emission factors published on the IPCC guidelines (IPCC, 2006).

CH₄ emission factors for the whole time series have been calculated considering this information also for oil venting and flaring and for gas flaring. For CO₂, the IPCC default emission factor has not been modified for each category, as no specific information is available. N₂O emissions from flaring in oil and gas production have been estimated on the basis of activity production data and emission factors reported in the IPCC guidelines (IPCC, 2006).

As regards the decline of CH₄ IEF for natural gas production and processing, gas companies stated that along the time there has been an increasing awareness to reduce GHG emissions and new emergency management systems have been implemented periodically to reduce emissions from venting. Moreover, with the updating of management systems, more accurate methods to estimate vented gas have been adopted by the main gas company at regular intervals. Since 2016 the national oil&gas operator has implemented new standards to drastically reduce the fugitive emissions from its oil production sites. The leakage rate from oil operation sites has changed from 2016 onwards.

In Table 3.42, the time series of national production of oil and gas are reported. Natural gas production should further reduce in the next years.

	1990	1995	2000	2005	2010	2015	2016	2017	2018	2019	2020	2021
Oil (Gg)	4,668	5,236	4,586	6,111	5,106	5,470	3,760	4,148	4,684	4,279	5,424	4,914
Natural gas (Mm ³)	17,296	20,383	16,766	11,962	8,265	6,877	6,021	5,657	5,553	4,983	4,417	3,499
Source: MASE												

Table 3.42 National production of oil and natural gas

Natural gas transmission and distribution

CH₄ and CO₂ emissions from the transmission in pipelines and distribution of natural gas, which includes also LNG, have been estimated based on activity data published by industry, the national authority, and information collected annually by the Italian gas operators. In other word the most relevant information is the amount of natural gas transmitted/distributed and the methane emissions reported by operators in their environmental reports or communicated to ISPRA. The emissions communicated by main

operators are estimated separately for transmission/distribution considering known lengths and materials of pipelines just to calibrate the model used to estimate fugitive emissions from minor operators.

Emission estimates take into account the information on: the amount of natural gas distributed (ENI, several years [a]; SNAM, several years); length of pipelines, distinct by low, medium and high pressure and by type, cast iron, grey cast iron, steel or polyethylene pipelines (AEEG, several years); natural gas losses reported in the national energy balance (MASE, several years [a]); methane emissions reported by operators in their environmental reports (ENI, several years [b]; EDISON, several years; SNAM, several years).

CO₂ emissions have been calculated considering CO₂ content in the leaked natural gas. The average natural gas chemical composition has been calculated from the composition of natural gas produced and imported. Main parameters of mixed natural gas, as calorific value, molecular weight, and density, have been calculated as well. Data on chemical composition and calorific value are supplied by the main national gas providers for domestic natural gas and for each country of origin.

Table 3.43 shows average data for national pipelines natural gas.

	1990	1995	2000	2005	2010	2015	2016	2017	2018	2019	2020	2021
HCV (kcal/m₃)	9,156	9,193	9,215	9,261	9,325	9,303	9,351	9,340	9,334	9,336	9,340	9,377
NCV (kcal/m₃)	8,255	8,290	8,320	8,354	8,412	8,391	8,444	8,433	8,427	8,428	8,432	8,467
Molecular weight	17.03	17.19	17.37	17.45	17.46	17.34	17.53	17.44	17.34	17.29	17.33	17.48
Density (kg/Sm₃)	0.72	0.73	0.74	0.74	0.74	0.73	0.74	0.74	0.73	0.73	0.73	0.74
CH₄ (molar %)	94.30	93.36	92.22	91.93	92.04	92.72	91.54	92.08	92.64	92.92	92.79	91.97
NMVOC (molar %)	3.45	4.09	4.84	5.35	5.74	5.26	6.17	5.93	5.62	5.49	5.63	6.22
CO₂ (molar %)	0.22	0.20	0.18	0.49	0.75	0.70	0.65	0.67	0.74	0.64	0.88	0.91
Other no carbon gas (molar %)	2.03	2.34	2.76	2.24	1.48	1.32	1.64	1.33	1.00	0.95	0.70	0.91
CH₄ (weight %)	88.83	87.14	85.16	84.53	84.54	85.81	83.79	84.72	85.68	86.23	85.88	84.40
NMVOC (weight %)	7.33	8.62	10.00	10.73	11.27	10.34	12.03	11.51	10.87	10.64	10.78	11.91
CO₂ (weight %)	0.57	0.51	0.47	1.23	1.89	1.78	1.62	1.70	1.88	1.63	2.25	2.29
Other no carbon gas (weight %)	3.27	3.74	4.37	3.51	2.30	2.08	2.55	2.07	1.56	1.50	1.09	1.40

Table 3.43 Average composition for pipelines natural gas and main parameters

More in details, emissions are estimated separately for the different phases: transmission in primary pipelines and distribution in low, medium, and high pressure network, losses in pumping stations and in reducing pressure stations (including venting and other accidental losses) with their relevant emission factors, considering also information regarding the length of the pipelines and their type.

Emissions from low pressure distribution also include the distribution of gas at industrial plants and in residential and commercial sector; data on gas distribution are only available at an aggregate level thus not allowing a separate reporting. In addition, emissions from the use of natural gas in housing are estimated and included. Emissions calculated are compared and balanced with emissions reported by the main distribution operators. Finally, the emission estimates for the different phases are summed and reported in the most appropriate category (transmission/distribution).

Table 3.44 provides the trend of natural gas distribution network length for each pipeline material and the average CH₄ emission factor.

Material	1990	1995	2000	2005	2010	2015	2016	2017	2018	2019	2020	2021
Steel and cast iron (km)	102,061	131,271	141,848	154,886	198,706	203,116	204,062	204,890	205,273	206,855	208,044	208,935
Grey cast iron (km)	24,164	23,229	21,314	15,080	4,658	2,398	2,163	2,088	2,063	2,061	2,061	2,060
Polyethylene (km)	775	7,300	12,550	31,530	49,663	56,943	57,883	59,368	59,358	59,593	59,854	61,325
Total (km)	127,000	161,800	175,712	201,496	253,027	262,457	264,108	266,346	266,693	268,509	269,959	272,320
CH₄ Emission Factors (kg/km)	1,958	1,417	1,228	1000	703	540	522	516	469	371	350	327

Table 3.44 Length of low and medium pressure distribution network (km) and network emission factors for CH₄

More details on the methodology used and on the basic information collected from operators are reported in a technical paper carried out by ISPRA to assess emissions from the whole natural gas distribution grid (Contaldi, 1999). The study addressed natural gas leakages, pipelines material, and operating pressure with data of 1995. All main gas operators were involved. An estimation model was set up in order to approximate the known gas emissions from the main operators and total emissions for year 1995. Emission factors distinct by pressure (low, medium and high) and material (cast iron, grey cast iron, steel or polyethylene) was applied to achieve the goal. Emission factors from Battelle study for former West Germany was applied, cross checked with operator's data and modified where it is needed. The emission factors of minor operators (Other in the next table) are "worsened" to take account for lower quality standard.

The pipelines emission factors for transmission and distribution used for emission estimates are reported in the following box:

Leakage emission factors of natural gas for transmission and distribution in pipelines by material and pressure (2021)

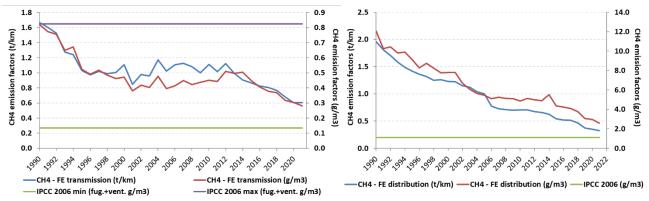
		Pressure									
Material	High	Medium	Low								
		m³/km									
Steel	516.2	370.8	278.1								
Cast iron	-	438.8	445.2								
Grey cast iron	-	-	5,885.6								
Polyethylene	-	-	216.4								

High pressure natural gas leakage factor concerns transmission network. SNAM is the main operator for national gas transmission and import-export. Medium and low pressure leakage factors concern distribution network. ITALGAS and 2iRetegas are the main operators for gas distribution. They publish annually environmental reports with amount of natural gas conveyed and total leaks. Moreover, SNAM provides to ISPRA chemical composition and energy content of national gas imported and produced. In 2020 SNAM accounts for about 93% of national pipelines length and about 99% of transported gas. ITALGAS and 2iRetegas account for about 55% of distribution network length and about 47% of distributed gas. There are about 200 operators distributing natural gas. ARERA is the National Authority for Energy, Networks and Environment. Starting from 2000 ARERA issues a yearly report with information on pipelines and network length, operating pressure, and network type concerning pipelines material. The estimation model calibrated on the main operators was used to estimate fugitive emissions from minor operators. Natural gas leaks by main operators and average composition of natural gas are used to estimate fugitive emissions. For minor operators, lower quality standard and higher specific emission factors for network material, venting, and other accidental losses were considered. So EFs for distribution are generated by combining measured data obtained directly from the main gas operators with calibrated estimates from smaller operators.

In order to take account of different sources of emissions (LNG regasification plants, compression stations, pipeline import/transmission and distribution, venting, and other accidental losses) the total leaks

communicated by main operators and those estimated for minor operators are distributed resulting in implied emission factors for the other sources of emissions than transmission and distribution.

In the following box, implied emission factors for transmission and distribution sources are reported:


	LNG regasification	0.23 Mm ³ NG / Gm ³ NG imported
Transmission	Pipeline compression station	0.16 Mm ³ NG / Gm ³ NG transported
Transmission	Pipeline	516.2 m ³ /km (See previous table for high pressure pipelines)
	Venting and other accidental losses	0.043 Mm ³ NG / Gm ³ NG transported
Distribution	Pipeline	See previous table for medium and low pressure pipelines
Distribution	Venting and other accidental losses	0.169 Mm ³ NG / Gm ³ NG distributed

Implied emission factors (2021)

Furthermore, fugitive emissions due to the use of natural gas at home are considered and estimated with an emission factor equal to $36 \text{ kg CH}_4 / TJ$ natural gas distributed. The estimation model used to estimate fugitive emissions is updated every year considering data published by ARERA on pipelines and it is calibrated with annual leakage data published by main operators in their environmental reports.

The next graph shows the CH₄ emission factors time series since 1990 for natural gas transmission and distribution compared with the respective default EFs provided by IPCC guidelines (2006). As for the transmission the national EFs are between the range of default values. The national distribution emission factors are approaching the default value that includes fugitive and venting sources but are still more than three times higher.

Figure 3.1 Trend of CH₄ emission factors for natural gas transmission and distribution compared with the respective default EFs (IPCC, 2006).

However, it should be considered that a significant share of natural gas does not go through the distribution network but is instead directly transported to industrial sites, including plants for energy production. According to ARERA gas distribution is also fulfilled by network operating at pressure between 5 and 24 bar which is part of the transmission network. This configuration explains why the amount of natural gas being distributed is less than 50% of the natural gas transmitted in the whole time series and shows how it is more useful to consider the matched EFs for transmission and distribution as illustrated in the next graph.

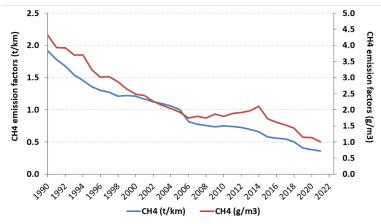


Figure 3.2 Trend of the matched CH₄ emission factors for transmission and distribution of natural gas

The different trends between the two unit of measures are explained by variable composition of natural gas along the time series as CH₄ content and average density.

Geothermal energy

Geothermal fluids can, depending on the site, contain greenhouse gases such as CO_2 and CH_4 and other minor gases such as H_2S , H_2 , NH_3 and N_2 . As the geothermal energy is a renewable source it is considered carbon neutral so while the CO_2 emissions of are not accounted the emissions of CH_4 are evaluated.

In Italy the geothermal energy extraction for electricity production occurred up to now only in Tuscany. Starting with this submission CH₄ emissions have been estimated for the whole time series according to monitoring data of the tuscanian environmental agency (ARPAT, several years). ARPAT issues a yearly report with CH₄ flux measures (kg/h) on a sample of power plants. There are no data on the operating hours for each plant, so the flux measures are summed up and multiplied by the average operating hours for all geothermal plants, the only available data, to obtain the total emitted amount for the sampled plants. In order to smooth the sampling distortion (i.e., in some year only plants with higher flux are sampled that would give an overestimation) for each year the average flux measures of the previous three years are considered for not sampled plants so obtaining an extended sample. The total emitted amount for all plants is calculated dividing the estimated amount for the extended sample plants by their power and multiplying such quantity by the total operating power.

3.9.3 Uncertainty and time-series consistency

The uncertainty in CO₂, CH₄, and N₂O emissions is quite differentiated for sources as shown in Table 3.45.

	CO ₂		CI	4	N₂O	
	AD	EF	AD	EF	AD	EF
Solid fuels					NA	NA
Oil and natural gas – Oil	3%	10%	3%	50%	3%	50%
Oil and natural gas – Natural gas					NA	NA
Oil and natural gas – Venting and flaring	50%	10%	50%	50%	50%	50%
Oil and natural gas – Flaring in refineries	50%	10%	50%	50%	50%	50%

Montecarlo analysis was applied to estimate uncertainty of CH₄ emissions; the resulting figure was 17.2% for 2009. A summary of the results is reported in previous NIRs.

Fugitive emissions, in CO₂ equivalent, account for 1.7% out of the emissions in the energy sector in 2021. CH₄, CO₂, and N₂O emissions show a reduction from 1990 to 2021 by 61.7%, 55.1%, and 27.8% respectively. The overall decrease of CO₂ fugitive emissions is mainly driven by the reduction in crude oil losses in refineries. The trend of CH₄ and CO₂ fugitive emissions from solid fuels is related to the extraction of coal and lignite that in Italy is quite low, zero from 2015, and abandoned mines. The decrease of CH₄ fugitive emissions from oil and natural gas is due to the reduction of losses for gas transportation and distribution, because of the gradual replacement of old grey cast iron pipelines with steel and polyethylene pipelines for low and medium pressure network.

The CH₄ fugitive emissions from geothermal energy extraction show a relevant increase since 1990 (+161.3%) due to the entry into operation of bigger plants with higher flux values. As regards the flaring activity from oil and gas production, and flaring in refineries N₂O emissions show a reduction since 1990 by 29.1%.

Fugitive emissions since 1990 are reported in Table 3.46.

	1990	1995	2000	2005	2010	2015	2016	2017	2018	2019	2020	2021
CO ₂												
Solid fuels	0.4	0.1	0.3	0.3	0.3	0.2	0.0	0.0	0.0	0.0	0.0	0.0
Oil and natural gas	4,047	4,002	3,262	2,557	2,377	2,574	2,189	2,351	2,295	2,756	2,112	1,816
CH₄												
Solid fuels	148	131	145	97	91	83	78	79	74	71	108	121
Oil and natural gas	9784	9687	9749	9613	9396	9052	8876	8839	8914	8632	8398	7929
Geothermal energy	213	211	229	243	226	228	249	259	279	292	312	298
N₂O												
Oil and natural gas	11	11	11	11	11	10	10	11	11	11	11	11
Total emissions	14,203	14,019	14,090	14,143	13,794	13,376	13,064	13,200	13,166	12,115	12,090	11,431

Table 3.46 Fugitive emissions from solid fuels and oil & gas (Gg CO2 eq.)

3.9.4 Source-specific QA/QC and verification

Different data sources are used for fugitive emissions estimates: official statistics by Ministry of Environment (MASE, several years [a], [c]), by Transport of Infrastructure Ministry (MIT, several years); national authorities (AEEG, several years; ISTAT, several years [a]), gas operators (ENI, several years [b]; EDISON, several years; SNAM, several years), and industrial association for oil and gas (UP, several years).

CH₄ flux data to estimate fugitive emissions from geothermal energy extraction are yearly registered by regional environmental agency of Tuscany for a sample of geothermal power plants (ARPAT, several years). Concerning CO₂ fugitive emissions from refineries activities, the estimates are balanced with the amount of crude oil losses reported in the national energy balance (MASE, several years [a]). CH₄ emissions from transmission and distribution of natural gas are verified considering emission factors reported in literature and detailed information supplied by the main operators (ENI, several years [b]; Riva, 1997).

3.9.5 Source-specific recalculations

The sources involved in the recalculations that affect the whole fugitive emission sector are:

- 1.B.2.b.4 Updated data have been provided by LNG regasification companies since 2015;
- 1.B.2.d Geothermal The recalculation affects the years 2020 for the update of a provisional emission factor used in the previous submission.

3.9.6 Source-specific planned improvements

No further improvements are planned for the next submission.

4 INDUSTRIAL PROCESSES AND PRODUCT USE [CRF sector 2]

4.1 Sector overview

By-products or fugitive emissions, which originate from industrial processes, are included in this sector. Where emissions are released simultaneously from the production process and from combustion, as in the cement industry, these are estimated separately and included in category 1.A.2. All greenhouse gases as well as CO, NO_X, NMVOC and SO₂ emissions are estimated. CO₂ emissions related to NMVOC from solvent use in paint application, degreasing and dry cleaning, chemical products manufacturing or processing and other use, are estimated. N₂O emissions are also estimated, which arise from chemical industry (2B) and from "other product manufacture and use (2G). As for CRF sector 2G, the use of N₂O occurs in medical applications, such as anesthesia, and in the food industry, where N₂O is used as a propelling agent in aerosol cans, specifically those for whipped cream. Emissions from the use of N₂O in explosives are also included.

In 2021 industrial processes and product use account for 4.51% of CO₂ emissions, 0.10% of CH₄, 2.94% of N₂O, 100% of PFCs, HFCs, SF₆ and NF₃. In terms of CO₂ equivalent, industrial processes and product use contribute 7.6% to the total national greenhouse gas emissions.

The trends of greenhouse gas emissions from the industrial processes sector are summarized in Table 4.1. Emissions are reported in kt for CO₂, CH₄ and N₂O and in kt of CO₂ equivalent for F-gases. An increase in HFCs emissions is observed from 1990 to 2021, while CO₂ emissions from chemical and metal and mineral industry reduced sharply in the period.

Gas/Subcategory	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
<u>CO</u> ₂ (kt) 2	9,303.2	27,259.8	25,815.3	28,704.0	21,255.5	15,038.8	15,030.5	15,331.2	15,001.4	13,612.9	15,221.0
2A. Mineral Products	20,720.5	20,239.7	20,749.0	23,304.7	16,713.3	11,291.2	10,871.6	10,992.3	11,005.7	9,862.2	11,145.7
2B. Chemical Industry	2,524.2	1,584.0	1,356.4	1,635.0	1,364.1	1,219.7	1,435.0	1,573.7	1,314.5	1,358.5	1,402.9
2C. Metal Production	4,377.9	3,902.7	2,305.3	2,419.4	2,044.0	1,562.9	1,675.1	1,681.5	1,602.3	1,438.6	1,668.0
2D. Non-energy products from fuels and solvent use	1,680.8	1,533.5	1,404.5	1,344.9	1,134.1	965.0	1,048.9	1,083.7	1,079.0	953.7	1,004.5
<u>CH4</u> (kt)	5.2	5.4	2.9	3.0	2.6	1.7	1.8	1.8	1.7	1.4	1.6
2B. Chemical Industry	2.5	2.7	0.3	0.2	0.2	0.2	0.2	0.2	0.1	0.1	0.1
2C. Metal Production	2.7	2.7	2.6	2.7	2.5	1.5	1.6	1.6	1.5	1.2	1.5
<u>N₂O (</u> kt)	24.2	25.8	28.9	27.7	2.8	2.1	2.3	2.3	2.1	2.1	1.9
2B. Chemical Industry	21.5	23.4	25.5	25.0	1.0	0.5	0.5	0.4	0.4	0.4	0.2
2G. Other product manufacture and use	2.6	2.5	3.3	2.7	1.9	1.6	1.9	1.9	1.7	1.7	1.7
HFCs (kt CO ₂ eq.)	372.0	860.8	2,802.6	8,718.3	15,223.1	15,629.7	16,513.6	16,927.9	17,019.4	16,035.1	15,387.8
2B. Chemical Industry	372.0	471.5	24.6	22.8	1.0	1.1	1.0	1.2	1.0	0.8	0.9
2C. Metal Production	-	-	-	-	3.9	9.2	9.4	8.8	5.2	4.9	4.4
2E. Electronics Industry	-	6.1	8.7	7.2	10.6	9.5	9.0	6.9	6.6	7.8	7.8
2F. Product Uses as Substitutes of ODS	-	383.3	2,769.2	8,688.3	15,207.6	15,610.0	16,494.2	16,911.0	17,006.6	16,021.6	15,374.7

Table 4.1 Trend in GHG emissions from the industrial processes and product use sector, 1990-2021 (kt)

Gas/Subcategory	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
<u>PFCs (</u> kt CO₂ eq.)	2,615.0	1,350.9	1,363.3	1,759.4	1,503.8	1,528.7	1,191.1	1,501.8	915.4	498.7	395.3
2B. Chemical Industry	836.5	934.9	889.5	1,388.3	1,290.9	1,392.3	1,069.8	1,355.8	780.4	374.6	261.2
2C. Metal Production	1,778.5	315.0	207.6	190.7	85.3	-	-	-	-	-	-
2E. Electronics Industry	-	101.0	266.2	180.4	127.6	136.4	121.3	146.0	135.1	124.1	134.1
<u>SF₀ (</u> kt CO₂ eq.)	420.9	700.1	621.0	565.1	453.4	485.3	428.3	464.1	444.3	257.2	257.5
2B. Chemical Industry	117.5	117.5	- -	-	-	-	-	-	-	-	-
2C. Metal Production	-	-	169.2	83.3	-	-	-	-	-	-	-
2E. Electronics Industry	-	14.9	61.9	57.2	50.6	47.3	66.0	50.1	52.5	36.9	40.8
2G. Other Products Manufacture and Use	303.4	567.7	389.9	424.7	402.8	438.0	362.3	414.0	391.8	220.3	216.7
<u>NF₃ (kt CO₂ eq.)</u>	-	76.6	i 13.3	33.4	27.	28.4	23.5	22.1	17.9	16.2	15.2
2E. Electronics Industry	-	76.6	5 13.3	33.4	27.8	28.4	23.5	22.1	17.9	16.2	15.2
<u>Unspecified mix of</u> <u>HFCs and PFCs (</u> kt CO2 eq.)	-	24.4	24.4	24.4	24.4	24.4	24.4	22.7	23.2	22.4	25.3

Fourteen key categories have been identified for this sector, for level and trend assessment, using both the Approach 1 and Approach 2. The results for 2021 are reported in the following Table 4.2.

Table 4.2 Key-category identification in the industrial processes sector with the IPCC Approach 1 and Approach	2
for 2021	

KEY (s	without LULUCF	with LULUCF
2A	CO ₂	Emissions from cement production	L, T	L, T
2A	CO ₂	Emissions from lime production	L1	L1, T1
2A	CO ₂	Emissions from other process uses of carbonates	T1	T1
2B	CO ₂	Emissions from ammonia production	T1	T1
2B	N ₂ O	Emissions from adipic acid production	Т	Т
2B	N ₂ O	Emissions from nitric acid production	T1	T1
2B	HFCs	Emissions from fluorochemical productions	T2	-
2B	PFCs	Emissions from fluorochemical productions	T2	-
2C	CO ₂	Emissions from iron and steel production	T1	T1
2C	PFC	Emissions from Aluminum production	Т	Т
2D	CO ₂	Emissions Non-Energy products from fuels and solvent use	L2, T2	L2
2F	HFCs	Emissions from substitutes for ODS- Refrigeration and air conditioning	L, T	L, T
2F	HFCs	Emissions from substitutes for ODS- Foam blowing agents	T2	T2
2F	HFCs	Emissions from substitutes for ODS- Fire protection	L, T	L, T

CO₂ emissions from cement, lime and other carbonate uses are included in category 2A; N₂O emissions from adipic acid, nitric acid and CO₂ emissions from ammonia refer to 2B; CO₂ emissions from iron and steel production and PFC emissions from aluminum production are included in 2C; CO₂ emissions from non-energy products from fuels and solvent use are included in 2D; HFCs from substitutes for ODS are included in 2F and HFC and PFC emissions from fluorochemical production are included in 2B. Methane

emissions from the sector are not a key source. Most of these categories are also key categories in the 1990 assessment.

For the industrial processes sector, emissions and background data collected in the framework of the European Emissions Trading Scheme, the National Pollutant Release and Transfer Register (Italian PRTR) have been used either directly in the estimation process or as verification of emission estimates, improving national emissions factors as well as activity data.

Emissions and activity data submitted under the ETS are mandatorily subject to verification procedures, as requested and specified by the European Directive 2003/87/EC (art. 15 and Annex V). In compliance with the above-mentioned legislation, independent certifications and verifications of activity data, emission data and emission factors are required. At national level, data verification must be carried out by verifiers accredited by the national ETS Committee according to the ministerial decree DEC/RAS/115/2006. The verification of data submissions ensures reliability, credibility, and precision/accuracy of monitoring systems for data and any information relating emissions by plant. The guidelines for reporting under ETS are aligned to the 2006 IPCC Guidelines.

The Italian legislation implementing EPER Decision included a legislative decree and a Ministry decree providing guidelines for reporting by the Italian EPER facilities. The Italian legislation implementing Regulation (EC) 166/2006 is a Decree of the President of the Republic (DPR n.157/2011). Annexed to the DPR n.157/2011 is a guideline for the reporting by the Italian PRTR facilities.

Both guidelines for the reporting by the Italian EPER/PRTR facilities provide the list and description of the information to be reported, which includes: activity data (mandatory), total releases exceeding the reporting threshold values (mandatory); total off-site transfers of pollutant exceeding the reporting thresholds (mandatory); total off site transfers of waste exceeding the reporting thresholds (mandatory).

Releases/transfers information to be reported by facility operators can be based (in compliance with national and EU legislation) on measurement, calculation, estimation. In the case that operators report information based on measurements/calculation they are requested to communicate also what methodology has been applied to measure/calculate total releases/transfers.

As for activity data reporting under the national PRTR, no detailed requirements have been included in the national PRTR legislation and guidelines, although some general guidance is provided and followed by operators. The operator is expected to report the best available information concerning activity data for each reporting year, basically the amount produced, manufactured or treated in the reporting year shall be reported. It is appropriate to consider also that most facilities in the scope of EPER/PRTR are also in the scope of EU and national legislation concerning the permitting procedures, monitoring and control obligation for industrial facilities larger in size. The quality of information reported by the facilities under the national EPER/PRTR is assessed by the competent authorities, the same authorities are usually involved also in the permitting procedure of these facilities, thus cross checks of information concerning AD and emissions are expected by the national legal framework.

Since emissions data reported under the national EPRTR can be measured, calculated or estimated, the European PRTR Guidance Document and the national guideline for reporting to the national PRTR include also references to the IPCC Guidelines methodologies.

The collection of facility reports under the national EPER/PRTR is a task that ISPRA has to carry out by law. The national inventory team is in the same unit of ISPRA where the national EPER/PRTR is managed, the inventory team has full access to the whole national dataset of the Italian EPER/PRTR without restrictions on the type of information (AD and emissions of each reporting facilities are available for the inventory team). Italian EPER/PRTR data (emissions and transfers of pollutants, transfers of wastes) are publicly available on the internet at the European Industrial Emissions Portal https://industry.eea.europa.eu/ (in compliance with the legislation, activity data of the reporting units are not disclosed to the public).

Data from the ETS and EPRTR databases are incorporated into the national inventory whenever the sectoral coverage is complete; in fact, not always data entirely cover the relevant categories whereas national statistics provide the complete basic data needed for the Italian emission inventory. Nevertheless, these data are entirely used to develop country-specific emission factors and check activity data levels.

4.2 Mineral Products (2A)

4.2.1 Source category description

In this sector CO₂ emissions from the following processes are estimated and reported: cement production, glass production, lime production and other processes uses of carbonates.

<u>Cement</u>

Cement production (2A1) is the main source of CO₂ emissions in this sector. As already mentioned, it is a key source both at level and trend assessment with and without LULUCF, also considering uncertainty, and accounts for 2.35% of the total national emissions.

During the last 15 years, in Italy, changes in cement production sector have occurred, leading to a more stable structure. The oldest plants were closed, wet processes were abandoned in favor of dry processes so as to improve the implementation of more modern and efficient technologies. The effects of the global recession period have led at national level to facilities closedowns and many conversions from full cycle to grinding plants. Since 2011 Italy has become the second cement producer country in the EU 28 because of the reduction of clinker production in the last years.

The picture of the cement sector in 2021 has 17 companies (51 plants of which: 28 full cycle and 23 grinding plants, i.e. in 2021 two full cycle plants and one grinding plant were closed compared to 2020) operating in Italy: multinational companies and small and medium size enterprises (operating at national or only at local level) are present in the country. The operating plants are located as follows: 45.1% is in northern Italy, 13.2% is in the central regions of the country and 41.2% is in the southern regions and in the islands. The active sintering rotary kilns belong to the "dry" or of "semidry" types. In Italy different types of cement are produced; Federbeton/AITEC, the national cement association, has characterised the national production in 2021 as follows: 73% is CEM II (Portland composite cement); 15% is CEM I (ordinary Portland cement); 10% is CEM IV (pozzolanic cement) and 3% is CEM III (blastfurnace cement). Clinker production has been decreasing since 2007, although from 2016 to 2019 the production values have kept very close to the amount manufactured in 2016, in 2020 clinker production shows -6.0% compared to 2019 (Federbeton/AITEC [1], several years) due to pandemic, while in 2021 clinker production was 13.2% compared to 2020. Clinker demand in cement production was about 74% in 2021 (consumption of clinker out of production of cement).

<u>Lime</u>

In 2021, CO₂ emissions from lime production is key category at level assessment, with and without LULUCF, following the Approach 1.

CO₂ emissions occurring from processes where lime is produced account for 0.59% of the total national emissions. Lime production can also occur, beside lime industry, in different industrial sectors such as iron and steel making, pulp and paper production, soda ash production, sugar production; lime can also be

used in a number of processes concerning wastewater treatment, agriculture and the neutralization of acidic emissions in the industrial flue gases. In particular, the other relevant lime productions accounted for in Italy are those occurring in the iron and steel making process and in the sugar production process (although lime production&use at sugar mills occurs without release of CO_{2,} since CO₂ released from decarbonization is used with lime in the purification of the sugar molasses).

Lime is basically produced by calcination of limestone (calcium carbonate) or dolomite (calcium/magnesium carbonate) at 900°C. The process leads to quicklime and CO_2 emissions according to the following reaction:

$$CaCO_3 + MgCO_3 + heat \rightarrow CaO + MgO + 2CO_2$$

CO₂ is released because of the process reaction itself and also because of combustion to provide energy to the process. CaO and MgO are called quicklime. Quicklime, together with water, give another product of the lime industry which is called calcium hydroxide Ca(OH)₂. CO₂ emissions estimation is related to lime production in mineral industry and it also includes the production of lime to feed other industrial processes (e.g. iron and steel making facilities).

The number of lime production facilities has been relevantly changing through the years as shown in the Table 4.3.

Table 4.3 Lime production facilities (number)

	1990	2003	2010	2014	2015	2016	2017	2018	2019	2020	2021
Lime facilities (n.)	85	46	35	29	25	26	25	24	23	23	21

Figures from 2010 onwards are based on the number of facilities reporting under the EU-ETS. Moreover, 46% of the plants is in the southern regions and in the islands, 39% is in the northern regions and 15% in the central regions. The number of operating kilns has also decreased significantly through the years (about 171 in 1990, 75 in 2003 and 25 at present). During the nineties, lime industry invested in technology implementation to replace the old kilns with regenerative and high efficiency kilns, rotary kilns are no longer used.

Concerning fuel consumptions, about 80% of the national lime industry uses natural gas, about 20% uses coke.

<u>Other processes uses of carbonates (limestone and dolomite use in brick and tiles; fine ceramics; paper</u> <u>industry and power plants)</u>

This category is key category in 2021 at trend assessment, with and without LULUCF, following the Approach 1.

CO₂ emissions are also related to the use of carbonates in different industrial processes, and they account for 0.18% of the total national emissions. Limestone or dolomite can be added in different steps of the production process to obtain the desired product features (i.e., colour, porosity). Sometimes carbonates in limestone and dolomite may have to be calcined ("dead burned") in order to be added to the manufacturing process. Limestone and dolomite are also used in paper production process and in the treatment of power plants flue gases. A steep decrease in the production processes and the relevant use of limestone can be observed between 2007 and 2009; use of limestone has been decreasing more gradually since 2009; the overall decrease being mainly driven by limestone and dolomite use in the brick and tiles sector. Mineral (stone) wool production which occurred in Italy along the years 1993-2009 is included in emission estimates for the energy sector. Stone wool has not been produced in Italy since 2009. This category also includes the whole time series for CO₂ emissions from other uses of soda ash.

Glass production

Glass industry in Italy can be characterized with regard to four glass product types: flat glass, container glass, borosilicate and lead/crystal glass. Flat glass is produced in facilities mainly located in the North; container glass is produced in facilities located all over the country; glass fibers and wool are produced in the North. About 70 companies carry out activities related to glass industry in Italy, about 30 companies carry out glass production processes in about 50 production units. With regard to glass chemical composition, the national glass production consists of 95% soda-lime glass, 4% borosilicate glass and 1% lead/crystal glass. The main steps of the production process in glass industry are the following:

- raw materials storage and batch formulation;
- melting of the formulated batch at temperature ranging from 1400°C to 1600°C, in different furnaces according to the type of glass product;
- forming into glass products at specific temperature ranges;
- annealing of glass products to prevent weak glass due to stress.

The formulated batch is generally melted in continuous furnaces, whose size and features are related to the types of glass production. In Italy 80% of the glass industry production is carried out using natural gas as fuel, other fossil fuels consumption is limited to low sulphur content oil. Emissions are basically released by the high temperature melting step and depend on the type of glass product, raw materials and furnaces involved in the production process. Main pollutants are: dust, NO_x, SO_x, CO₂; occasionally and depending on the specific production process, heavy metals, fluorides and chlorides gases could be released. CO₂ emissions are mainly related to the decarbonisation of carbonates used in the process (soda ash, limestone, dolomite) during the melting phase, accounting for 0.15% of the total national emissions. The use of scrap glass (recycled cullets) in the production processes has been increasing in Italy since 1998 thus contributing to the reduction of emissions from decarbonation and from the melting phase.

In Table 4.4, values of the rate of glass recycling from 1998 are reported (COREVE, several years).

	1998	2000	2005	2010	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021
Rate of glass recycling (%)	38.8	46.9	57.2	58.4	70.9	70.8	70.3	70.9	71.4	73.9	73.4	77.4	78.6	76.6

Table 4.4 Rate of glass recycling

4.2.2 Methodological issues

IPCC Guidelines are used to estimate emissions from this sector (IPCC, 1997; IPCC, 2000; IPCC, 2006). Activity data are supplied by industries and/or provided in the national statistical yearbooks (ISTAT, several years [a]). Emission factors are those provided by the IPCC Guidelines (IPCC, 1997; IPCC, 2000; IPCC, 2006), by other international Guidebooks (EMEP/EEA, 2013; USEPA, 1997), or they are derived by data communicated at plant level.

<u>Cement</u>

CO₂ emissions from cement production are estimated using the IPCC Tier 2 approach.

Activity data comprise data on clinker production provided by the Italian Ministry of the economic development (MISE, several years [a]). More in details from 1990 to 2008 official statistics provided by ISTAT have been used (ISTAT, several years [a]). From 2009, ISTAT clinker and cement statistics have not been provided in time for the official submission anymore, so a different source of information has been used. In particular, data on clinker and cement productions, based on a plant-by-plant monthly collection, were officially provided by the Italian Ministry for the Economic Development, at national and regional

level, and made available up to the 2018 inventory submission at the Ministry website which is no longer available.

These production data were cross checked with EPRTR and ETS data and with ISTAT statistics when available. Clinker production provided by the Ministry for the Economic Development seems to be more reliable than statistics published by ISTAT that are based on a sample survey with quite a low response and data gaps are estimated by linear interpolation. Since the last inventory submissions, activity data referring to cement/clinker production (starting from year 2017) have been taken from the data reported to the national ETS.

Emission factors are estimated on the basis of information provided by the Italian Cement Association (Federbeton/AITEC, several years[a]) and by cement facilities in the framework of the European pollutant release and transfer register (E-PRTR) and the European emissions trading scheme (EU-ETS). In this latter context, cement production facilities reported fuel consumption, raw materials and emissions, split between combustion process and decarbonising process and complying with a clinker kiln input method which is based on IPCC methodology.

From 1990 to 2000 the resulting emission factor for cement production is equal to 532 kg CO₂/t clinker, based on the average CaO content in the clinker and considering the contribute of carbonates and additives. This value was assumed as representative of the Italian clinker manufacturing process by AITEC (AITEC, 2004) and officially reported to the Italian Ministry of Environment in order to set the national circumstances for the implementation of the European-Emissions Trading Scheme (EU-ETS) in our country. The value was calculated by the industrial association on the basis of a tool provided by the World Business Council for Sustainable Development, available on website at the address <u>http://www.ghgprotocol.org/files/ghgp/tools/co2 CSI Cement Protocol-V2.0.pdf</u> and data from some big Italian plants.

From 2001 to 2004, emission factors are the result of a linear interpolation of CO₂ IEF for 2000 and 2005.

From 2005, emission factors are based on the data reported within the frame of the EPER/EPRTR and EU-ETS. Based on emissions and activity data (which includes the average CaO content in the clinker produced and the use of carbonates and additives) reported and verified under the EU-ETS the resulting emission factor has been fluctuating for the last fifteen years as shown in Figure 4.1: it resulted in a minimum equal to 518 kg CO₂/t clinker in 2008, and a maximum in the period equal to 531 kg CO₂/t clinker in 2007 and a value around 525 kg CO₂/t in the following years. Since 2016 the CO₂ IEF has been ranging between 520÷525 kg CO₂/t clinker, in 2021 the values is 522 kg CO₂/t clinker. The average emission factor varies year per year also as a consequence of the different operating circumstances (e.g. quality of the raw materials and operating conditions) at the Italian clinker facilities.

The information related to activity data and emissions for the clinker facilities reporting to the national ETS system have been processed. The range of uncertainty based on data communicated by the plants is about 5% in the period 2005-2009, about 4% in the period 2010-2015, about 6% in 2016, 5% in 2017 and 3% in 2018 and in 2019, 5.5% in 2020 and 4.6% in 2021.

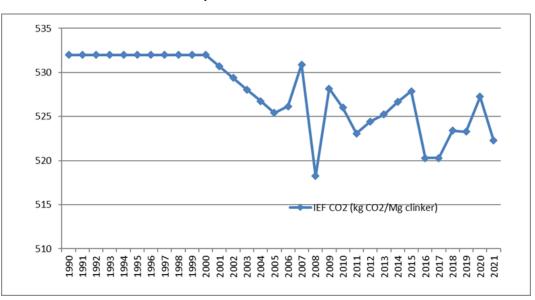


Figure 4.1 CO₂ IEF from decarbonation in clinker production, 1990-2021

In addition to this, Federbeton/AITEC has been reporting the overall consumption of natural raw materials by the national cement industry and also the replacement of natural raw material (either in the raw meal for the clinker manufacture or in the ground mix for the different cement types) with alternative materials in the Italian cement facilities, so:

- Specific consumption of natural raw materials has been varying for the last years;
- The rate of replacement of natural raw materials has been varying for the last years.

In 2021 approximately 7.0% of natural raw material was replaced by about 1.71 Mt non raw materials (0.66 Mt non hazardous wastes and 1.04 Mt secondary raw material) (Federbeton/AITEC[b], 2022). Most of the alternative materials consist of already decarbonized materials. The use of decarbonized material in amounts varying year by year in clinker kilns contributes explaining the fluctuations in the trend of the CO₂ IEF from decarbonization.

In Table 4.5 the amounts of natural raw material consumption for the years 2009-2021 have been reported together with the amounts of secondary raw materials and the replacement rates in the same years.

RAW MATERIALS DEMAND	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021
Natural raw materials (Mt)	43.6	43.4	40.4	34.2	29.8	25.1	23.5	25.4	27.5	25.4	23.7	21.6	24.4
Secondary raw materials (Mt)	1.9	1.8	1.9	2.3	1.9	1.7	1.5	1.6	1.8	1.5	1.6	1.5	1.7
Natural raw material/ clinker (t/t)	1.73	1.72	1.68	1.78	1.76	1.59	1.51	1.72	1.85	1.72	1.57	1.61	1.61
Replacement of natural raw material (%)	4.0	4.3	4.3	6.8	6.7	6.3	6.5	6.4	6.7	6.0	6.7	7.0	7.0

Table 4.5 Replacement of natural raw materials by secondary raw materials at the Italian cement facilities

(source: Federbeton/AITEC, several years[b])

Regarding industry data verification, the available activity data for the cement/clinker production in Italy are consistent to the information supplied by the Italian cement industry association, to data reported under the national PRTR and also to data collected in the frame of the national ETS. Emission data reported under the different obligations are in accordance with all the facilities. The number of clinker facilities reporting under EPRTR and ETS are shown in Table 4.6 together with the corresponding number of operating facilities according to the cement association (AITEC).

Clinker facilities	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021
Reporting to the national PRTR (n)	52	53	53	54	53	50	50	51	47	37	34	32	30	30	29	27	28
Reporting under the national ETS (n)	52	53	54	54	52	52	51	51	48	39	36	32	32	31	31	29	28
Number of clinker manufacturers in Italy (AITEC)	59	59	60	60	58	58	57	56	50	40	37	33	33	32	32	30	28
PRTR/AITEC (%)	88	90	88	90	91	86	88	91	94	93	92	97	94	94	91	90	100
ETS/AITEC (%)	88	90	90	90	90	90	89	91	96	98	97	97	97	97	97	97	100

Table 4.6 Clinker facilities reporting under EPRTR and ETS

In the framework of the EU-ETS register 28 cement facilities reported referred to 2021 whilst 28 reported releases to air under the EPRTR register. These figures out of 28 operating facilities according to Federbeton/AITEC represent the whole national clinker production. Generally, when the number of ETS clinker facilities is lower than Federbeton/AITEC figure, information concerning localization and production capacity is available for the facilities out of the scope of EU-ETS. AITEC reports every year the number of operating cement/clinker facilities in Italy and the cement production of the whole sector. Under the EU-ETS, cement plants communicate emissions and activity data split between energy and processes phases and specifying the amount of carbonates and additives which are constituents of the raw meal complying with a "clinker kiln input" approach; both activity data and emissions are independently verified and certified as requested by the EU-ETS directive. The implied CO₂ emission factor is applied to the total national clinker production.

Basically, CO₂ emissions time series is related to clinker production time series. Specifically, main decreases in the national production of cement industry, which well reflects the trend of the national economy, can be observed for the years 1992-1994; an increase in production can be observed from 1996 to 2001 and from 2002 to 2007, while a significant decrease in the production is observed for 2007- 2009 and 2011-2017 due to the effects of the economic crisis and the significant reduction in the number of authorizations to build between 2005 and 2015 (-84%). A weak increase in the number of new permits to build was recorded also in 2019, whilst the restrictions to fight SARS-COVID-2 Pandemic in 2020 resulted in a new decrease in production at national level. Practically, the same variations can be observed in CO₂ emissions trend. In order to enhance the transparency of the inventory, in Figure 4.2 clinker production and CO₂ emissions time series are shown.

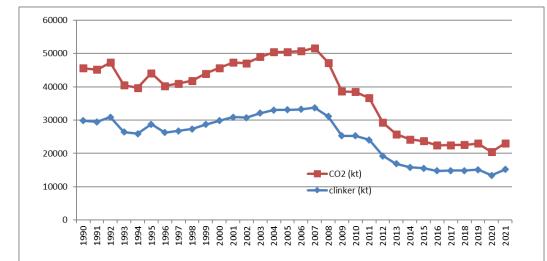


Figure 4.2 Trend of clinker production and CO₂ emissions 1990-2021 (kt)

<u>Lime</u>

CO₂ emissions from lime have been estimated on the basis of production activity data supplied by ISTAT up to 2008 (ISTAT, several years [a]) and by operators in the frame of the ETS reporting obligations from 2009.

ISTAT reported till 2005 lime production data on the national Statistical Yearbook with the footnote explaining that the figure covered 80% of the national total lime production and not including auto produced lime in sugar mills and in the iron and steel plants. From 2005 to 2008 lime productions has been provided to ISPRA for the emission inventory but not published. For the inventory purpose these statistics have been used, properly adjusted as indicated by ISTAT, adding non-marketed lime productions where non-marketed lime is assumed to be equal to the manufacture of lime at iron & steel sites and sugar mills. The information referring to the annual amount of non-marketed lime is supplied by the operators of such facilities under the national pollutant release and transfer register (PRTR). From 2009, only production indexes have been supplied by ISTAT; no other information has been published by ISTAT till 2014 when lime productions for the last years were made available but these data seem not consistent with the production index supplied by the same institute for the same years. For these reasons ETS data has been used from 2009.

All the national lime production plants are part of the EU-ETS and their production data is certified while data published by ISTAT are based, as for clinker and cement production, on a sample survey including production and economical information with quite a low response index and data for not responding plants are estimated by linear interpolation. There is no evidence of lime facilities not included in the ETS, with exception of plants located at sugar mills which are included in the estimates.

CO₂ emissions from lime production and use in other industrial processes (e.g. iron and steel production, sugar mills) have been also considered. Emission factors have been based on detailed information supplied by lime facilities in the framework of the European emission trading scheme and by the national lime industrial association (CAGEMA, 2005). Specifically, the value of the emission factor from 1990-2000 has been officially supplied to the Italian Ministry of Environment, Land and Sea by the industrial association (CAGEMA, 2005), in order to set the national circumstances for the implementation of the European-Emissions Trading Scheme (EU-ETS).

From 2001 to 2004, emission factors are the result of a linear interpolation of CO₂ IEF for 2000 and 2005. From 2005, information available in the frame of the ETS reporting obligation has made activity data (including fuels and raw materials such as carbonates and additives, in compliance with a "lime kiln input" approach) available for the Italian lime industry at facility level together with CO₂ emissions data (combustion and process emissions). Both activity data and CO₂ emissions are certified and independently verified as requested by the EU-ETS legislation.

The CO₂ implied emission factor varies year by year because of the natural raw material fed to the kilns at facility level including different CaO and MgO contents. In Table 4.7, CaO and MgO contents for the years 2009-2021 are reported; these figures refer only to the production plants, excluding autoproduction.

	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021
CaO content (%)	96.9	96.7	96.2	93.6	94.4	89.8	90.7	97.1	97.7	95.5	88.8	84.1	82.3
MgO content (%)	3.1	3.3	3.8	6.4	5.6	10.2	9.3	2.9	2.3	4.5	11.2	15.9	17.7

Table 4.7 CaO and MgO oxides content for lime production (%)

Other processes uses of carbonates (Limestone and dolomite)

CO₂ emissions from other process uses of carbonates are related to the use of limestone and dolomite in bricks, tiles and ceramic production, paper production and also in the treatment of flue gases from power

plants. In Italy only limestone is used for the activities included in this category, brick and tiles, fine ceramic, and pulp and paper production and power plant flue gases treatment, while no dolomite use is documented. In the present submission the whole timeseries for CO₂ emissions from other uses of soda ash are included and allocated under this category, based on the activity data and emissions information reported by facilities in the scope of the national ETS. In 2021 about 85.2% of the total carbonates accounted for in this category has been used in the production processes of bricks and tiles, about 6.3% for the fine ceramic material, 7.0% in the treatment of flue gases in the power plants, about 0.3% in the paper industry and 1.1% is the share of the other uses of soda ash.

 CO_2 emissions have been estimated for the whole time series on the basis of the IPCC default value for limestone equal to 0.44 t/t; the overall CO_2 emission time series is mainly driven by the CO_2 emissions from the use of limestone in the bricks and tiles sector.

In the CRFs the total amount of carbonates accounted for in this category used in these processes is reported.

Detailed production, consumption, activity data and emission factors have been supplied in the framework of the European emissions trading scheme and relevant data are annually provided by the Italian bricks and tiles industrial association and by the Italian ceramic industrial associations (ANDIL, 2000; ANDIL, several years; ASSOPIASTRELLE, several years; ASSOPIASTRELLE, 2004, Confindustria Ceramica, several years). Even though the EU ETS has not been in operation for the whole time-series relevant information concerning the use of carbonates was made available in the communications to the Italian Ministry for Environment, Land and Sea to get the overview of the sector for the national ETS to be implemented.

Mineral (stone) wool production has been also taken into account and CO₂ emissions have been estimated but they are included under Energy sector because it is not possible to identify the share of emissions related to the process aspects and the share of emissions related to the energy aspects (the IPCC 2006 Guidelines do not provide any indications concerning this issue). Mineral wool production in Italy took place in Sardinia at one facility during the years from 1993 to 2009 where the production was considered not profitable any longer and the facility was closed down.

<u>Glass</u>

CO₂ emissions from glass production have been estimated taking into account, from 1990 to 2004, production data published by ISTAT on the National Statistical Yearbooks (ISTAT, several years [a]); from 2005 ISTAT statistics have not been available anymore and consistent figures published by the national glass industry association have been used (Assovetro, several years). Glass wool production is included for the whole time series.

In Table 4.8, the complete time series of the national inventory for glass production is reported for the different types of glass.

Туре	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
Flat glass	816,406	879,750	1,009,367	1,183,310	921,619	838,019	870,440	1,054,763	1,034,234	965,859	1,190,251
Container glass	2,609,826	3,094,893	3,417,851	3,716,509	3,656,425	3,936,885	4,177,711	4,287,283	4,485,190	4,429,110	4,702,984
Glass wool	105,029	119,120	139,421	129,958	115,332	86,929	87,208	98,805	99,552	88,319	105,574
Other glass	247,684	165,213	362,970	298,000	369,730	381,900	403,520	420,102	414,087	392,316	454,572

Table 4.8 Glass production time series (Mg)

Since 2000, information provided by operators under the national ETS has been used to develop emissions estimation and relevant CO₂ emission factors. CO₂ emissions from the decarbonation, considering the national circumstances concerning the use of cullets (recycled scrap glass which does not

cause CO₂ emissions) in the production processes, have been estimated. In 2021, CO₂ emission factor has been estimated equal to 95 t CO₂/t, based on the information supplied under the European emissions trading scheme by 46 out of 53 facilities.

4.2.3 Uncertainty and time-series consistency

The uncertainty in CO₂ emissions from cement, lime, other process uses of carbonates and glass production is estimated to be equal to 10.4% from each activity, resulting from 3% and 10% for activity data and emission factor, respectively. Official statistics of activity data for these categories are quite reliable when compared to the activity data reported by facilities under different data collections, thus leading to the considered uncertainty level for the activity data. The uncertainty level for emission factors is equal to the maximum level reported in the IPCC Good Practice Guidance (IPCC, 2000) for the cement production; this is a conservative estimation because the range of values of the emission factors of the Italian cement plants would lead to a lower uncertainty level. Montecarlo analysis has been applied to estimate uncertainty of CO₂ emissions from cement for 2009. The resulting figure is equal to 10.0%. Normal distributions have been assumed for the parameters and information deriving from the ETS has been considered in defining the shape of the distributions. A summary of the results is reported in Annex 1. In Tables 4.9 and 4.10, the production of mineral products and CO₂ emission trend is reported.

Activity data	1990	1995	2000	2005	2010	2015 <i>kt</i>	2016	2017	2018	2019	2020	2021
Cement												
production (decarbonizing)	29,786	28,778	29,816	33,122	25,239	15,527	14,762	14,822	14,820	15,119	13,389	15,162
Glass (decarbonising)	3,779	4,259	4,930	5,328	5,063	5,244	5,347	5,541	5,914	6,033	5,876	6,453
Lime (decarbonising)	2,583	2,873	2,760	3,447	2,789	2,348	2,328	2,510	2,518	2,420	2,178	2,623
Other processes use												
of carbonates (Limestone and dolomite use)	5,781	5,292	5,143	6,087	3,580	1,886	1,712	1,619	1,524	1,426	1,230	1,385

Table 4.9 Production of mineral products, 1990 - 2021 (kt)

Table 4.10 CO₂ emissions from mineral products, 1990 – 2021 (kt)

CO ₂ emissions	1990	1995	2000	2005	2010	2015	2016	2017	2018	2019	2020	2021	
	kt												
Cement production (decarbonizing)	15,846	15,310	15,862	17,403	13,276	8,196	7,680	7,711	7,757	7,912	7,059	7,919	
Glass (decarbonizing)	453	511	611	768	559	534	512	552	604	597	569	614	
Lime (decarbonizing)	1,877	2,090	2,013	2,456	1,932	1,643	1,649	1,795	1,847	1,776	1,611	2,003	
Other processes use of carbonates (Limestone and dolomite use)	2,544	2,328	2,263	2,678	1,575	830	753	712	671	627	541	609	

Emission trends are generally related to the production level, which has been decreasing for the last years mainly because of the economic recession. In particular, the trend of carbonates used in power plants for flue gases treatment, is driven by the use of coal in the operating power plants.

4.2.4 Source-specific QA/QC and verification

CO₂ emissions have been checked with the relevant industrial associations. Both activity data and average emission factors are also compared every year with data reported in the national EPER/E-PRTR registry and in the European emissions trading scheme (EU-ETS). Under the EU-ETS, operators are requested to report activity data and CO₂ emissions as information verified and certified by auditors who check for consistency to the reporting criteria.

Activity data and emissions reported under EU-ETS and EPER/EPRTR are compared to the information provided by the industrial associations. In particular, comparisons have been carried out for cement, lime, limestone and dolomite, and glass sectors. The general outcome of this verification step shows consistency among the information collected under different legislative framework and the information provided by the relevant industrial associations. Information reported under the EU-ETS has allowed for estimating CO₂ emissions from other uses of soda ash, the whole time series is included in the present submission and allocated under the "Other processes use of carbonates" category.

4.2.5 Source-specific recalculations

Recalculations occurred for the categories included in "Mineral Products" for this inventory submission, specifically CO₂ from Lime (decarbonizing) from 2014 to 2020 was recalculated due to an update of the activity data and emissions data for the same years, as shown in Table 4.11.

Table 4.11 Recalculation (%) in CO2 from Lime

	2014	2015	2016	2017	2018	2019	2020
CO ₂							
Lime (decarbonizing)	5.01	5.36	5.83	5.60	6.18	5.29	5.08

4.2.6 Source-specific planned improvements

Further investigations concerning the replacement of natural raw material in lime production are planned.

4.3 Chemical industry (2B)

4.3.1 Source category description

 CO_2 , CH_4 , N_2O , HFCs and PFCs emissions from chemical productions are estimated and included in this sector.

<u>Adipic acid</u>

Adipic acid production is a multistep process which starts with the oxidation of cyclohexanol using nitric acid and Cu catalysts according to the following reaction:

$C_6H_{11}OH + 2HNO_3 \rightarrow HOOC(CH_2)_4COOH + N_2O + 2H_2O + energy$

Adipic acid is then used to produce nylon or is fed to other production processes. Together with adipic acid, N₂O is produced and CO₂ is one of the by-products (Radici Chimica, 1993).

Emissions data from adipic acid production are provided and referenced by one plant, which is the only producer in Italy (Radici Chimica, several years). Specifically, for N₂O, in 2020, adipic acid production is a key category at trend assessment, both with Approach 1 and Approach 2, with and without LULUCF. These emissions account for 21% of total N₂O emissions in 2005, 2.4% in 2010, 0.6% in 2015, 0.41% in 2020 and 0.21% in 2021; the notable decrease in share is due to the fact that the technology to reduce N₂O emissions has become fully operational at the existing producing facility since 2007.

N₂O emissions have relevantly decreased thanks to the implementation of a catalytic abatement system (pilot scale plant). The use of thermally stable catalysts in the pilot plant has allowed the treatment of highly N₂O concentrated flue gas from the adipic acid production plant, reducing the volume of treated gas and the size of the pilot plant itself. The abatement system is generally run together with the adipic acid production process. In 2004 this system was tested for one month resulting in complete decomposition of N₂O; in 2005 the catalytic process was started only at the end of the year because of technical changes in the system; in 2006 the abatement system had been operating continuously for 9 months (3 months were needed for maintenance and technical changes) leading to the decomposition of 92% (efficiency of the abatement system while in operation) of N₂O emissions. Since 2007 the operating time has been about 11 months (about one month was needed for maintenance operations) and the N₂O emissions abatement system while in operation was achieved thanks to technical improvements implemented in the production process during 2010:

- the number of scheduled outages of the adipic acid production process is reduced (from about 1/month to 2/year);

- the abatement system is set to reach the operating level more quickly than in the previous years. These two achievements allow reducing the significance of N_2O peak emissions related to the start&stop phases. Moreover, an emission monitoring and recording system was implemented in compliance with Decision 2007/589/EC (Radici Chimica, 2013).

Also, CO₂ emissions are estimated from this source.

Ammonia production

In 2021 CO₂ emissions from ammonia production are also a key category, at trend assessment with the Approach 1without LULUCF.

In Italy only one facility has been producing ammonia since 2009 because of the resizing of the production at national level after the crisis of the largest fertilizer producer, Enichem Agricoltura, and as a consequence of the international financial crisis in the last years. Two facilities had been producing ammonia in Italy up to 2008, in 2009 one plant stopped the production and was decommissioned in the following years. Ammonia is obtained after processing in ammonia converters a "synthesis gas" which contains hydrogen and nitrogen. CO₂ is also contained in the synthesis gas, but it is removed in the decarbonising step within the ammonia production process. Part of CO₂ is recovered as a by-product and part is released to atmosphere. Recovered CO₂ can either be used as input for different production processes (e.g. urea or calcium nitrate lines; liquefaction of CO₂ plant) on site or can be sold to technical gas manufacturers. The results of the investigation concerning the recovered CO₂ were accounted for in the previous submissions: operators provided the information used to revise both the emissions and the EF time series (YARA, several years). The amount of recovered CO₂ from ammonia production (which is fed to urea production processes) has been also reported in the CRF since the last submissions. Since 2021 ammonia manufacturing has been experiencing planned stops at plant level due to the rising costs of energy and natural gas as a consequence of Russia-Ukraine war.

<u>Nitric acid</u>

In early nineties seven facilities manufactured nitric acid, but since 2003 the production has been carried on only in three plants. In 2008 another plant stopped the production of nitric acid, so since 2009 nitric acid production has been carried out in two plants only. Nitric acid is produced from ammonia by catalytic oxidation (with air) of NH₃ to NO₂ and subsequent reaction with water. Currently the reactions involved take place in low and medium pressure processes.

In 2021, N₂O emissions from nitric acid production are key source for trend assessment with both Approach 1 and 2 without LULUCF, and trend with Approach 1 with LULUCF, as they show a relevant decrease in emissions from 1990 due to a reduction in production. Moreover, as far as YARA facility is concerned, the decrease in N₂O emissions is also related to the implementation of catalytic N₂O decomposition in the oxidation reactors a YARA De-N₂O patented technology, based on the use of CeO₂ catalyst (YARA, several years), while the improvements in the monitoring system of N₂O emissions at the other facility has been affecting N₂O emissions estimation time series for the very last years.

Carbon black

Three facilities have been carrying out this production which consists basically on cracking of feedstock oil (a mixture of PAH) at 1200 - 1900 °C. Together with black carbon, tail gas is a byproduct of the process. Tail gas is a mixture of CO, H₂, H₂O, NO_x, SO_x and H₂S; it is generally burnt to reduce the emissions to air and to recover energy to be used in the production process.

CO₂ emissions from carbon black production have been estimated on the basis of information supplied directly by the Italian production plants also in the framework of the EU ETS for the last years.

Ethylene, Ethylene oxide, Propylene, Styrene

Ethylene, ethylene oxide, propylene and styrene productions belong to the organic chemical processes. In particular, ethylene is produced in petrochemical industry by steam cracking to manufacture ethylene oxide, styrene monomer and polyethylenes. Ethylene oxide is obtained via oxidation of ethylene and it is largely used as precursor of ethylene glycol and in the manufacture of surfactants and detergents. Propylene is obtained by cracking of oil and it is used to manufacture polypropylene but also acetone and phenol. Styrene, also known as vinyl benzene, is produced on industrial scale by catalytic dehydrogenation of ethyl benzene. Styrene is used in the rubber and plastic industry to manufacture through polymerisation processes such products as polystyrene, ABS, SBR rubber, SBR latex.

Except for ethylene oxide production, which has stopped in 2002, the other productions of the abovementioned chemicals still occur in Italy.

As far as ethylene, ethylene oxide and propylene are concerned, Syndial Spa (former Enichem) and Polimeri Europa (Syndial, several years; Polimeri Europa, several years) were the main producers in Italy up to 2006. Since 2007 Polimeri Europa (the parent company name changed intoVersalis in 2012) has become the main producer for those products in Italy, while it has been the main producer of styrene since 2002.

Titanium dioxide

Titanium dioxide (TiO₂) is the most used white pigment especially for paint and plastic industries. As described also in the IPCC Guidelines, two main production routes are available:

- the chloride route, which has both "combustion" and "process" emissions;
- the sulphate process, whose emissions are only related to the combustion of fuels.

In Italy there is only one facility where this production occurs and titanium dioxide is produced through the sulphate process. The "sulphate process" involves the use of sulphuric acid to concentrate the input raw mineral in terms of titanium dioxide content, then selective precipitation and calcination allow getting the final product. Main process chemical reactions can be summarized like in the following box:

$$\begin{split} \text{FeTiO}_3 + 2\text{H}_2\text{SO}_4 \rightarrow \text{FeSO}_4 + \text{TiO}.\text{SO}_4 + 2\text{H}_2\text{O} \\ \text{TiO}.\text{SO}_4 + 2\text{H}_2\text{O} \rightarrow \text{TiO}_2.\text{H}_2\text{O} + \text{H}_2\text{SO}_4 \\ \text{TiO}_2.\text{H}_2\text{O} + \text{heat} \rightarrow \text{TiO}_2 + \text{H}_2\text{O} \end{split}$$

In the past submissions CO₂ emissions from titanium dioxide production were estimated on the basis of information (activity data and CO₂ emissions level) supplied directly by the Italian manufacturer in the framework of the reporting obligation to the EPRTR and EU-ETS registers. The estimates for the whole time series were wrongly accounted under IPPU (2B6) thus leading to double accounting. Since the last submissions the time series for CO₂ emissions is not accounted under 2B6 and the notation key "NO" has been reported in the CRF because no process emissions are originated by the sulphate process.

Caprolactame production

Caprolactame is a monomer used in the industrial production of nylon-6. It can be obtained by catalytic oxidation of toluene and cycloexane. The process releases N₂O. N₂O emissions from caprolactame production have been estimated and reported and are related to only one producing plant, which closed in 2003.

Calcium carbide production and use

Calcium carbide production process takes place in electric furnaces, CaO and coke are fed to the furnace and the product is obtained according to the following reaction:

$CaO+3C \rightarrow CaC_2+CO$

CARBITALIA S.p.A. is the only facility which can operate calcium carbide production in Italy (CARBITALIA S.p.A., 2009). It produced calcium carbide up to 1995, when it stopped the production because of the increasing price of electricity. The plant still exists and it is maintained, but since 1995 it has just been supplying calcium carbide bought abroad. About 95% of the total CaC₂ sold in Italy is used to manufacture acetylene, the remaining share is bought by foundries for the desulphuration of steel or spheroidal pig iron (CARBITALIA S.p.A., 2021). CO₂ emissions from manufacture and use of calcium carbide have been estimated and accounted for along the whole time series.

Soda Ash production and use

In Italy only one facility operates soda ash production via Solvay process. Solvay process allows producing soda ash through the conversion of sodium chloride into sodium carbonate using calcium carbonate and ammonia. CO₂ is released and calcium chloride is the waste. Up to the second half of year 2000 in the unit for the production of peroxidates there was one sodium carbonate line and a sodium perborate line which was then converted to sodium carbonate production. Soda ash is also used in glass production processes.

Fluorochemical production

The sub-sector fluorochemical production consists of two sources, "By-product emissions" and "Fugitive emissions". PFC emissions from fluorochemical production is a key source at level assessment using Approach 2 with LULUCF; also HFC emissions is a key source at trend assessment, only using Approach 2 without LULUCF.

The production of halocarbons and SF₆ took place in two facilities in Italy up to 2008 (Spinetta Marengo and Porto Marghera). Since the very beginning of 2005 the plant in Spinetta Marengo has not been producing SF₆ any longer. In the first quarter of 2008 the production plant at Porto Marghera has stopped its activity, since then there is only one facility in Italy where HCFC22 is produced.

Within by-product emissions, HFC23 emissions are released from HCFC22 manufacture, CF₄ emissions are released from SF₆ and HCFC22/TFM productions, whereas C_2F_6 and HFC143a emissions are released from the production of C_3F_6 (and also CFC115) and HFC134a, respectively. Production of CFC115 was carried out only in one facility and stopped in 1998. Since the very beginning of 2005 Spinetta Marengo plant has not been producing SF₆ any longer.

Production of HFC125, HFC134a, HFC227ea and SF₆ lead to fugitive emissions of the same gases. In particular, production of HFC227ea only occurred in 1999.

The share of F-gas emissions from the fluorochemical production in the national total of F-gases was 42.7 % in the base-year (1990), and 1.6% in 2021.

4.3.2 Methodological issues

<u>Adipic acid</u>

Italian production figures and emission estimates for adipic acid have been provided by the process operator (Radici Chimica, several years) for the whole time series. Emissions estimates provided by the operator are based on the IPCC default EF, so the values provided and the estimates in the Italian emissions inventory are, basically, the result of the same methodology.

More specifically, N₂O emissions from adipic acid production (category 2B3) have been estimated using the default IPCC emission factor equal to 0.30 kg N₂O/kg adipic acid produced, from 1990 to 2003.

Since 2004 the operator has started to study how to introduce an abatement system; although emission estimates provided by the operator have still been based on the IPCC default emission factor (0.30 kg N_2O/kg adipic acid produced), the operating hours of the abatement system and the abatement rates have also been included in the estimation process. The abatement system is generally run together with the adipic acid production process. In 2004, the N_2O catalytic decomposition abatement technology has been tested so that the value of emission factor has been reduced taking into account the efficiency and the time, one month, that the technology operated.

From the end of 2005 the abatement technology is fully operational; the average emission factor in 2006 is equal to 0.05 kg N₂O/kg adipic acid produced and the abatement system had been operating continuously for 9 months; since 2007 the average emission factor has been 0.03 kg N₂O/kg adipic acid produced and the operating time of the abatement system has been 11 months.

Technical improvements in operating the production process and the abatement system have allowed achieving significant reduction in N₂O emissions since 2009 (Radici Chimica, 2013): in 2010 the average emission factor was 0.018 kg N₂O/kg adipic acid produced while in 2011-2013 the average EF is around 0.005 kg N₂O/kg adipic acid produced with the abatement rate exceeding 98%.

In 2015 the average EF is around 0.0045 kg N₂O/kg adipic acid while in 2021 is 0.0018 kg N₂O/kg adipic acid.

Thus, both for the period 1990-2005 and from 2006 up to 2011 the estimates are provided according to the IPCC Good Practice Guidance (default EF has been used when no abatement system was operational; abatement rates have been considered in estimating emission values since 2006). The operator reports also under EPER/E-PRTR both adipic acid production and the N₂O emissions related to this production; adipic production and N₂O emissions have been also reported by the operator to the national competent authority for the ETS (the facility was included in the ETS system in 2013) together with additional information such as abatement rates and operating times. Since 2011 the implementation of a new monitoring system has also enabled the reporting of better-quality emissions data in terms of nitrogen and nitrous oxides emissions.

Based on information from the national PRTR and ETS, EFs are calculated for the plant, the resulting value is checked and verified by the formula included in the following box (based on the IPCC default EFs for adipic acid production, abatement rate and operating time of the abatement technology at the facility). In the formula the average emission factor is calculated subtracting from the default EF (0.300 kg N₂O/kg adipic acid produced) the default EF multiplied by the abatement technology rate and by the operating time factor, parameters and resulting EF values are indicated for the years from 2005 to 2011.

The EFs submitted for the adipic acid production in the CRF and the EFs calculated for the plant in Table 4.12 are practically the same along those years.

Parameter/Year	2005	2006	2007	2008	2009	2010	2011
EFp (IPCC default)	0.3	0.3	0.3	0.3	0.3	0.3	0.3
Α	0.925	0.9212	0.965	0.986	0.986	0.986	0.986
Т	0.14	0.8825	0.93	0.91	0.91	0.952	0.999
EFs (average EF)	0.26	0.056	0.031	0.031	0.031	0.019	0.005

Values resulting according to the following formula

(1-A*	T)*EFp	= EFs
-------	--------	-------

Where:

A= Abatement rate provided by the operator

EFp= N₂O Emission Factor for Adipic Acid production (kg N₂O /kg adipic acid prod)

T = operating time of the abatement system/ operating time of the adipic acid production line

EFs = N₂O actually released Emission Factor submitted (kg N₂O released/kg adipic acid prod)

CO₂ emissions from this source have been estimated according to the information communicated by the operator. Up to 2019 submission, the estimates were calculated following the Tier 2 approach, since the 2020 submission and following the ERT recommendation during the 2019 in country review, Tier 2 is implemented up to 2012 estimates while Tier 3 is reported for the estimates related to the last part of the time series (from 2013 onwards), because AD and CO₂ emissions reported by the operator in the framework of the national ETS have been used. Measurements of plant specific information under the national ETS are not available for the period 1990-2012, so Tier 3 cannot be implemented for the whole time series, but the consistency of the time series is not affected because there is only one operator for the national production of adipic acid in Italy.

<u>Ammonia</u>

Ammonia production data are published in the international industrial statistical yearbooks (UN, several years), national statistical yearbooks (ISTAT, several years [a]) and from 2002 they have been checked with information reported in the national EPER/E-PRTR registry. More in detail for 1990-1999 the amount of ammonia produced was published on the UN "Industrial Commodity Statistics Yearbook" (UN, several years), while for the years 2000 and 2001 production indexes published by ISTAT were applied. Since 2002 national production of ammonia in Italy has been collected at facility level. The number of ammonia

facilities in Italy is known along the whole time series so it is possible to make sure that the national emissions estimation from this source is consistent to the sum of emissions from the ammonia facilities.

Since 2009 only one facility has been producing ammonia in Italy and reporting data to the national PRTR.

Recovered CO₂ has been investigated with the cooperation of the operators and the resulting information has been used to revise the whole CO₂ emission time series and the emission factors. The analysis has allowed understanding that CO₂ emissions recovered from ammonia production are used to produce urea and technical gases. According to 2006 IPCC Guidelines the CO₂ recovered for technical gases should be accounted for emission and included in the estimate while that for producing urea should be reported in the relevant consumption categories. In particular, for the years 1990-2001, CO₂ emission factor has been calculated on the basis of information reported by the production plants for 2002 and 2003 in the framework of the national EPER/E-PRTR registry and considering also the amounts of CO₂ recovered since the beginning of the recovery operations. CO₂ reported to the national EPER/E-PRTR registry has been used for the previous years under the assumption, verified with the operator, that no change in technology at facilities have occurred along the period (YARA, 2007). Since 2002, the average emission factors result from data reported by the plants in the national EPER/E-PRTR and calculated taking in account the gas consumed for the reforming process; the plant supplies the recovered CO₂ detailed data allowing the proper application of the IPCC methodology.

Because of production of Urea and Ammonia are separate processes, when they are carried out in the same facility the CO₂ EF for Ammonia production, according to the IPCC 2006 GL, is based on the amount of CO₂ released from the production of ammonia, the amount of CO₂ recovered and sold as technical gas and the amount of ammonia produced. The recovery of CO₂ fed to Urea production, instead, has to be subtracted in the calculation of the EF. The resulting CO₂ EF could vary according to the decision of the operators in terms of increase/decrease of CO₂ recovered to be sold as technical gas or fed to Urea production. For example, in 2013-2015 the amounts of CO₂ fed to Urea production and the amount of CO₂ for technical gas decreased, consequently the overall amount of CO₂ released from ammonia production of ammonia increased in 2014, then it fell in 2015 while in 2019 the amount produced was to the same as in 2013.

Table 4.13 shows the time series for the average CO₂ emission factor.

	1990- 2001	2005	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021
EF (t CO ₂ /t ammonia production)	1.30	1.32	1.27	1.18	1.08	1.16	1.17	1.25	1.14	1.09	1.11	1.14	1.10	1.19

Table 4.13 Ammonia production, time series for the average CO₂ EF (t CO₂/t ammonia production)

Following the ERT recommendation of the 2019 in country review, Italy investigated the differences between apparent consumption of urea and the final uses of urea at national level.

Apparent consumption can be calculated starting from the production, import and export of urea at national level, according to the equation P+I-E=apparent consumption (where: P is production; I means imports and E are the exports). The total amount of urea manufactured is supplied by the operator, while the amounts referring to import and exports can be obtained from the national institute of statistics dataset regarding the statistics about the foreign commercial exchange (COEWEB, ISTAT, several years).

The operator of the facility producing ammonia and urea has provided us with the final markets of urea in Italy and an estimation of those market shares in 2017: SCR engines (7.6%); NOx abatement systems (2.8%); Industry ("industry-no-glue", such as cosmetics and instant cold packs, and "industry-glue", 15.1%)

and fertilizers (74.5%). The review of the final urea market uses has been carried out also for the subsequent years, the exercise confirmed the completeness of the Italian inventory. As for 2021, the urea final market uses were: SCR engines (14.2%); NOx abatement systems (2.7%); Industry ("industry-no-glue", mainly instant cold packs, and "industry-glue", 8.1%) and fertilizers (74.5%).

Natural gas is used as feedstock in the ammonia production plants and the amount of fuel used is included in the energy balance under the no energy final consumption sector (see Annex 5), therefore double counting does not occur.

Nitric acid

With regard to nitric acid production (2B2), production figures at national level are published in the national statistical yearbooks (ISTAT, several years [a]), while at plant level they have been collected from industry (Norsk Hydro, several years; YARA, several years; Radici Chimica, several years). The number of nitric acid facilities in Italy is known along the whole time series so it is possible to make sure that the national emissions estimation from this source is consistent to the sum of emissions from the nitric acid facilities. In 1990 there were seven production plants in Italy; three of them closed between 1992 and 1995, and another one closed in 2004, one more closedown in 2008 has left two plants still operating.

The N₂O average emission factors are calculated from 1990 on the basis of the emission factors provided by the existing production plants in the national EPER/E-PRTR registry, applied for the whole time series, and default IPCC emission factors for low and medium pressure plants attributed to the plants, now closed, where it was not possible to collect detailed information. Thus, N₂O emissions are estimated at plant level also considering the operating unit level, if necessary. Activity data have been collected at plant level for the whole time series. Unit specific default IPCC EFs have been used for plants closed in the nineties because it was not possible to collect more detailed information. For the other plants, data supplied in the framework of the EPER/EPRTR registry have been used: for the years 1990-2000 EFs at unit level have been calculated as an average of 2001-2004 data provided by operators in the EPER/EPRTR register. For the years 2001-2012 EPRTR data were used to calculate the national EF; since the 2020 inventory submission the activity data and the emissions reported under ETS from 2013 onwards have been used thus moving from a Tier 2 approach to a Tier 3 approach as requested by the ERT during the in-country review (2019). Tier 3 cannot be implemented along the whole time series because the nitric acid facilities entered the national ETS in 2013 and there isn't enough information available to support a Tier 3 for years before 2013. The implementation of different Tiers along the time series does not affect the consistency of the time series because there are only two operators for the national production of nitric acid in Italy both reporting the same AD under the national EPRTR and ETS registers.

Table 4.14 Nitric acid production, time series for the average N ₂ O EF (kg N	N2O/t nitric acid production)
--	-------------------------------

	1990	2007	2008	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021
EF (kg N ₂ O/Mg nitric acid)	6.49	7.08	2.29	1.21	1.32	1.11	0.86	0.40	0.31	0.39	0.49	0.42	0.34	0.29	0.22

Relevant reductions in N₂O emissions have been observed since 2008. Specifically, in 2008 the implementation of catalyst N₂O abatement technology in one of the major production plants (i.e. in one unit of that plant) has led to a significant decrease in total N₂O emissions from nitric acid production, consequently a relevant reduction in the IEF can be observed too (YARA, several years) as shown in table 4.14: the implied emission factor for 2008 is in fact 2.29 kg N₂O/Mg nitric acid production (the abatement rate in one plant was 82% so far); in 2010 the implied emission factor is 1.21 kg N₂O/Mg nitric acid production of the abatement technology in the other unit of the same producing facility (YARA, several years) and to

the technical improvements implemented in 2011 as far as monitoring of emissions is concerned at the second nitric acid facility (Radici Chimica, 2013). Sampling circumstances at the facility may affect the reported N₂O emission values: sampling in times very close to catalyst exhaustion generally leads to higher N₂O concentration in the process flue gases, this seems to have occurred for N₂O emissions in 2011 according to the operator (Radici Chimica, several years).

Caprolactame

N₂O emissions from caprolactame have been estimated on the basis of information supplied by the only plant present in Italy, production activity data published by ISTAT (ISTAT, several years [a]) and production and emission data reported in the national EPER/E-PRTR registry. For the years 2002 and 2003 activity data and emissions were reported by the operators to the national EPER register. For 1990-2001 no facility level specific information was available for the inventory team, only the amount of caprolactame manufactured in Italy was known. Based on the 2002 emission factor and after discussion with the technical expert at the facility an emission factor equal to 0.3 kg N₂O/Mg caprolactame production was assumed for 1990-2001. The plant closed in 2003.

<u>Carbon Black</u>

 CO_2 and CH_4 emissions from carbon black production process have been estimated with a Tier 2 approach and plant specific data. Plant specific information (AD and emissions) has been supplied by the Italian production facilities in the framework of the national EPER/E-PRTR registry and the European emissions trading scheme, total AD and total emissions allow for calculating the EFs values to be used in the estimation process.

In 1996 a change in the production technology in the existing plants caused a reduction of CH₄, NMVOC, NO_x, SO_x and PM₁₀ emissions. As for CH₄ emissions, in the present submission 2006 IPCC Guidelines default value for CH₄ emission factor (manufacturing process with thermal treatment) has been applied for this category and considered for the years since 1996 due to the performance of additional QA/QC procedures (specifically, the results of the technical review in the framework of Article 19(1) of the European Regulation No 525/2013). Table 4.15 include the values of the implied emission factor for CO₂ (t CO₂/t carbon black production) from 2005 to 2021.

	2005	2010	2013	2014	2015	2016	2017	2018	2019	2020	2021
EF (t CO ₂ /t Carbon black)	2.56	2.48	2.46	2.32	2.24	2.25	2.35	2.24	2.26	2.27	2.21

Ethylene, Ethylene oxide, Propylene, Styrene

Ethylene, ethylene oxide, propylene and styrene productions belong to the organic chemical processes, which are source of methane emissions.

For ethylene activity data have been provided by the Italian producers, specifically: for 1990-2001 by the sectoral industrial association (Unione Petrolifera, several years) and since 2002 by the manufacturing companies (Syndial, several years; Polimeri Europa/Versalis, several years). For ethilene oxide activity data have been provided by the manufacturing company for the whole time series (Enichem, several years); this production stopped in 2001. Propylene production activity data are reported in the UN "Industrial Commodity Statistics Yearbook" (UN, several years) for the years 1990-1994; since 1995 data have been provided by the manufacturing companies (Enichem, several years; Syndial, several years; Polimeri Europa/Versalis, several years). Regarding Styrene, for the years 1990-1994, UN international statistics

have been used (UN, several years). From 1995 the amount of styrene is supplied every year to the inventory team by the Italian producer at plant level (Enichem, several years; Polimeri Europa/Versalis, several years).

For ethylene and propylene production, CH₄ emission factor is calculated, for the whole time series, on the basis of the EPRTR data submitted by the plants. In the framework of the E-PRTR registry, facilities manufacturing ethylene in Italy reported activity data and emissions following the E-PRTR classification. In particular, for these plants, CH₄ emissions, for these productions, were below the reporting threshold (which for methane is set to 100 t/year). Assuming that emissions of each plants were equal to the maximum value (threshold), 100 t/year, the emission factor resulted in 0.085 kg/t; this value has been used along the whole time series.

For Styrene CH₄ emissions, no specific information concerning the years 1990-1994 was available, so the EMEP/CORINAIR default emission factor (EMEP/EEA, 2007) has been applied (0.025 kg/t equal to 10% of total VOC emissions). Based on the information included in the Environmental Reports by the Italian producer (Enichem, several years), and confirmed by the operators, CH₄ emissions did not occur from 1995.

Methane emission factor for ethylene oxide production used for the whole time series (1990-2001) is equal to 6.841 kg/t as supplied by the air and waste management association (APEM, 1992).

Titanium dioxide

Titanium dioxide (TiO₂) is one of the most widely used white pigments with the main application in paint manufacture and in other relevant sectors of the manufacturing industry (e.g. plastic industry). Two main production routes are available: the chloride route, which has both "combustion" and "process" emissions; the sulphate process, whose emissions are only related to the combustion of fuels. The sulphate process, in facts, involves the use of sulphuric acid to treat the raw material and obtain the final product (TiO₂), according to the following chemical reactions:

$$\begin{split} \text{FeTiO}_3 + 2\text{H}_2\text{SO}_4 &\rightarrow \text{FeSO}_4 + \text{TiO}.\text{SO}_4 + 2\text{H}_2\text{O} \\ \text{TiO}.\text{SO}_4 + 2\text{H}_2\text{O} &\rightarrow \text{TiO}_2.\text{H}_2\text{O} + \text{H}_2\text{SO}_4 \\ \text{TiO}_2.\text{H}_2\text{O} + \text{heat} &\rightarrow \text{TiO}_2 + \text{H}_2\text{O} \end{split}$$

In Italy there is only one facility where titanium dioxide production occurs. Emissions are estimated according to the Tier 2 approach and plant specific data are used to develop the estimates. The plant operator supplies the amount of TiO₂ produced and the emissions levels, so the average EF can be calculated and used for the inventory purposes. Activity data and emissions are provided by the framework of the EPRTR register. The data are supplied in compliance with the methodologies indicated in the EPRTR Guidance Document (and to the national PRTR guidance).

The facility concerned is also in the scope of the environmental permitting process; the competent authorities set a control and monitoring plan (stating which parameters and how to monitor them), the operators have to comply with the plan and the information resulting from the data collection for the plan are also used for the reporting to EPRTR. IPCC methodologies are referenced within the guidance documents as part of the methodologies to measure/calculate/estimate the information to the EPRTR. Information related only to the boiler activity is reported to the EU-ETS.

Additional information concerning the type of production route implemented at the facility was obtained and revealed that only the sulphate process is implemented at the titanium dioxide facility. In the present submission the time series for CO₂ under 2B6 was replaced by the notation key "NO" in the CRF because the sulphate process does not lead to process emissions. CO₂ emissions from fuels combustion in titanium

dioxide production by sulphate process occur but they have to be accounted for under the "Energy" sector.

Calcium carbide

CO₂ emissions from calcium carbide production process and use have been estimated on the basis of the activity data provided by the sole Italian producer/retailer (CARBITALIA SPA, 2021). Activity data relating to the manufacture of calcium carbide are referred to the years from 1990 to 1995 when the production stopped; activity data concerning the use of calcium carbide have been provided for the whole time series too. The default IPCC CO₂ emission factors (IPCC, 2006) have been used to estimate the emissions from manufacture and use along the whole time series.

<u>Soda ash</u>

CO₂ emissions from soda ash production have been estimated on account of information available about the Solvay process (Solvay, 2003), which is the technology applied for the production of soda ash in Italy, whereas those from soda ash use are included in glass production.

Soda ash production has been carried out at one facility in Italy; the facility is included in the scope of the national EPER/PRTR so the information concerning activity data and emissions of this facility has been made available for the years from 2002 up to now. For 1990-2001 the amount of soda ash produced was published on the UN "Industrial Commodity Statistics Yearbook" (UN, several years).

The CO₂ emission factor for those years is based on the estimation process of the GHG emissions inventory of Spain and on the information that Solvay has made available to the Spanish inventory team for a plant with the same technology as the Italian one. Since 2002 the emission factor is based on the data reported yearly by the Italian operator under the national EPER/PRTR and under ETS (preliminary data for years 2005-2009 and official data since 2013).

Fluorochemical production

For both source categories, "By-product emissions" and "Fugitive emissions", the IPCC Tier 2 method is used, based on plant-level data. The communication is supplied annually by the only national producer, and includes productions, emissions, import and export data for each gas (Solvay, several years). CF₄ emissions represent additional by product emissions together with HFC23 emissions (those being well referenced instead). The operator supplied all the relevant information for a better understanding of the activities taking place at the site of Spinetta Marengo and to help the inventory team to allocate CF₄ emissions from HCFC22 production properly. The industrial site of Spinetta Marengo hosts not only Solvay but also other Companies and is in the scope of EPRTR, IPPC permitting procedure and Seveso European Legislation. At the facility the monitoring system has 27 devices to perform gas chromatography analysis and about 540 monitoring points at the site. The resulting monitoring data flow, which regard other pollutants, is sent via web to the regional agency for the environmental protection (ARPA Piemonte).

In particular, the operator explained that HCFC22 production has been carried out in Spinetta Marengo since '50s and up to 1990 part of HCFC22 was probably also sold as a marketable product. Since 1990 practically all the HCFC22 produced has been the input for the TFM (tetrafluoroethylene monomer) production process (by pyrolysis of HCFC22 at 600 °C), the TFM has been then used to produce TFE (tetrafluoroethylene, C_2F_4) and PTFE (polytetrafluoroethylene), HFP (hexafluoropropylene) and the other different fluoropolymers and fluoroelastomers. All the fluorinated flue gases from the different production lines are collected and treated in a centralized abatement unit (thermal oxidation system), specifically designed for the Spinetta Marengo plant, working at a temperature of 1400 °C with a residence time of the gases minor of 2 seconds. The abatement unit is run continuously and allows

reducing F-gas emissions not depending on the operating level of the main production process. In the treated flue gases CF₄ is still present (65% of CF₄ released to air pass through the abatement system untreated for thermodynamic reasons; 35% of CF₄ released to air is formed during the reactions occurring in the abatement unit). Estimations of CF₄ emissions released to air have been then reported to the national PRTR since 2007. The operator has provided the time series for the activity data from 2002 to 2010 (HCFC22 and TFM), since the activity data for the years before 2002 are not retrievable (the property of the facility has changed over the years before 2002 and the administrative systems and softwares have also been changed many times); in order to complete the activity data time series for the period 1990-2001 a linear increasing production level was assumed from 1990 to 2002. The ratio relating TFM production to HCFC22 production in 2002 has been taken also over the years 2001 back to 1990 to estimate the TFM productions. CF₄ emission factor for 2007 was set constant in order to estimate the CF₄ time series over the years from 1990 to 2006. CF₄ emissions time series have been then included in the estimates under the CRF category 2.B.9.a.1 (By-product emissions from production of HCFC22).

In order to provide detailed information on the methodology applied for this category, CF₄ emissions estimation from HCFC22 can be summarised as follows:

- For the years 2007-2010 by-product CF₄ emissions from HCFC22 production has been supplied by the operator (through the national PRTR). Based on data reported to the national PRTR since 2007 and the activity data concerning HCFC production, the TFM/HCFC22 ratio along the time series, the EF for by-product CF₄ emission has been calculated.
- CF₄ EF (by-product emissions from HCFC22 production) for 2007 has been set as default value for the period 1990-2006 in order to estimate by-product CF₄ emissions consistently along the whole time series.
- Activity data for the facilities are available for the years 2002-2010, so the missing activity data were estimated based on the HCFC22 production capacity of the facility in 1990 and 2002 HCFC22 production figure assuming a linear increasing production level within the years. The TFM/HCFC22 ratio for 2002 was assumed as a default ratio to estimate TFM production consistently from 1990 and 2002.
- By product CF₄ emissions were estimated by applying the EF derived in point 2) to the TFM production levels along the years 1990-2002.

HFC23 is a by-product of the HCFC22 production process, the HFC23/HCFC22 rate is about 3%. The abatement system, as previously mentioned, allows for treating all the fluorinated flue gases, vented gases originated in the processes at the facility before being released to air. Since 1989 the abatement system has allowed to reduce HFC23 released to air, up to 1996 HFC23 emissions had been about 30 t/y. In 1996 the abatement system was improved with a second operating unit, since 1996 the abatement rate has been 99.99% thus reducing drastically HFC23 emissions close to zero. The operator communicated that for a HCFC22 production of 30,000 tons, HFC23 theoretical residual emissions are less than 100 kg; a monitoring analysis has measured about 10 kg of HFC-23 in one year (Spinetta Marengo, 2011).

 C_2F_6 and HFC143a emissions are released from the production of C_3F_6 (and also CFC115) and HFC134a, respectively. Fluorochemical were produced in one plant (Porto Marghera) and progressively stopped in the last years. More in details C_3F_6 (and also CFC115) production stopped in 1998 while HFC134a production stopped in 2007. Data production and emission figures have been provided by the company (Solvay Fluor, several years).

Production of HFC-125, HFC-134a, HFC-227ea and SF₆ lead to fugitive emissions of the same gases. In particular, the production of HFC-227ea only occurred in 1999. Emissions figures have been communicated by the operator (Solvay Fluor, several years).

4.3.3 Uncertainty and time-series consistency

The uncertainty in N₂O emissions from adipic and nitric acid and caprolactame production and in CO₂ emissions from ammonia and for other chemical production is estimated by 10.4%, for each activity, as combination of uncertainties related to activity data (3%) and emission factors (10%). Uncertainty level for activity data is an expert judgement, taking into account the basic source of information, while the uncertainty level for emission factors is equal to the level reported in the IPCC Good Practice Guidance (IPCC, 2000) for the adipic and nitric acid N₂O emissions and for CO₂ emissions from other industrial processes. The uncertainty in F-gas emissions from fluorocarbons production is estimated to be 50.2% in annual emissions, 5% and 50% concerning respectively activity data and emission factors.

In Tables 4.16 and 4.17, the production of chemical industry, including non-key sources, and emission trends are reported. An overview of the emissions per compound from fluorochemical production is given for the 1990-2021 period.

In general, total emission trends for all the chemical productions have been affected by fluctuations in productions along the time series (and by reductions in productions over the years 2007-2009, except for adipic acid and titanium dioxide activity data), whenever abatement technologies (e.g. nitric acid since 2008) or closures of plants cannot be regarded to as the specific causes for the decreasing emissions. In 2012 an increase in ammonia and soda ash productions determined an increase in CO₂ emissions estimates compared to previous year.

	1990	1995	2000	2005	2010	2015	2016	2017	2018	2019	2020	2021
Activity data					ļ	kt						
2B.1 - Ammonia	1,455	592	414	607	505	396	564	587	611	465	598	532
2B.2 - Nitric acid	1,037	588	556	572	417	390	426	437	447	421	447	402
2B.3 - Adipic acid	49	64	71	75	85	82	83	87	86	76	73	73
2B.4 - Caprolactame	120	120	111	-	-	-	-	-	-	-	-	-
2B.5 - Calcium carbide production	12	7	7	7	6	4	4	4	4	4	3	4
2B.6 - Titanium dioxide	58	69	72	60	70	60	61	68	63	63	51	62
2B.7 - Soda ash production and use	610	1,070	1,000	915	620	880	916	935	909	898	851	871
2B.8b - Ethylene	1,466	1,807	1,771	1,721	1,551	1,187	1,252	1,191	1,266	1,040	1,046	1039
2B.8d - Ethylene oxide	61	54	13	-	-	-	-	-	-	-	-	-
2B.8f - Carbon black	184	208	221	214	205	205	212	220	228	210	188	220
2B.8g - Styrene	365	484	613	520	524	547	512	479	545	511	501	472
2B.8g.i - Propylene	774	693	690	1,037	880	630	643	616	658	538	531	542
2B.9 – HCFC 22 production	20	23	26	27	21	26	24	25	29	23	18	22

Table 4.16 Production of chemical industry, 1990 –2021 (kt)

Table 4.17 CO2, CH4 and N2O emissions from chemical industry, 1990 – 2021 (kt) and HFCs, PFCs per compound 1990 - 2021 (kt CO2 eq.)

	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
CO ₂ (kt)											
Ammonia	1,891.50	769.60	537.91	802.29	639.77	495.54	642.41	678.76	531.26	659.36	631.09
Calcium carbide	26.28	14.24	7.7	8.01	6.63	4.59	4.7	4.89	3.96	3.79	4.73
Carbon black	422.05	477.48	508.83	548.22	510.38	462.39	494.76	542.04	476.56	426.33	486.69
Titanium dioxide	-	-	-	-	-	-	-	-	-	-	0.00
Adipic acid	1.33	1.72	1.93	1.5	1.76	1.82	1.93	1.92	1.7	1.62	2.06
Soda ash production and use	183	321	300	275	203.33	255.35	291.2	346.05	300.99	268.37	278.38
CH4 (kt)											
Carbon black	1.84	2.08	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Ethylene	0.12	0.15	0.15	0.15	0.13	0.10	0.10	0.11	0.09	0.09	0.09
Propylene	0.07	0.06	0.06	0.09	0.07	0.05	0.05	0.06	0.05	0.05	0.05
Styrene	0.01	-	-	-	-	-	-	-	-	-	-
Ethylene oxide	0.42	0.37	0.09	-	-	-	-	-	-	-	-
N₂O (kt)											
Nitric acid	6.73	4.22	4.09	5.44	0.51	0.12	0.21	0.19	0.14	0.13	0.09
Adipic acid	14.77	19.09	21.42	19.59	1.58	0.37	0.25	0.21	0.26	0.27	0.01
Caprolactame	0.04	0.04	0.03	-	-	-	-	-	-	-	
kt CO₂ eq.											
HFC 23	372.00	372.00	1.05	1.09	0.85	1.05	1.03	1.18	0.96	0.76	0.91
HFC 143a	-	28.80	4.80	5.28	-	-	-	-	-	-	
CF4	792.12	890.54	889.50	1,388.28	1,166.88	1,392.30	1,069.76	1,355.84	780.35	374.60	261.22
PFC C2÷C3 (C2F6)	44.40	44.40	-	-	-	-	-	-	-	-	-
Total F-gas by product emissions	1,208.52	1,335.74	895.35	1,394.65	1,167.73	1,393.35	1,070.79	1,357.02	781.31	375.35	262.13
HFC 125	-	31.70	3.17	3.80	-	-	-	-	-	-	-
HFC 134a	-	39.00	15.60	12.61	-	-	-	-	-	-	-
HFC 227ea	-	-	-	-	-	-	-	-	-	-	-
SF6	117.50	117.50	-	-	-	-	-	-	-	-	-
Total F-gas fugitive emissions	117.50	188.20	18.77	16.41	-	-	-	-	-	-	-
Total F-gas emissions from fluorochemical production	1326.02	1523.94	914.12	1411.06	1167.73	1393.35	1070.79	1357.02	781.31	375.35	262.13

HFC23 emissions from HCFC22 had been drastically reduced since 1996 due to the installation of a second thermal oxidation system in the facility located in Spinetta Marengo (the only facility currently producing HCFC22 in Italy). Productions and emissions from 1990 to 1995 are constant as supplied by industry; from 1996, untreated leaks have been collected and sent to the thermal oxidation system, thus allowing reduction of emissions under 100 kg (E.F. 3.3 g of HFC23/t of HCFC22). CF₄ by-product emissions in HCFC22 production process have been fully investigated, information supplied by the operator has allowed estimating emissions for the whole time series. This information about productions and emissions is yearly directly updated by the producer, and it is also reported in the framework of the national PRTR register, confirming that the technology is fully operating. Since 2020 a drastic reduction of CF₄ emission has occurred: as part of Solvay's commitment to reducing greenhouse gas emissions, a new project for the abatement of CF₄ by thermo-oxidation has been developed.

PFC (C₂F₆) by-product emissions and SF₆ fugitive emissions were constant from 1990 to 1995 (4 t/y for C₂F₆ emissions; 5 t/y for SF₆ emissions) and from 1996 to 1998 (1 t/y for C₂F₆ emissions; 2 t/y for SF₆ emissions) and have eventually reduced to zero since 1999 due to the stop of the CFC115 production in one facility and the upgrade of the thermal oxidation system mentioned above in the other facility. Besides, SF₆ production has stopped since the 1st of January 2005.

Regarding fugitive emissions, emissions of HFC125 and HFC134a have been cut in 1999 thanks to a rationalisation in the new production facility located in Porto Marghera, whereas HFC143 released as by-products from the production of HFC134a has been recovered and commercialized. The relevant productions in Italy which originate these fugitive emissions stopped in the first quarter of 2008.

4.3.4 Source-specific QA/QC and verification

Emissions from adipic acid, nitric acid, ammonia and other chemical industry production have been checked with the relevant process operators and with data reported to the national EPER/E-PRTR registry. Emissions and activity data for adipic acid, nitric acid and ammonia productions have also been checked against the relevant information reported by operator to the national competent authority for the ETS, the resulting consistency of both emissions and activity data for those sectors is the outcome of this control. In addition to this, in the present submission activity data for Nitric Acid and Adipic Acid from ETS have been used to update the time series from 2013 onwards in order to support the application of Tier 3 in CO₂ and N₂O emissions estimates. Additional QA/QC was performed on the inventory of CO₂ and CH₄ emissions from the production of carbon black (Aether Itd, 2013) thus leading to the improvements of the emissions estimate in 2014 submission. CH₄ emissions from carbon black manufacturing have been revised in the last submissions, from 1996 onwards, as an outcome of the technical expert review performed at EU level in the framework of the internal EU inventory review process.

Emissions from fluorochemical production have been checked with data reported to the national EPER/E-PRTR registry. CF₄ emissions have been then accounted for along the whole time series for category 2B9.

4.3.5 Source-specific recalculations

No recalculations occurred.

4.3.6 Source-specific planned improvements

A detailed balance of the natural gas reported in the energy balance, as no energy fuel consumption, and the fuel used for the production processes in the petrochemical sector is planned.

4.4 Metal production (2C)

4.4.1 Source category description

The sub-sector metal production comprises five sources: iron and steel production, ferroalloys production, aluminum production, magnesium foundries and zinc/lead production; CO₂ emissions from iron and steel production are key sources at trend assessment with the Tier1 with and without LULUCF; PFC emissions from aluminum production are key sources at trend assessment both with the Tier1 and Tier2 approach. In the base year PFC emissions were key sources at level assessment with and without LULUCF but without LULUCF only with the Tier2 approach. Finally, CO₂ emissions from iron and steel production were key sources at level assessment only with the Tier1.

In 2021, the share of CO₂ emissions from metal production accounts for 0.5% of the national total CO₂ emissions, and 10.9% of the total CO₂ from industrial processes. The share of CH₄ emissions is, in 2021, equal to 0.09% of the national total CH₄ emissions while N₂O emissions do not occur. The share of F-gas emissions from metal production out of the national total F-gas levels was 52.5% in the base-year and has decreased to 0.03% in the year 2021.

Iron and steel

The main processes involved in iron and steel production are those related to sinter and blast furnace plants, to basic oxygen and electric furnaces.

The sintering process is a pre-treatment step in the production of iron where fine particles of metal ores are agglomerated. Agglomeration of the fine particles is necessary to increase the passageway for the gases during the blast furnace process and to improve physical features of the blast furnace burden. Coke and a mixture of sinter, lump ore and fluxes are introduced into the blast furnace. In the furnace the iron ore is increasingly reduced and liquid iron and slag are collected at the bottom of the furnace, from where they are tapped. The combustion of coke provides both the carbon monoxide (CO) needed for the reduction of iron oxide into iron and the additional heat needed to melt the iron and impurities. The resulting material, pig iron (and also scrap), is transformed into steel in subsequent furnaces which may be a basic oxygen furnace (BOF) or electric arc furnace (EAF). Oxygen steelmaking allows the oxidation of undesirable impurities contained in the metallic feedstock by blowing pure oxygen. The main elements thus converted into oxides are carbon, silicon, manganese, phosphorus and sulphur.

In an electric arc furnace steel is produced from polluted scrap. The scrap is mainly produced by cars shredding and does not have a constant quality, but the recent stringent legislation and the adoption of BAT (Best Available Techniques) in scrap management allow an input with better product characteristics.

The iron and steel cycle is closed by rolling mills with production of long products, flat products and pipes.

In 1990, there were six integrated iron and steel plants in Italy. In 2014, there were only three of the abovementioned plants, one of which lacking sintering facilities and another one not equipped with a BOF. Since 2015 there have been only two plants because the plant without sinter production has been closed and in 2021 only the largest integrated plant is still producing. In 2021, oxygen steel production represents about 16.4% of the total production and the arc furnace steel the remaining 83.6% (FEDERACCIAI, several years).

Currently, long products represent about 49.4% of steel production in Italy, flat products about 40.1% and pipes the remaining 10.5%. In 2021 long production has been equal to 13.7 Tg with an increase of 22.5% over the previous year and still below 17.9% compared to 2008; flat production has been equal to 11.1 Tg with an increase of 16.9% on the previous year but a decrease of 20.8% compared to 2008 level. Most of the flat production derives from the only integrated iron and steel plant, while in steel plants

equipped with electric ovens, almost all located in the northern regions, long products are produced predominantly (e.g. carbon steel, stainless steels) and seamless pipes (only one plant) (FEDERACCIAI, several years).

CO₂ emissions from steel production refer to carbonates used in basic oxygen furnaces and crude iron, carbonates, *coals* and electrodes in electric arc furnaces. CO₂ emissions from pig iron production refer to carbonates used in sinter and pig iron production. CO₂ emissions from iron and steel production due to the fuel consumption in combustion processes are estimated and reported in the energy sector (1A2a) to avoid double counting.

CH₄ emissions from steel production refer to blast furnace charging, basic oxygen furnace, electric furnaces and rolling mills. CH₄ emissions from coke production are fugitive emissions during solid fuel transformation and have been reported under 1B1b category while CH₄ emissions from the combustion of fuels are allocated in the energy sector.

Ferroalloys

Ferroalloy is the term used to describe concentrated alloys of iron and one or more metals such as silicon, manganese, chromium, molybdenum, vanadium and tungsten. Usually, alloy formation occurs in electric arc furnaces (EAF) and CO₂ emissions occur during oxidation of carbon still present in coke and because of consumption of the graphite electrodes.

In early nineties there were 13 plants producing various kinds of ferroalloys: FeCr, FeMn, FeSi, SiMn, Simetal and other particular alloys, but since 2001 the production has been carried on only in one plant (ISPESL, 2005). The last remaining plant in Italy produces mainly ferro-manganese and silicon-manganese alloys but since 2015 the facility has not been working.

<u>Aluminum</u>

From primary aluminum production CO_2 and PFCs (CF₄ and C_2F_6) are emitted. PFCs are formed during a phenomenon known as the 'anode effect', when alumina levels are low.

In 1990 primary aluminum production in Italy was carried out in 5 sites where different technologies were implemented:

- Fusina: Point Fed Prebake and Side Work Prebake (up to 1995);
- Portovesme: Point Fed Prebake and Side Work Prebake (up to 1990);
- Bolzano: Vertical Stud Soderberg;
- Fusina 2 and Porto Marghera: Side Work Prebake.

Since then, the implemented technology has been upgraded from Side Work Prebake to Point Fed Prebake; while three old plants stopped the operations in 1991 (Bolzano) and in 1992 (Fusina 2 and Porto Marghera). Since 2000 Alcoa has replaced ENIRISORSE in operating the plants.

Up to 2010, two primary aluminum production plants, which use a prebake technology with point feeding, characterised by low emissions, have operated. Only one plant, located in Portovesme, was operating until 2012 (99.5 kt of primary aluminum). In 1990, primary aluminum production was 232 kt. In 2021the plant did not produce primary aluminum. The plant is stopped but not dismantled: in 2018 the new Company Sider Alloys has taken over Portovesme plant from Alcoa, that is currently under renovation. The restart of the renovated plant was scheduled for 2024.

Magnesium foundries

In the magnesium foundries, SF₆ is used as a cover gas to prevent oxidation of molten magnesium. In Italy there is only one plant, located in the north, which started its activity in September 1995.

Since the end of 2007, SF₆ has been replaced by HFC125, due to the enforcement of fluorinated gases regulations (EC, 2006; UE, 2014) which, however, allow for the use of SF₆ in annual amounts less than 1 Mg. HFC125 emissions also occurred and, in 2010, they were equal to 605 kg. Since 2011 HFC125 has been replaced by HFC134a (3,361 kg of emissions in 2021).

Zinc production

Since 1998, in Italy there is just an integrated plant for the zinc and lead production which cover the entire production of zinc and of primary lead. In 2013, this plant began to submit data in the framework of ETS reporting data subdivided in combustion and process emissions; consequently, a survey has been started to investigate time series for process emissions resulting in CO₂ emissions from 1990 to 2021. CO₂ emissions are referred both to zinc and lead production.

4.4.2 Methodological issues

CO₂ and CH₄ emissions from the sector have been estimated on the basis of activity data published in the national statistical yearbooks (ISTAT, several years [a]), data reported in the framework of the national EPER/E-PRTR registry and the European Emissions Trading Scheme, and supplied by industry (FEDERACCIAI, several years; ALCOA, several years). Emission factors reported in the EMEP/EEA Guidebook (EMEP/EEA, 2009), in sectoral studies (APAT, 2003; CTN/ACE, 2000) or supplied directly by industry (FEDERACCIAI, 2004; ALCOA, 2004; Italghisa, 2011) have been used.

<u>Iron and steel</u>

CO₂ emissions from iron and steel production refer to the carbonates used in sinter plants, in blast furnaces and in steel making plants to remove impurities; they are also related to the steel and pig iron scraps, carbonates, *coals* and graphite electrodes consumed in electric arc furnaces.

Basic information for this sector derives from different sources in the period 1990-2021. Activity data are supplied by official statistics published in the national statistics yearbook (ISTAT, several years [a]) and by the sectoral industrial association (FEDERACCIAI, several years).

For the integrated plants, emission and production data have been communicated by the two largest plants for the years 1990-1995 in the framework of the CORINAIR emission inventory, distinguished by sinter, blast furnace and BOF, and by combustion and processes emissions. From 2000, CO₂ emissions and production data have been supplied by all the plants in the framework of the ETS scheme, for the years 2000-2004 disaggregated for sinter, blast furnace and BOF plants, from 2005 specifying carbonates and fuels consumption and related CO₂ emissions. For 2002-2021 data have also been supplied by all the integrated iron and steel plants in the framework of the European EPER/E-PRTR registry not distinguished for combustion and processes. Qualitative information and documentation available on the plants allowed reconstructing their history including closures or modifications of part of the plants; additional qualitative information regarding the plants collected and checked for other environmental issues or directly asked to the plant permitted to individuate the main driving of the emission trends for pig iron and steel productions. Finally, since 2017, national experts have also been involved in the process of elaboration of the "monitoring and control plan" for the largest integrated plant in Italy in the framework of IPPC permit, allowing other terms of comparison and verification.

Time series of carbonates used in basic oxygen furnaces have been reconstructed on the basis of the above-mentioned information resulting in no emissions in the last years. In fact, carbonates have been substituted by autoproduced lime avoiding CO₂ emissions. Indeed, as regards the largest Italian producer of pig iron and steel, lime production has increased significantly from 2000 to 2008 by about 250,000 over 410,000 tonnes and the amount introduced in basic oxygen furnaces was, in 2004, about 490,000

tonnes (ILVA, 2006). In 2009 lime production, for the same plant, is equal to 216,000 tonnes but also steel production has sharply decreased because of the economic recession; in the following years lime production increased again up to 390,000 but in the last years it decreased because the plant went into receivership. Emissions from lime production in steel making industries are reported in 1.A.2 Manufacturing Industries and Construction category and in 2.A Mineral production respectively for the combustion and processes emissions.

Concerning the electric arc furnaces, additional information on the consumption of scraps, pig iron, graphite and electrodes and their average carbon content has been supplied together with the steel production by industry for a typical plant in 2004 (FEDERACCIAI, 2004) and checked with other sectoral study (APAT, 2003). On the basis of these figures an average emission factor has been calculated and applied for the period 1990 - 2003. Since 2004, the same scheme as the previous period has been followed but using data becoming from ETS and related to the amounts of pig iron, metallurgical coke, graphite, anthracite, dolomite, limestone and electrodes for 33 plants in 2021. The availability of data for each plant has allowed also the application, for a first attempt, of the Tier 3 methodology (IPCC, 2006) that demonstrated the soundness of estimates.

On account of the amount of carbonates estimated in sinter plants, average emission factor was equal in 1990 to 0.15 t CO₂/t pig iron production, while in 2021 it reduced to 0.08 t CO₂/t pig iron production. The reduction is driven by the increase in the use of lime instead of carbonates in sinter and blast furnaces in the Italian plants. Emissions are reported under pig iron because they are emitted as CO₂ in the blast furnaces producing pig iron.

CO₂ average emission factor in basic oxygen furnaces results in 1990 equal to 0.079 t CO₂/t steel production, while from 2003 is null.

 CO_2 average emission factor in electric arc furnaces, equal to 0.035 t CO_2 /t steel production, has been calculated on the basis of the Tier 2 of the 2006 IPCC Guidelines (IPCC, 2006) taking into account the pig iron and graphite electrodes used in the furnace and the amount of carbon stored in the final product. The same emission factor has been used for the period 1990 - 2003. Since 2004 ETS data have been used, in this way it has been possible to evaluate the contribute of anthracite and metallurgical coke producing an emission factor equal 0.053 t CO_2 /t of steel in 2021. The amount of carbon stored in steel produced with EAF has been considered and subtracted from the carbon balance (see Annex 3). Implied emission factors for steel production reduced from 0.053 to 0.044 t CO_2 /t steel production, from 1990 to 2021, due to the reduction in the basic oxygen furnaces.

CO₂ emissions due to the consumption of coke, coal or other reducing agents used in the iron and steel industry have been accounted for as fuel consumption and reported in the energy sector, including fuel consumption of derived gases; in Annex 3, the energy and carbon balance in the iron and steel sector, with detailed explanation, is reported.

During the last in country review, Italy reported on the results of a survey which found that there is no accurate information by which to disaggregate the emissions between energy and process. Coke is the only irreplaceable material in the blast furnace as it has several roles:

- the combustion of coke produces carbon monoxide which is responsible for the reduction of iron ores;
- the combustion of coke generates the heat needed to melt the iron ore;
- coke mechanically supports the charge allowing the crossing of the reducing gas;
- coke allows the process of carburation of liquid iron by lowering its melting point.

These are intrinsic properties of the coke and cannot be separated one from the other, all the coke when burning simultaneously produces energy in the form of heat and CO as a reducing agent.

As any arbitrary disaggregation would not reflect the real situation, the ERT agreed that leaving the total emissions from the use of coke in the iron and steel industry in the energy sector is appropriate.

Ultimately, carbon plays the dual role of fuel and reductant and it is very important not to double-count the carbon from the consumption of coke or other reducing agents if this is already accounted for as fuel consumption in the energy sector. For this reason, a balance is made between the coal used for coke production and the quantities of derived fuels used in various sectors. The iron and steel sector gets the resulting quantities of energy and carbon after subtraction of what is used for electricity generation, non energy purposes and other industrial sectors (see Annex 3).

The amount of carbon stored in steel produced in integrated plants has been considered and subtracted from the carbon balance (see Annex 3). The amount of carbon contained in steel has been estimated on the basis of EN standard and, from 2005, with emission trading data. Carbon stored is equal to 48,511 tonnes of CO₂ in 1990 and equal to 11,165 Mg in 2021.

CH₄ emissions from steel production have been estimated on the basis of emission factors derived from the specific IPPC BREF Report (IPPC, 2001 available at <u>http://eippcb.jrc.es</u>), sectoral study (APAT, 2003) and the EMEP/CORINAIR Guidebook (EMEP/CORINAIR, 2007) and refer to blast furnace, basic oxygen furnace, electric furnaces and rolling mills.

Ferroalloys

CO₂ emissions from ferroalloys have been estimated on the basis of activity data published in the national statistical yearbooks (ISTAT, several years [a]) until 2001. Time series of ferroalloys activity data have been reconstructed from 2002 on the basis of statistical information (ISTAT, 2003), personal communication (Italghisa, 2011) and on the basis of production data communicated to E-PRTR register and to ETS from the only plant of ferroalloys in Italy. The comparison between E-PRTR and ETS data revealed some differences: further investigation led to a direct contact with the plant and to rectify the incorrect activity data.

The average emission factor has been calculated according to the IPCC Guidelines (IPCC, 2006) taking into consideration the different types of ferroalloys produced. The splitting up of national production in different types of ferroalloys was obtained from U.S. Geological Survey until 2001 (USGS, several years). Since 2002 only one plant of ferroalloys is located in Italy and different types of production are reconstructed on the basis of information listed above. This information is reported in the Table 4.18.

	1990	1995	2000	2005	2010	2011	2012	2013	2014	2015-2020	IPCC 2006 EF
Ferroalloy (%)											kg/t
FeCr	0.30	0.26	-	-	-	-	-	-	-	-	1,300
FeMn	0.24	0.10	0.28	0.50	0.40	0.60	0.36	0.29	0.61	-	1,500
FeSi	0.02	-	-	-	-	-	-	-	-	-	4,800
SiMn	0.32	0.53	0.62	0.50	0.60	0.40	0.64	0.71	0.39	-	1,400
Si-Metal	0.06	0.05	0.03	-	-	-	-	-	-	-	5,000
Other	0.07	0.06	0.07	-	-	-	-	-	-	-	5,000

Table 4.18 Splitting up of ferroalloys national production and IPCC 2006 emission factors

Implied emission factor for ferroalloys has been reduced from 1.90 to 1.46 t CO₂/t ferroalloys production, from 1990 to 2014 as a consequence of the sharp reduction in ferroalloys production, which is characterized by high emission factors (ferro-silicon and silicon-metal alloys). The simultaneous reduction of total production (from about 200 kt to 16 kt) has resulted in CO₂ emissions decreasing from 395 Kt in 1990 to 24 Kt in 2014. Since 2015 the plant has not been working.

Primary aluminum production

PFC emissions from aluminum production have been estimated using both Tier 1 and Tier 2 - IPCC methodologies. The Tier 1 has been used to calculate PFC emissions from 1990 to 1999, while Tier 2 has been used since 2000; the use of different methods along the period is due to the lack of detailed data for the years before 2000.

Although a number of attempts have been tried over the last years by the inventory team to retrieve the 1990-1999 historical operating data, it is not possible to retrieve the information: Alcoa cannot provide operating data for the period from 1990 to 1999 as the plants were managed by a different company not operating anymore. Thus the decision to use both tiers, which was supported by previous review processes, confirming the transparency, accuracy and conservativeness of this approach.

PFC emissions, specifically CF₄ and C₂F₆, have been calculated on the basis of information provided by national statistics (ENIRISORSE, several years; ASSOMET, several years) and the national primary aluminum producer (ALCOA, several years), with reference to the documents drawn up by the International Aluminium Institute (IAI, 2003; IAI 2006) and the IPCC Guidelines (IPCC, 2006).

Tier 1 method has been used to calculate PFC emissions related to the entire period 1990-1999. The emission factors for CF_4 and C_2F_6 were provided by the main national producer (ALCOA, 2004) based on the IAI document (IAI, 2003).

The Tier 1 method used by ALCOA is based on the IAI methodology, which collected anode effect data from 1990 up to 2000, accounting also for reductions in specific emission for all technology categories (specific factors for Point Fed Prebake cells have been considered to estimate emissions).

In 1990 at the five production sites the following technologies were implemented:

- Fusina: Point Fed Prebake (16% of the cells) and Side Work Prebake (84% of the cells);
- Portovesme: Point Fed Prebake (84% of the cells) and Side Work Prebake (16% of the cells);
- Bolzano: Vertical Stud Soderberg (100% of the cells)
- Fusina 2 and Porto Marghera: Side Work Prebake (100% of the cells).

The EFs for PFCs were then calculated by ALCOA as weighted arithmetic mean values of EFs for the different technologies (IAI, 2003), the weights representing the implemented technologies.

In the following tables (Tables 4.19, 4.20) the emission factors and the default parameters used are reported; site specific values are confidential but they have been supplied to the inventory team and taken into account in the estimation process.

Table 4.19 Historical default Tetrafluoromethane (CF₄) emission values by reduction technology type (IAI, 2003)

	Technology specific emissions (kg CF ₄ / t Al)								
	1990 - 1993	1994 - 1997	1998 – 1999						
Point Fed Prebake	0.3	0.1	0.08						
Side Work Prebake	1.4	1.4	1.4						
Vertical Stud Søderberg	0.6	0.5	0.4						

Table 4.20 Multiplier factor for calculation of Hexafluoroethane (C2F6) by technology type (IAI, 2003)

	Technology multiplier factor
Center Work Prebake	0.17
Point Fed Prebake	0.17
Side Work Prebake	0.24
Vertical Stud Søderberg	0.06

PFC emissions for the period from the year 2000 are estimated by the IPCC Tier 2 method, based on default technology specific slope factors and facility specific anode effect minutes. Site-specific values (CF₄ and C₂F₆ emissions) and default coefficients (slope coefficients for CF₄ and C₂F₆) were provided by the main national producer (ALCOA, several years). Moreover, from 2005 certificated emission values and parameters, including anode effects, have been communicated under EU-ETS (ALCOA, 2010). In Table 4.21 slope coefficients used for CF₄ and C₂F₆ are reported. ALCOA uses these values suggested by International Aluminium Institute (IAI, 2006), in accordance to the coefficients reported in the IPCC 2006 Guidelines (IPCC, 2006).

Table 4.21 CF4 and C2F6 Slope Coefficients (IAI, 2006)

	CF₄	C ₂ F ₆					
Type of Cell	Slope Factor (kg PFC/tAl/AE-minutes/cell day)						
Center Work Prebake	0.143	0.0173					

Anode Effects (minutes/cell day)

	2000	2005	2006	2007	2008	2009	2010	2011	2012
Primary Aluminum Plant	0.96	0.87	0.74	1.00	0.55	0.81	0.60	0.53	0.31

CO₂ emissions from aluminum production have been also estimated on the basis of activity data provided by industrial association (ENIRISORSE, several years; ASSOMET, several years) and default emission factor reported by industry (ALCOA, 2004) and by the IPCC Guidelines (IPCC, 1997) which refer to the prebaked anode process.

Emission factor has been assumed equal to $1.55 \text{ t } \text{CO}_2/\text{t}$ primary aluminum production for the years 1990-2001, on the basis of data provided by the producer for 2002; this value is also consistent with the emission factors contained in the IPCC Guidelines and in the Aluminium Sector Greenhouse Gas Protocol. Since 2002 the emission factor has been calculated on account of information from the relevant plant supplied to the national EPER/EPRTR registry (emissions and productions). Therefore, thanks to the availability of this additional information, CO₂ emission estimations have been carried out by the operator since 2002 according to the criteria defined by the International Aluminium Institute (IAI) and are given by the following three components:

- Electrolysis Emissions from Prebake Anode
- Pitch Volatile Matter Oxidation from Pitch Coking
- Bake Furnace Packing Material

This detailed information is not available for previous years (1990-2001) so the Tier 2 approach can not be extended to those years and Tier 1 has to be used. Although a number of attempts have been tried for the last years by the inventory team to retrieve the same information related to 1990-2001, those data cannot be retrieved. Therefore, the Tier1+Tier2 approach allows ensuring the quality of the estimates and also the consistency of the CO₂ emissions time series depending on the quality of the available information.

In the following tables (Tables 4.22, 4.23) the emission factors and the default parameters used are reported; site specific values are confidential, but they have been supplied to the inventory team.

Table 4.22 Coefficients used for estimation of CO2 from aluminium production process with the Tier 2 methodology by plant

		Baked Anode Propert	ies
	Sulphur	Ash	Impurities
	Weight %	Weight %	Weight %
Portovesme	SSV*	Ssv	DV** = 0.4
Fusina	DV = 1.6	Ssv	DV = 0.4

* site specific value

** default value

Table 4.23 Coefficients used for estimation of CO2 from aluminium production process with the Tier 2 methodology	
by plant	

	Pitch content in green anodes	Hydrogen content in pitch	Recovered tar	Packing coke consumption	Sulphur content of packing coke	Ash content of packing coke	
	Weight %	Weight %	kg/t BAP	t Pcc/ t BAP	Weight %	Weight %	
Portovesme	SSV*	SSV	DV** = 0	DV = 0.05	DV = 3	DV = 5	
Fusina	SSV	DV = 4.45	DV = 0	DV = 0.05	DV = 3	DV = 5	

* site specific value

** default value

Magnesium Production

For SF₆ used in magnesium foundries, according to the IPCC Guidelines (IPCC, 2006), emissions are estimated from consumption data made available by the company (Shiloh Industries Italia, several years), assuming that all SF₆ used is emitted. In 2007, SF₆ has been used partially, replaced in November by HFC125, due to the enforcement of fluorinated gases regulation (EC, 2006). This regulation allows for the use of SF₆ in annual amounts less than 850 kg starting from 1 January 2008; for this reason, SF₆ was still reported together with HFC 125 emissions for the years 2008, 2009 while for 2010 only HFC125 was reported. Since 2011 HFC134a has replaced HFC125.

Zinc production

Until the 2016 submission, emissions from lead and zinc production have been reported only in 1.A.2 because of the lack of information about process emissions. Since 2013, ETS data contain info about the sole integrated plant in Italy but, as it is an integrated plant, it is not possible to distinguish zinc from lead emissions, so in CRF tables IE is reported for category 2.C.5 Lead production and CO₂ emissions are reported in 2.C.6 Zinc production.

Starting from ETS activity and CO₂ emissions data for the period 2013 – 2017, it has been possible to reconstruct the time series on the basis of different sources as this plant already submitted its data to INES/E-PRTR register since 2002 (but without the distinction between combustion and process) and on the basis of activity data and info on the technological evolution provided by industrial association (ENIRISORSE, several years; ASSOMET, several years). In the period 1990 – 2021 activity data and CO₂ emissions show a decreasing trend, in particular emissions decrease from 500 Mg in 1990 to 245 Mg in 2021 and the IEF change from 1.56 to 1.48 kgCO₂/Mg of Pb and Zn.

4.4.3 Uncertainty and time-series consistency

The combined uncertainty in PFC emissions from primary aluminum production is estimated to be about 20% in annual emissions, 3% and 20% concerning respectively activity data and emission factors; the uncertainty for HFC emissions from magnesium foundries is estimated to be about 20%, 3% for activity

data and 20% for emission factors. The uncertainty in emissions from iron and steel, ferroalloys and zinc production is estimated to be 10.4%.

In Table 4.24 emission trends of CO₂, CH₄ and F-gases from metal production are reported. The decreasing of CO₂ emissions from iron and steel sector is driven by the use of lime instead of limestone and dolomite to remove impurities in pig iron and steel and by the production level while CO₂ emissions from aluminum, zinc and ferroalloys are driven mainly by the production levels.

In Table 4.25 the emission trend of F-gases per compound from metal production is given. PFC emissions from aluminum production decreased because of the closure of three old plants in 1991 and 1992 and the update of technology for the two plants still operating. The decreasing of SF₆ consumption in the magnesium foundry from 2003 is due to the abandonment of recycling plant and the optimisation of mixing parameters.

	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
<u>CO2</u> (kt)											
Iron and steel	3,124	2,897	1,280	1,656	1,343	1,327	1,408	1,436	1,357	1,215	1,423
Aluminium production	359	276	295	299	250						
Ferroalloys	395	230	229	89	77						
Zinc production	500	500	501	375	164	236	267	245	245	224	245
<u>CH₄ (</u> kt)											
Pig iron	2.13	2.10	2.02	2.06	1.54	0.91	0.91	0.87	0.83	0.61	0.74
Steel	0.58	0.60	0.60	0.67	0.63	0.62	0.69	0.71	0.68	0.61	0.73
<u>PFC</u> (kt CO₂ eq.)											
Aluminium production	1,975	350	231	212	99	-	-	-	-		
<u>SF</u> 6 (kt)											
Magnesium foundries			0.0072	0.0035	0.0007	-	-	-	-		
<u>HFC125</u> - (kt)											
Magnesium foundries					0.0006	-	-	-	-		
<u>HFC134a</u> - (kt)											
Magnesium											
foundries						0.0071	0.0072	0.0068	0.0040	0.0038	0.0034

Table 4.24 CO ₂ , CH ₄	and F-gas emission	ns from metal pr	roduction, 19	90 – 2021 (kt)
	, and i gus chiissioi	ns nom metal pi	routetion, is	,50 E0E1 (KU)

Table 4.25 F-gas emissions per compound from metal production in kt CO₂ equivalent, 1990 – 2021

	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
					kt	CO2 eq.					
CF ₄ (PFC-14)	1,315.0	240.5	172.6	158.6	74.2	-	-	-	-	-	-
C ₂ F ₆ (PFC-16)	463.4	74.4	35	32.1	15.0	-	-	-	-	-	-
Total PFC emissions from aluminium production	1,778	315	208	191	89	-	-	-	-	-	-
SF ₆ emissions from magnesium foundries	-	-	169.2	83.3	17.2	-	-	-	-	-	-
HFC-125 emissions from magnesium foundries	-	-	-	-	1.92	-	-	-	-	-	-
HFC-134a emissions from magnesium foundries	-	-	-	-	-	9.2	9.4	8.8	5.2	4.9	4.4
Total F-gas emissions from metal production	1,778.5	315	376.8	274.0	108.3	9.2	9.4	8.8	5.2	4.9	4.4

In response to the 2010 review process (UNFCCC, 2010), a more robust Tier 1 comparison has been evaluated to strengthen the conservativeness of combined Tier 1 and Tier 2 approaches (detailed information are reported in the previous submission).

4.4.4 Source-specific QA/QC and verification

Emissions from the sector are checked with the relevant process operators. In this framework, primary aluminum production supplied by national statistics (ENIRISORSE, several years; ASSOMET, several years) and the only national producer ALCOA (ALCOA, several years), in addition with data reported in a site-specific study (Sotacarbo, 2004), have been checked. Moreover, emissions from magnesium foundries are annually compared with those reported in the national EPER/E-PRTR registry while for the iron and steel sector emissions reported in the national EPER/E-PRTR registry and for the Emissions Trading Scheme are compared and checked. Emissions from primary aluminum production have been also checked with data reported under EU-ETS.

4.4.5 Source-specific recalculations

No recalculations occurred.

4.4.6 Source-specific planned improvements

The analysis of data reported in the IPPC permits of the integrated plant for zinc and lead production should allow a better allocation between zinc and lead emissions.

4.5 Non-energy products from fuels and solvent use (2D)

4.5.1 Source category description

The sub-sector comprises the following sources: lubricant use, paraffin wax, and other categories which include the use of urea, asphalt roofing and paving with asphalt and solvent use. CO_2 emissions from this category is a key source at level assessment with Approach 2 without and with LULUCF and at trend assessment with Approach 2 only with LULUCF considering the uncertainty; in 1990 it was a key category at level assessment.

Lubricant use

Lubricants are mostly used in industrial and transportation applications. Lubricants are produced either at refineries through separation from crude oil or at petrochemical facilities. Under this category, emissions originated by lubricant use in industry and white lubricants and lubricants used for insulating purposes have been considered, CO₂ and NMVOC emissions have been estimated for the whole time series. Emissions from lubricant use in vehicles have been accounted for in the Energy Sector.

<u>Paraffin wax</u>

Paraffin waxes are separated from crude oil during the production of light (distillate) lubricating oils. Paraffin waxes are categorised by oil content and the amount of refinement. About 60-70% of the total amount of paraffin waxes produced in the EU area is used to manufacture candles. Nowdays about 95% of candles are paraffin wax candles; 3% are stearic candles and the remaining 2% is made of beeswax.

Slack oils could enter the manufacturing process thus potentially resulting into the emissions of SOx and PAH.

<u>Use of urea</u>

Urea can be used in Selective Catalyst Reduction (SCR) systems to reduce NOx emissions from combustion. SCR systems are generally applied to engines (vehicles) and also to industrial combustion (e.g. Power Plants). CO₂ emissions originated by the use of urea in SCR systems have been estimated and reported in this sub-sector.

Asphalt roofing and road paving with asphalt

In Italy 14 facilities have been producing bitumen roofing membranes and about 87 facilities operate in the production and laying of asphalt mix products for road paving. SITEB, the Italian asphalt and road association is the relevant source of information for these two source categories. NMVOC emissions have been estimated for these two source categories along the whole time series.

<u>Solvent use</u>

The use of solvents manufactured using fossil fuels as feedstocks can lead to evaporative emissions of various NMVOC and CO_2 emissions, after oxidation of NMVOC in the atmosphere.

Methodologies for estimating NMVOC emissions can be found in the EMEP/EEA air pollutant emission inventory guidebook (EMEP/EEA, 2009). Also some indications on the subcategories to include in the 'solvent use' category are reported in the 2006 IPCC guidelines (IPCC, 2006), which are the following: solvent use in paint application, degreasing and dry cleaning, manufacture and processing of chemical products, other solvent use, such as printing industry, glues application, use of domestic products.

4.5.2 Methodological issues

Lubricant use

The use of lubricants in industrial engines is primarily for their lubricating properties and associated emissions are therefore considered as non-combustion emissions to be reported in the IPPU Sector. NMVOC and CO₂ emissions are reported for this category.CO₂ emissions for the whole time series are calculated based on a Tier 1 approach considering the average Lower Heating Value (LHV) of lubricants, the average ODU factor and the average carbon content of lubricants (Equation 5.2 IPCC Guidelines 2006):

 $CO_2 Emissions = LC \cdot CC_{Lubricant} \cdot ODU_{Lubricant} \cdot 44 / 12$

where

LC= lubricant consumption

CC_{lubricant} = carbon content

ODU_{lubricant} = oxidation factor

44/12 = mass ratio CO₂/C

Statistics related to the total amount of lubricants consumed in Italy are officially provided by MASE every year in the petrochemical bulletin (MASE, several years [b]) but no details concerning different kind of lubricants are available thus allowing us only for a Tier 1 approach; LHV, Carbon Content and ODU factors

used are the default values included in the IPCC 2006 Guidelines are taken. The activity data for this subcategory is the total consumption of lubricants minus the amount of lubricants used in 2-stroke engines (which is derived from reversing COPERT equation to estimate CO₂ emissions in 2-stroke engines). Emissions from the use of lubricants in 2-stroke engines have been accounted for in the Energy Sector.

NMVOC emissions for the whole times have been estimated too, based on the total lubricants consumption and a NMVOC EF= 28 kg NMVOC/tons of lubricant (EMEP/EEA, 2013). The whole time series for NMVOC emissions has been revised in the present submission as a consequence of the review of the activity data time series.

<u>Paraffin wax</u>

In Italy paraffin waxes are mostly used in the manufacture of candles, although a number of different applications (e.g. food production and many others) could have paraffin waxes as an input. Emissions from the use of waxes derive primarily when the waxes or derivatives of paraffins are combusted during use (e.g., candles). No other use of paraffin wax in products implying wax combustion during the product use is known in Italy. In order to estimate CO₂ emissions for the whole time series it has been assumed that 65% of total amount of paraffin wax is destined to the manufacture of candles on account of information provided by the industrial association (Assocandele, 2015). Total paraffin wax consumption is included in "Bollettino Petrolifero" provided by the MASE and publicly available on the MASE website at the following link: https://dgsaie.mise.gov.it/bollettino-petrolifero.

Default values for carbon content of paraffin wax as well as ODU factor and LHV have been assumed (2006 IPCC Guidelines) and applied to the activity data according to a Tier 1 approach as in Equation 5.4 of the 2006 IPCC Guidelines:

$$CO_2 Emissions = PW \cdot CC_{Wax} \cdot ODU_{Wax} \cdot 44 / 12$$

where:

 CO_2 Emissions = CO_2 emissions from waxes, tonne CO_2

PW = total wax consumption, TJ

CCWax = carbon content of paraffin wax (default), tonne C/TJ (= kg C/GJ)

ODUWax = ODU factor for paraffin wax, fraction

 $44/12 = mass ratio of CO_2/C$

<u>Use of urea</u>

Emissions of CO_2 originated by the use of urea in SCR systems in engines and Power plants have been estimated and reported in this sub-sector.

Concerning vehicles, SCR systems were introduced in Italy in 2006 so CO₂ emissions related to SCR systems can be traced back in the time series up to 2006. The amount of urea and CO₂ emitted using urea can be estimated by COPERT, which is the model used by Italy to estimate emissions for road transport. For further details, see paragraph 3.5.2 in the energy chapter.

Concerning power plants, the amount of urea used in SCR systems has been reported by operators under the Italian ETS together with CO₂ emissions since 1997.

Asphalt roofing and road paving

NMVOC emissions from the manufacturing of asphalt roofing materials have been estimated based on the total surface of bitumen roofing membranes (Federchimica, several years; Siteb, several years) and default emission factors (EMEP/CORINAIR, 2007; EMEP/EEA, 2009).

NMVOC emissions from road paving operations have been estimated based on the amount of asphalt mix produced for each year (ISTAT, several years [a]; Siteb, several years) and the emission factors also derived from data supplied by Siteb (EPA, 2000; Siteb, several years).

<u>Solvent use</u>

Emissions of NMVOC from solvent use have been estimated according to the methodology reported in the EMEP/EEA guidebook, applying both national and international emission factors (Vetrella, 1994; EMEP/CORINAIR, 2007, EMEP/EEA, 2013). Country specific emission factors provided by several accredited sources have been used extensively, together with data from the national EPER/EPRTR Registry; in particular, for paint application (Offredi P., several years; FIAT, several years [b]), solvent use in dry cleaning (ENEA/USLRMA, 1995), solvent use in textile finishing and in the tanning industries (TECHNE, 1998; Regione Toscana, 2001; Regione Campania, 2005; GIADA 2006). Basic information from industry on percentage reduction of solvent content in paints and other products has been applied to EMEP/EEA emission factors in order to evaluate the reduction in emissions during the considered period.

Emissions from domestic solvent use have been calculated using a detailed methodology, based on VOC content per type of consumer product.

As regards household and car care products, information on VOC content and activity data has been supplied by the Sectoral Association of the Italian Federation of the Chemical Industry (Assocasa, several years) and by the Italian Association of Aerosol Producers (AIA, several years [a] and [b]). As regards cosmetics and toiletries, basic data have been supplied by the Italian Association of Aerosol Producers too (AIA, several years [a] and [b]) and by the national Institute of Statistics and industrial associations (ISTAT, several years [a], [b], [c] and [d]; UNIPRO, several years); emission factors time series have been reconstructed on the basis of the information provided by the European Commission (EC, 2002).

The conversion of NMVOC emissions into CO₂ emissions has been carried out considering the carbon content value. In the previous submission carbon content was set equal to 85% as indicated by the European Environmental Agency for the CORINAIR project (EEA, 1997); as a result of the technical review in the framework of Article 19(1) of the European Regulation No 525/2013 it was recommended to use a fossil carbon content equal to 65% as indicated in the 2006 IPCC Guidelines (chapter 5.5.4).

4.5.3 Uncertainty and time-series consistency

The combined uncertainty in CO_2 emissions from non energy products from fuels and solvent use is estimated equal to 58.3% due to an uncertainty of 30% and 50% in activity data and emission factors, respectively.

In 2021, CO₂ derive mainly from the subcategory 'Other', which accounts for 78.6% of the sectoral emissions; specifically, emissions from the use of solvent share 69.9%. The second source of sectoral emissions is the use of lubricants contributing to 20.4% of the total. Table 4.26 shows CO₂ emission trend from 1990 to 2021.

Gas/subcategory	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
2D. Non-energy products from fuels. Other	1,681	1,533	1,405	1,345	1,117	965	1,049	1,084	1,079	954	1,004
2D1. Lubricant use	351	303	308	287	215	212	231	230	218	185	205
2D2. Paraffin wax use	19	20	21	14	13	15	13	11	7	7	9.7
2D.3. Other	1,311	1,211	1,075	1,044	889	738	805	843	854	761	789
2D3a. Urea (emissions abatement in engines)	-	-	-	-	24	45	50	62	67	64	78
2D3b. Urea (emissions abatement in power plants)	-	-	2.38	2.35	11.71	7.34	7.50	9.31	10.32	10.61	8.3
2D3c. Road paving	-	-	-	-	-	-	-	-			
2D3d. Asphalt roofing	-	-	-	-	-	-	-	-			
2D3e. Solvent	1,311	1,210	1,073	1,041	853	686	748	7772	776	687	703
Paint application	595	555	497	471	345	286	337	334	329	259	254
Degreasing and dry cleaning	101	61	47	41	36	32	31	30	29	28	28
Chemical products	170	189	182	131	121	109	127	118	112	108	112
Other	444	405	347	398	351	260	253	290	306	292	309

Table 4.26 Trend in CO2 emissions from the non energy products from fuels and solvent use category (kt)

The decrease observed in emission levels from 1990 to 2021, about 40.2%, is to be attributed to the reduction in emissions from solvent use, mainly for the reduction in paint application, application of glue and adhesives and domestic solvent use; specifically, the reduction of emissions from paint application for domestic use, which drop by about 57.4% from 1990, is due to the implementation of Italian Legislative Decree 161/2006. Other European directives applies to the solvent use category, which represents the main source of NMVOC emissions at national level (36.8% of the total NMVOC); for instance, the European Directives (EC, 1999; EC, 2004) regarding NMVOC emission reduction in paint application entered into force, in Italy, in January 2004 and in March 2006, establishing a reduction of the solvent content in products.

4.5.4 Source-specific QA/QC and verification

For the solvent use category, different QA/QC and verification activities are carried out. Data production and consumption time series for some activities (paint application in constructions and buildings, polyester processing, polyurethane processing, pharmaceutical products, paints manufacturing, glues manufacturing, textile finishing, leather tanning, fat edible and non edible oil extraction, application of glues and adhesives) are checked with data acquired by the National Statistics Institute (ISTAT, several years [a], [b] and [c]), the Sectoral Association of the Italian Federation of the Chemical Industry (AVISA, several years) and the Food and Agriculture Organization of the United Nations (FAO, several years). For specific categories, emission factors and emissions are also shared with the relevant industrial associations; this is particularly the case of paint application for wood, some chemical processes and anaesthesia and aerosol cans.

In the framework of the MeditAIRaneo project, ISPRA commissioned to Techne Consulting S.r.l. a survey to collect national information on emission factors in the solvent sector. The results, published in the report "Rassegna dei fattori di emissione nazionali ed internazionali relativamente al settore solventi" (TECHNE, 2004), have been used to verify and validate the emission estimates. ISPRA commissioned to Techne Consulting S.r.l. another survey to compare emission factors with the last update published in the EMEP/EEA guidebook (EMEP/EEA, 2009). The results are reported in "Fattori di emissione per l'utilizzo di

solventi" (TECHNE, 2008) and have been used to update emission factors for polyurethane and polystyrene foam processing activities.

In addition, for paint application, data communicated from the industries in the framework of the EU Directive 2004/42, implemented by the Italian Legislative Decree 161/2006, on the limitation of emissions of volatile organic compounds due to the use of organic solvents in certain paints and varnishes and vehicle refinishing products have been used as a verification of emission estimates. These data refer to the composition of the total amount of paints and varnishes (water and solvent contents) in different subcategories for interior and exterior use and the total amount of products used for vehicle refinishing and they are available from the year 2007.

Additional verifications of the emissions from the sector occurred in 2012, on account of the bilateral independent review between Italy and Spain and the revision of national estimates and projections in the context of the National emission ceilings Directive for the EU Member States and the Gothenburg Protocol of the Convention on Long-Range Transboundary Air Pollution (CLRTAP).

4.5.5 Source-specific recalculations

Recalculation occurred in 2020 value for CO₂ emissions from Lubricant use (2.D.1) due to the use of updated activity data timeseries and also in 2.D.3. As for CO₂ emissions from lubricants use (2.D.1) and from the use of urea in the engines (2.D.3.a), recalculations occurred for 2020 due to the update of the data resulting from COPERT model, as shown in Table 4.27:

Table 4.27 recalculation of CO2 emissions from 2.D.1 lubricants use and from the use of urea in SCR systems (2.D.3.a) (%)

	2020
2D1 - Lubricants CO ₂	-0.01
2D.3.a - UREA in SCR systems (vehicles) - CO ₂	0.05

Recalculations occurred also in CO₂ from Solvent use (2.D.3.e) along the whole time series due to the update of the activity data and of the emissions factors, as shown in Table 4.28.

Table 4.28 recalculation of CO2 emissions (%) from CO2 from solvent use (2.D.3.e)

	2D.3.e Solvent	2D.	3.e Solvent
Year	- CO ₂	Year	- CO ₂
1990	-0.02	2006	-0.01
1991	-0.02	2007	-0.01
1992	-0.02	2008	-0.01
1993	-0.02	2009	-0.01
1994	-0.01	2010	-0.01
1995	-0.01	2011	-0.01
1996	-0.01	2012	-0.01
1997	-0.01	2013	-0.01
1998	-0.01	2014	-0.01
1999	-0.01	2015	-0.01
2000	-0.01	2016	-0.01

2001	-0.01	2017	-0.01
2002	-0.01	2018	-0.01
2003	-0.01	2019	-0.02
2004	-0.01	2020	-0.17
2005	-0.01		

4.5.6 Source-specific planned improvements

No further improvements are planned.

4.6 Electronics Industry Emissions (2E)

4.6.1 Source category description

Fluorocarbons emissions from this sub-sector are from semiconductor manufacturing industry (2.E.1). Actually in Italy, there are three national plants of semiconductor manufacturing, owned by two company, ST Microelectronics (in the past purchased for a couple of years by Numonyx) and LFoundry (ex Micron Technology): in particular, ST Microelectronic is active from 1995, while LFoundry from 1998. The semiconductor manufacturing companies supply yearly consumption and emission data for each plant (ST Microelectronics, several years; Micron, several years; Numonyx, several years; LFoundry, several years).

F-gas emissions from semiconductor manufacturing are estimated using the Tier 2a methodology of the new 2006 IPCC Guidelines (IPCC, 2006).

Fluorinated compounds emissions from heat transfer fluids are also estimated. Since 2017 the industry has started to communicate the consumption of the substances used in service equipment and consequently emissions have been estimated equal to consumptions (ST Microelectronic, several years; LFoundry, several years). For the previous years, industry communicated that no data is available and explained that consumptions of these substances are of course linked to the production but not dependent on it (i.e. if production of semiconductor occur, the use of these service equipment occur, but the refrigerant consumption is random). Because of previous considerations, emissions have been estimated constant for the whole time series.

As concerns photovoltaic (PV) manufacturing, currently in Italy there is no production of PV cells, but only assembly. Before 2011, PV cells production occurred but no fluorinated compounds have been used for the process (Lux, 2015; Solsonica, 2015). Finally, no thin-film-transistor flat panel display (TFT-FPD) production occurs in Italy (Linde Gas, 2015). The share of F-gas emissions from the electronics industry in the national total of F-gases accounts for 1.39% in 2021.

4.6.2 Methodological issues

F-gas emissions from semiconductor manufacturing are estimated using the Tier 2a methodology of the 2006 IPCC Guidelines (IPCC, 2006). As reported in the Guidelines, total emissions are equal to the sum of emissions from the gas FCi used in the production process plus the emissions of by-product calculated with equation 6.3/6.4/6.5/6.6.

Companies involved in the semiconductor manufacturing provide yearly data on consumption and emissions (ST Microelectronics, several years; Micron, several years; Numonyx, several years; LFoundry, several years), calculated on the basis of the following equation, accepted by the World Semiconductor

Council (WSC). The formula gathers the IPCC Guidelines equations (combining equations 6.2/6.3/6.4/6.5/6.6 of the Guidelines) and includes both direct and by-product emissions):

Emissions for PFC_i = PFC_i*(1-h)[(1-C_i)(1-A_i)*GWP_i + B_i *GWP_(byproduct)*(1-A_(byproduct))]

where:

h = fraction of gas_i remaining in container (heel)

 $PFC_i = purchases of gas_i = kgs_i$

*kgs*ⁱ = mass of gasⁱ purchased

GWP_i = 100 yr global warming potential of gas_i

C_i = average utilization factor of gas_i (average for all etch and CVD processes) =1-EF_i

*EF*_i = average emission factor of gas_i (average for all etch and CVD processes)

*B*_i = mass of CF₄ created per unit mass of *PFC*_i transformed

 A_i = fraction of *PFC*_i destroyed by abatement = $a_{i,j}*V_a$

By product formation

 A_{CF4} = fraction of *PFC*_i converted to CF₄ and destroyed by abatement = $a_{CF4}*V_a$

*a*_{i,j} = average destruction efficiency of abatement tool_j for gas_i

 $a_{CF4} =$ average destruction efficiency of abatement tool_j for CF₄

 V_a = fraction of gas_i that is fed into the abatement tools

 A_{CF4} = fraction of *PFC*_i converted to CF₄ and destroyed by abatement = $a_{CF4}*V_a$

 $a_{i,j}$ = average destruction efficiency of abatement tool_j for gas_i

 $a_{CF4} =$ average destruction efficiency of abatement tool_j for CF₄

 A_{C2F6} = fraction of *PFC*_i that is converted to C₂F₆ and destroyed by abatement = $a_{C2F6}*Va$

 a_{C2F6} = average destruction efficiency of abatement tool_j for C₂F₆

 A_{C3F8} = fraction of *PFC*_i that is converted to C₃F₈ and destroyed by abatement = $a_{C3F8}*Va$

 a_{C3F8} = average destruction efficiency of abatement tool_j for C₃F₈

 V_a = fraction of gas_i that is fed into the abatement tools

Emissions are calculated for the following fluorinated gases: HFC 23, HFC 32, HFC 134a, C₂F₆, CF₄, C₃F₈, C₄F₈, SF₆ and NF₃. From 2012, according with World Semiconductor Council (WSC), data on CH₂F₂, C₄F₆, C₅F₈ are gathered.

Since 2000, emissions are calculated considering the contribution of abatement systems.

ST Microelectronics provided emissions for each gas (CF₄, C₂F₆, HFC 23, C₂F₆, C₃F₈, C₄F₈, SF₆ and NF₃) for the year 1995 and from 2001 onwards. For the years 1996-2000 the company was not able to provide detailed data but only aggregated total emissions confirming that they occurred for all the gases and emissions of each gas have been estimated proportionally taking in account their distribution in 1995 and 2001. Moreover, on the basis of the 2001 emission factors (emission gas_i/consumption gas_i), consumption data have been extrapolated for the missing years.

For what concern Heat Transfer Fluids, during the manufacture of semiconductor devices, HTFs serve as coolants in chillers, removing excess heat during many manufacturing processes. During semiconductor device testing, containers of HTFs are cooled or heated to a desired temperature into which the devices are immersed to test their integrity. In addition, when testing the function of devices, HTFs are used to remove the heat the devices generate while being tested. HTFs are also used to attach semiconductor devices to circuit boards via solder, which may be melted by the vapour of an HTF heated to its boiling point. HTFs may also serve to cool semiconductor devices and other devices or systems that generate high heat during operation (EPA, 2006). Semiconductor industry started to collect data and communicated from the year 2017 the annual recharge of these coolants. Emissions have been estimated in terms of tonnes of CO₂ equivalent of unspecified mix of HFCs and PFCs (ST Microelectronic, several years; LFoundry, several years).

4.6.3 Uncertainty and time-series consistency

The combined uncertainty in F-gas emissions for PFC, HFC, SF₆ and NF₃ emissions from semiconductor manufacturing, included Heat Transfer Fluids, is estimated to be about 20.6% in annual emissions, 5% and 20% concerning respectively activity data and emission factors. In Table 4.29 emissions from semiconductor manufacturing are reported.

GAS	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
HFC 23	NO	6.07	8.65	7.19	10.73	9.36	8.94	6.82	9.62	8.56	8.56
HFC 32	NO	0.00	0.00	0.00	0.00	0.11	0.08	0.08	0.03	0.03	0.03
HFC 134a	NO	0.00	0.06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
CF ₄	NO	65.27	131.86	84.89	66.52	94.97	82.60	102.61	114.17	110.06	110.06
C ₂ F ₆	NO	17.08	121.08	81.22	27.48	21.44	20.97	28.20	25.87	21.69	21.69
C ₃ F ₈	NO	8.62	11.75	4.29	0.03	0.21	0.36	0.20	1.30	1.30	1.30
C ₄ F ₈	NO	10.01	1.51	10.02	26.54	19.81	17.37	15.00	16.41	9.72	9.72
C ₅ F ₈	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
SF ₆	NO	14.90	61.90	57.16	30.58	47.31	65.95	50.05	60.03	42.78	42.78
NF ₃	NO	76.57	13.26	33.38	20.17	28.42	23.50	22.13	17.84	15.76	15.76
Unspecified mix of HFCs and PFCs from Heat Transfer Fluids	NO	24.97	24.97	24.97	24.97	24.97	24.97	23.15	23.54	22.86	22.86
F-gas emissions (kt CO ₂ eq.)	NO	223.49	375.04	303.12	207.01	246.60	244.73	248.25	268.81	232.75	232.75

Table 4.29 Fluorocarbon emissions from semiconductor industry, 1990 –2021 (kt CO2 eq.)

4.6.4 Source-specific QA/QC and verification

This source category is covered by the general QA/QC procedures. Where information is available, emissions from production and consumption of fluorinated gases have been checked with data reported to the national EPER/E-PRTR registry.

4.6.5 Source-specific recalculations

Recalculation has occurred due to update of GWP values for the Heat Transfer Fluids activity, which have been made compliant with AR5.

4.6.6 Source-specific planned improvements

No further improvements are planned.

4.7 Emissions of fluorinated substitutes for ozone depleting substances (2F)

4.7.1 Source category description

The sub-sector Emissions of fluorinated substitutes for ozone depleting substances consists of the following sub-applications:

- 2.F.1 Emissions from Refrigeration and Air Conditioning
- 2.F.2 Emissions from Foam blowing Agents
- 2.F.3 Emissions from Fire Protection
- 2.F.4 Emissions from Aerosols

For category 2.F.5 Solvents, at the moment there is no evidence that these emissions occur in Italy although further work is ongoing to verify it.

Collected data, according to Article 19 of Regulation EU 517/2014, have been analyzed. Only one company has declared for the past years a small quantity of HFC preparation placed on Community market for the first time for the years 2008, 2009, 2010, 2011 and 2013 for solvents applications. The Company sent us detailed data on sales in Italy but they explained that these sales are towards 'Chemistry' sector as the substances declared are HFC-134a, R-507 and R-410A, not usually used as solvents, Italy is checking for the correctness of these data with the company. The Company is not able to explain if those data referred effectively to 'Solvent' or it was more probable a mistake and referred to RAC systems in Chemistry industry. By the way, a preliminary emissions estimation has been done and results in less of 10,000 tons of CO₂ equivalent, much more below 0.05% of the national total GHG emissions, so they have been reported as NO.

HFC emissions from Refrigeration and Air Conditioning and from Fire extinguishers are key categories at level and trend assessment, both using Tier 1 and Tier 2, with and without LULUCF, in 2021. HFC emissions from Foam blowing agents is a key category at trend assessment using Tier 2 with and without LULUCF.

The share of F-gas emissions of fluorinated substitutes for ozone depleting substances in the national total of F-gases is 95.7% in 2021.

4.7.2 Methodological issues

The methods used to calculate F-gas emissions of fluorinated substitutes for ozone depleting substances are presented in Table 4.30.

Source cat	egory		Sub-application	Calculation method						
Fluorinated	Substitutes	for	Refrigeration and air conditioning equipment (2F1)	IPCC Tier 2a						
ODS (2F)									Foam blowing (2F2)	IPCC Tier 2a
				Fire extinguishers (2F3)	IPCC Tier 2a					
			Aerosols/metered dose inhalers (2F4)	IPCC Tier 2a						

Table 4.30 Sub-sources of F-gas emissions and calculation methods

Total emissions have been calculated as the sum of Manufacturing emissions, Use emissions, Containers emissions (only for Mobile and Stationary Air Conditioning) and Disposal emissions. For the reporting of "Recovery" simple approach "Recovery" = "amount remaining in products at decommissioning" minus "Disposal emissions" has been assumed. The Legislative Decree n. 151/05 has implemented in Italy the

EU Directive on Waste from Electric and Electronic Equipment. According to this Decree when equipment are disposed of it is by law required to recover the remaining F-gas and either reuse or destruct it, but Fgases data are not available at the moment; although the number of authorized centers for the treatment of WEEE is known, there are many small authorized centers which do not have to report about their activities and also the major centers are not able to communicate data on single gas recovered. Only bulk data, nor only F-gases, are available. From last November we are in contact with Erion, the largest Italian system of extended producer responsibility for the management of waste associated with electronic products because they are finalizing a study on stationary conditioning appliances end-of-life.

IPCC Tier 2a implies the availability of either number of applications/equipment using the individual gas or the amounts of the gas used in the different sectors. Based on the availability of the amount of individual gas produced in Italy and the sectoral uses of the gas we carry out the estimation of emissions according to IPCC Tier 2a. The estimates are based on single gas consumptions data supplied, in the past, by the only national refrigerants producer (Solvay, 1998; Solvay, 2006) and at present, by Assogastecnici, a branch of Federchimica, the Italian Federation of the chemical industry. Assogastecnici is the Association of companies involved in the production and distribution of technical, special and medicinal gases and they supply data on F-gases consumption for different applications. Data are also supply by industry for what concern mobile air conditioning and medical aerosols. For Domestic Refrigeration and Stationary Air Conditioning sub-sector, emissions have been calculated on the basis of appliances produced and placed on the market supplied by Assoclima (Association of Manufacturers of Air Conditioning Systems). The applied methodology, although is not a balance of chemical sales, uses specific emission factors for each consumption type.

Due to the methodology used to estimate emissions, based on the consumption of the F-gases in the different categories, where relevant, the estimated consumption also includes the amount of fluid contained in the imported products. As an example, the amount of F-gases used in the air conditioning devices mounted on vehicles manufactured abroad and imported in Italy is part of the information we use in the estimation process. UNRAE, which is the Association of foreign car makers, provide us with the amount of F-gases used in the imported vehicles every year.

In 2016 and 2017, ISPRA signed two agreements with the Ministry of Environment (MASE) for a survey, at a national level, about HFCs alternative substances with low GWP, natural refrigerants and alternative technologies made in Italy (ISPRA [a], 2018). In the meanwhile, an historic global climate deal was reached in Kigali, Rwanda, at the Twenty-Eighth Meeting of the Parties to the Montreal Protocol on Substances that Deplete the Ozone Layer (MOP28). The so called Kigali Amendment, which amends the 1987 Montreal Protocol, aims to phase out Hydrofluorocarbons (HFCs), by the late 2040s.

In this framework ISPRA has had the opportunity to establish contact with air conditioning and refrigeration national associations, major import/export F-gas companies, and the major experts of the sector, as well as companies, in order to better understand the market evolution in terms of HFCs substitutes. Thanks to this partnership, this year the collaboration with Assogastecnici led to an important achievement for what concern F-gases consumption data on commercial refrigeration.

4.7.3 Emissions from Stationary Air Conditioning sector

Since the National Inventory Submissions 2019, the estimates of emissions from the Stationary air conditioning sector are no longer based on the refrigerants consumption data supplied by Solvay (Solvay, several years) but on data of air conditioning equipment production and sales, provided by Assoclima. ASSOCLIMA, the Italian Association of Air Conditioning Systems Manufacturers, collects an annual statistical survey of the Italian companies in the sector, taking into account the production and sales data by type of equipment and capacity. The Association supplied data on production and sales from 1995 to 2021 (Assoclima [a], several years) together with data on the average refrigerant charge of each type of appliances (Assoclima [b], several years). Data interpolation has been done in those cases where data was

not available for confidential reasons (this affected some cases for which the companies that declare their production and/or sales were less than 3). Data on production include the appliances manufactured and sold in Italy plus the appliances manufactured in Italy and sold in the foreign market (EU and external EU); data on sales include appliances manufactured and sold in Italy plus appliances imported from abroad and sold in Italy. As Assoclima represents most of the industry but, for some kind of appliances, not the 100%, multiplicative factors have been provided by the Association to cover the total of the air conditioning companies, including those that are not associated. The multiplicative factors have been used for each type of equipment and are constant for all the years of the time series (Assoclima [b], several years).

Production data have been used to estimate emissions from manufacturing while sales data have been used for estimating operating emissions.

Since the National Inventory Submissions 2022 hybrid machines were included in the estimates. These machines, with an integrated boiler and heat pump system, are similar to chillers with capacities up to 50 kW, so the parameters used for chillers were assigned to hybrid machines with the same capacity. This approach was shared with the experts of the sector.

Besides, the charge of equipment using R-32 was reduced by 20% compared to the same equipment using 410A⁹; in fact, as this refrigerant has higher capacity in terms of cooling and heating compare with R410A, R32's equipment use up to 20% less refrigerant than R410A for the same performance.

Unlike the previous submission, the charge of the water-cooled chiller has been change as suggested by Assoclima; in particular, the charge of water-cooled chiller with capacity from 700 to 900 kW was increased from 88.8 kg to 150 kg while the charge of water-cooled chiller with capacity from 900 kW and more was increased from 127.31 kg to 200 kg.

In Table 4.31 the type of appliance, the capacity, the average charge and the multiplicative factor used for the estimation are reported.

Type of condensation	Type of equipm	nent	Capacity (kW)	Average charge (kg)	Multiplicative factor
		Monoblock air conditioner without outdoor unit (double duct)	-	0.6	1
Air cooled	Room air conditioner	Monoblock portable air conditioner up to 3 kW (single duct)	< = 3	0.5	1
		Portable air conditioner with remote condenser up to 4 kW (split type)	< = 4	0.8	1
		Outdoor condensing units connected to an indoor unit (wall floor installation,	< = 7	1.1 R-410A 0.87 R-32	1.13
All cooled	conditioning units	cassette, ducted false ceiling)	> 7	3.9 R-410A 3,14 R-32	1.13
Air cooled	MULTI-SPLIT air conditioning units	Outdoor condensing units connected to indoor units (wall floor installation, cassette, ducted false ceiling)		1.6 R-410A 1.27 R-32	1.13
		Mini VRF (only external condensing units)	<16	4.1	1
Air cooled VRF		VRF (only external condensing units)	>=16	8.9	1
		Vertical or horizontal Indoor Packaged	-	3.4	1.2

Table 4.31 Type of air conditionin	a equipment, average refric	gerant charge and multiplicative factor
	9 equipinend, aren gerenig	

⁹ https://www.mitsubishi-termal.it/wp-content/uploads/2018/07/KIREIA_2019_CATALOGO_EN.pdf

Type of condensation		Capacity (kW)	Average charge (kg)	Multiplicative factor	
Air or water Cooled	Packaged, roof top ductable or not)	Roof top	-	20.7	1.2
Air or water	Precision air condi	tioning	< = 17	3.6	1
Cooled			> 17	9.2	1
			Up to 17	2.2 R-410A 0.89 R-32	1.15
			from 18 to 50	5.7 R-410A 4.56 R-32	1.1
			from 51 to 100	14.3	1.08
			from 101 to 200	29.5	1.05
Air Cooled	Chiller	Only cooling or heat pump	from 201 to 350	46.7	105
			from 351 to 500	61.9	1.05
			from 501 to 700	89.5	1.05
		from 701 to 900	137.1	1.05	
			from 901	154.3	1
			Up to 17	0.9	1.2
			from 18 to 50	1.7	1.1
			from 51 to 100	4.5	1.08
			from 101 to 200	9.8	1.05
Water Cooled	Chiller	Only cooling or heat pump	from 201 to 350	17.5	1.05
			from 351 to 500	40.4	1.05
			from 501 to 700	70.1	1.05
			from 701 to 900	150	1.02
			from 901	200	1
Air Cooled		hast numn i haller	Up to 17	2.2 R-410A 0.89 R-32	1.15
Air Cooled	Hybrid machines	heat pump + boiler	from 18 to 50	5.7 R-410A 4.56 R-32	1.1
Water Cooled		heat pump + boiler	Up to 17	0.9	1.2
water Cooled		neat pump + boller	from 18 to 50	1.7	1.1

Regarding the general trend of products and components for air conditioning systems, the 2015 has been the year in which a recovery of the sector occurred after a period of economic crisis. While the timeseries of the equipment production data shows a general decrease from 2000 to 2020 due to an increment to the import sector, (with a recovery in 2021), a different trend is registered for sales data. Overall, total sales of air conditioning equipment increased from 477,068 units in 1996 to 2,175,541 in 2021 with a fluctuating trend over the period.

Referring to Assoclima's latest survey (Assoclima, 2022), 2021 showed positive results for sales compared to the previous year, which was affected by the effects of the SARS-COVID 19 pandemic. Mono and multisplit units recorded a +23% increase in sales (+24% monosplit, +19% multisplit), for VRF systems an increased by 26% was registered. Sales of packaged air conditioners grew by +3%, while transferable air

conditioners (with -12%) and rooftop air conditioners (-1.4%) declined compared to 2020. The largest sales were in the hydronic sector: the heat pumps and the air-cooled condensing chiller units up to 17 Kw recorded 120% increases in sales followed by chiller units in the range 18 -50 Kw +29%; the total increase of cooled air chilled is 98%. Sales of heat pumps and water-cooled condensing chiller units also increased from the previous year, albeit more modestly. Overall, air-to-water and water-to-water heat pumps dominate the sales market with +107% together the hybrid machines that registered +352%.

As reported by Assoclima, 2021 highlighted the great difficulties in air conditioning equipment manufacturing, due to limited availability of some components and an unimaginable increase in raw material costs (Assoclima, 2022).

Among the measures adopted in the last years for promoting energy efficiency at national level, with a positive effect on the heat pumps market, there are the Conto Termico (Thermal energy account in the form of an economic contribution) and the Ecobonus, that is fiscal deductions for energy saving. Heat pumps have been indicated as a key technology within the PNIEC (Integrated National Plan for Energy and Climate published in January 2020) for achieving the Country's decarbonization target. Significant interventions in the civil consumption sector (residential and tertiary buildings) are needed to achieve this goal. In this regard, an important measure for support the carbon-neutral heating in residential homes has been introduced with Decree no. 34/2020 (Relaunch Decree, art. 119) then converted into Law no. 77/2020 (Law 22 May 2020, n.77). It is called "Superbonus 110%" and allows to realize interventions for the energy efficiency improvement of existing buildings (Ecobonus) and for the reduction of seismic risk (Sismabonus) by obtaining a 110% deduction of the costs. The heat pump also in hybrid system is one of the interventions that can access the Superbonus. The deduction concerns only the interventions of replacement of existing winter air conditioning system in condominiums or individual houses.

The air conditioning sector has been involved for years in the design of air conditioning systems with ever better energy performance in order to achieve the minimum environmental and energy performance requirements required by the Ecodesign regulation. Regarding the portable air conditioners with remote condenser, the production stopped in 2013, because they don't respect the minimum efficiency limits required by the ErPD regulations (Assoclima [b], several years).

In the following Table 4.32, data on manufactured and sold equipment in the Stationary air conditioning sector are reported. These are processed data obtained, as mentioned above, from the Assoclima surveys to which a multiplicative coefficient was applied to cover the entire market. The use of HFC in the air conditioning sector started in 1996.

STATIONARY AIR	1996	2000	2005	2010	2015	2017	2018	2019	2020	2021
CONDITIONING										
Production (units)										
Room air conditioner	309,318	244,769	165,152	34,938	10,566	12,234	26,015	18,998	17,614	44,702
Monosplit	229,900	575,242	65,286	25,141	35	0	0	0	0	0
Multisplit	22,718	46,680	18,576	4,464	0	0	0	0	0	0
VRF (only external condensing units)	0	0	0	51	0	0	0	0	0	0
Packaged, roof top (ductable or not)	7,090	2,384	3,376	1,990	1,929	1,920	1,739	1,910	1,507	1,386
Precision air conditioning	9,927	24,635	13,619	2,237	5,387	5,614	5,203	4,784	4,087	4,224
Air cooled chiller	28,852	46,286	55,856	66,829	36,253	37,817	38,125	35,260	34,562	42,537
Water cooled chiller	2,740	4,902	5,727	5,530	5,689	4,929	4,186	4,327	4,266	4,334
Hybrid machines	0	0	0	0	0	0	0	0	0	0

Table 4.32 Number of manufactured and sold eq	winment in the Stationar	vair conditioning sector 1996-2021
Table 4.52 Number of manufactured and sold eq	fulpinent in the Stationar	y all conditioning sector, 1990-2021

Sales (units)										
Room air conditioner	112,212	101,860	111,540	143,632	72,552	92,984	128,564	113,560	157,093	143,966
Monosplit	358,756	875,558	1,082,572	910,491	741,229	1,083,282	1,184,119	1,205,609	1,271,003	1,622,428
Multisplit	22,879	129,860	326,525	281,118	222,176	308,995	342,079	376,556	375,282	458,520
VRF (only external condensing units)	0	0	8,292	18,116	15,131	19,812	23,303	25,343	22,436	29,058
Packaged, roof top (ductable or not)	2,429	3,907	4,141	1,744	1,199	1,638	1,370	1,582	1,258	1,297
Precision air conditioning	4,233	11,458	3,515	791	1,247	1,083	765	525	309	515
Air cooled chiller	21,707	31,530	34,258	27,127	33,105	44,653	51,106	56,579	52,482	109,934
Water cooled chiller	1,631	2,993	2,730	2,565	1,921	1,608	1,440	1,511	1,486	1,577
Hybrid machines	0	0	0	0	3,767	7,713	8,055	8,699	15,706	70,915

HFC refrigerants used in the Stationary air conditioning sector

Air conditioning appliances started to use HFC, as substitutes of HCFC, in the second half of the 1990s (Assoclima [b], several years), and the replacement process was completed by 2005, with the elimination of HCFCs in new equipment.

In the last years, with the introduction of new refrigerants (natural refrigerants, HFO or HFC with a lower GWP) in substitution of the HFC, due to the F-gas Regulation and market dynamics, the percentage of sales and production of HFC equipment has changed. For portable air conditioners, the replacement of HFCs with HCs started earlier than the other machines thanks to the low charge involved that allow the use of flammable refrigerants. According to expert judgment, propane has started to be used after 2005, and in 2010 the 50% of the portable room air conditioner are with HC-290; this percentage growths to 90% in 2017 (Assoclima [b], several years) and becomes equal to zero in 2020 because, according to the F-Gas regulation as of January 2020, portable room air conditioners that contain a refrigerant with a GWP of 150 or more are banned from the market. In 2021 propane chiller also entered the Italian market: these are lower power (<= 50 kW) air-cooled chillers and air-cooled hybrid machines. According to expert judgment, the percentage of these propane machines in 2021 is 1%.

In the following Table 4.33 the percentage share of HFC equipment on the total of sales and production per year (1996-2021) is reported.

Type of equipment	1996	2000	2005	2010	2015	2017	2018	2019	2020	2021
Split, VRF, Packaged, Roof Top, Precision air-conditioning, Water-cooled chiller, Air cooled chiller and Hybrid machine (except those included in the last row of the table)	1%	5%	95%	100%	100%	100%	100%	100%	100%	100%
Monobloc portable room air conditioner <= 3kW; Portable room air conditioner with remote condenser <= 4 kW	10%	50%	100%	50%	30%	10%	10%	10%	0%	0%
Air cooled chiller and air-cooled hybrid machine with P<= 50 KW	1%	5%	95%	100%	100%	100%	100%	100%	100%	99%

Table 4.33 Percentage share of HFC equipment manufactured and sold over the years in the Stationary air conditioning sector.

R-410A, HFC-134a, and R-407C have long been the main refrigerants used in the air conditioning sector. R-410A was the dominant HFC for many years, followed by HFC-134a. R-410A has always been used mainly for small air conditioning systems even if in the last years it was replaced by R-32, HFC-134a is a good replacement for larger equipment; for intermediate power machines both R-410A and HFC-134a can be used. R-407C was used for different years in the past as a substitute for R-22, instead of R-410A because this refrigerant allows to use the same components of a R-22 system but, due to thermodynamic problems, it has been progressively substituted by R-410A. For this reason, the use of R-407C started to decrease since 2010.

The percentage of HFC conditioning equipment, by type of refrigerant has been supplied by Assoclima (Assoclima [b], several years) and show a deep changing in the mix of refrigerants used over the years. Initially the portable air conditioners used mainly R-134a due to the lower operating pressures but then they mainly passed to R-410A. Regarding the R-407C, chillers with rotary compressors also initially used this gas, while those with screw compressors (and centrifugal) switched directly to R-134A. Some indoor "packages" (air-to-air ducted and also water-air ducted) still use R-407C because it is not convenient to redesign the appliances. High-capacity water chillers (from 351 kW) mainly use HFC-134a; they are losing market share.

Among the new refrigerants with lower GWP, the R-32 is receiving the most interest. Because of its flammable nature (A2L class), at present it is mainly used for split equipment in the residential sector. As the sectoral experts communicated (Assoclima [b], several years), mono e multisplit have started using this refrigerant, as a replacement for the R-410A, in 2016, in that year the percentage of R-32 split equipment manufactured and sold was estimated to be 20% and it increased in the following years. Compared to the Submissions 2020, on the base of the communication of Assoclima, in the Submission 2021 un update of the percentage of R-32 equipment sold and manufactured in the recent years was carried out, as the market penetration of R-32 was faster than initially established (Assoclima [b], several years). The percentage of R-32 equipment sold and produced reached 100% in 2021%. It was 95% in 2020, 80% in 2019, 60% in 2018, 40% in 2017. Consequently, the percentage of mono and multisplit that use R-410A, of which R-32 is the replacement, was changed.

In 2020 R-32 air cooled chiller with a capacity up to 50 kW appeared in the Italian market. According to the experts of Assoclima we met in 2021, the percentage of this equipment in 2020 is about 22%, consequently the percentage of the similar chillers that use R-410A is decreased from 100% in 2019 to 78% in 2020. In 2021, the percentage of these R-32 chillers increased to 40% and consequently the percentage of chiller using R-410A decreased to 59% (the remaining 1% of chiller uses propane).

In the following Table 4.34 the percentage of HFC conditioning equipment sold and produced in 2021, by type of refrigerant is reported. The percentage distribution for the previous years is reported in the Submission 2022.

Regarding the possibility of using flammable refrigerants, it is noted the decree of the Ministry of the Interior of 10 March 2020 on "*Fire prevention provisions for air conditioning systems included in activities subject to fire prevention controls*¹⁰"entered in force on 18 June 2020 (DM 73/2020). This decree allows the possibility of using, in air conditioning systems, machines equipped with refrigerants classified as Al or A2L, according to ISO 817 «Refrigerants - Designations and safety classification» or equivalent standard, thus overcoming the limitation of using only non-toxic or non-flammable fluids; it also reiterates that the design, installation, management and maintenance of the plants must be done in compliance with the safety requirements set by the rule of the art (for example: series of technical standards UNI EN 378), that is respecting the applicable rules and standards.

For the estimation, the percentage composition by type of refrigerant of the sales data is equal to the percentage distribution of the production data.

¹⁰Air conditioning systems for activities open to the public, such as schools, hotels, sport centers ecc.

Table 4.34 Percentage of equipment produced and sold in 2021 by type of refrigerant.

Type of equipment	Capacity (kW)	HFC-134a	R-410A	R-407C	R-32
ROOM AIR CONDITIONER			•	•	
Monoblock air conditioner without outdoor unit (ductable duct)		0%	100%	0%	0%
Monoblock portable air conditioner up to 3 kW (single duct)	<= 3	0%	100%		0%
Portable air conditioner with remote condenser up to 4 kW (split	~= 5	070	10070	070	070
type)	<= 4	-	-	-	-
MONOSPLIT					
Outdoor condensing units connected to an indoor unit (wall floor	<= 7	0%	0%	0%	100%
installation, cassette, ducted false ceiling)	> 7	0%	0%	0%	100%
MULTISPLIT					
Outdoor condensing units connected to indoor units (wall floor installation, cassette, ducted false ceiling)		0%	0%	0%	100%
VRF (only external condensing units)					
Mini VRF	<=16	0%	100%	0%	0%
VRF	>16	0%	100%	0%	0%
PACKAGED, ROOF TOP (ductable or not)					
Vertical or horizontal indoor packaged	-	0%	50%	50%	0%
Roof top	-	0%	90%	10%	0%
PRECISION AIR CONDITIONING					
	< = 17	0%	100%	0%	0%
Precision air conditioning	>17	0%	100%	0% 0% - 0% 0% 0% 0% 0% 50% 10%	0%
AIR COOLED CHILLER					
Only cooling	<= 17	0%	59%		40%
Heat pump		0%	59%		40%
Only cooling Heat pump	18 -50	0% 0%	59% 59%		40% 40%
Only cooling	51 -100	0% 0%	100%		0%
Heat pump			100% 100%		0%
Only cooling	101 -200	0%			0%
Heat pump		0%	100%		0%
Only cooling	201 - 350	14%	86%		0%
Heat pump		10%	90%		0%
Only cooling	351 - 500	20%	80%		0%
Heat pump		30%	70%		0%
Only cooling	501 - 700	70%	30%		0%
Heat pump		90%	10%		0%
Only cooling	701 - 900	100%	0%		0%
Heat pump	101 500	100%	0%		0%
Only cooling	>= 901	100%	0%		0%
Heat pump	501	100%	0%	0%	0%
WATER COOLED CHILLER					
Only cooling	<= 17	0%	100%	0%	0%
Heat pump	N= 17	0%	100%	0%	0%
Only cooling	10 50	0%	100%	0%	0%
Heat pump	18 - 50	0%	100%	0%	0%
Only cooling	F4 400	0%	100%	0%	0%
Heat pump	51 - 100	0%	100%	0%	0%
Only cooling	101 - 200	10%	90%	0%	0%

Type of equipment	Capacity (kW)	HFC-134a	R-410A	R-407C	R-32
Heat pump		10%	90%	0%	0%
Only cooling	201 250	95%	0%	5%	0%
Heat pump	201 - 350	95%	0%	5%	0%
Only cooling	254 500	100%	0%	0%	0%
Heat pump	351 - 500	100%	0%	0%	0%
Only cooling	501 700	100%	0%	0%	0%
Heat pump	501 - 700	100%	0%	0%	0%
Only cooling	701 000	100%	0%	0%	0%
Heat pump	701 - 900	100%	0%	0%	0%
Only cooling	001	100%	0%	0%	0%
Heat pump	>= 901	100%	0%	0%	0%
AIR COOLED HYBRID MACHINE					
	<= 17	0%	59%	0%	40%
Heath pump and boiler	18 - 50	0%	59%	0%	40%
WATER COOLED HYBRID MACHINE					
	<= 17	0%	100%	0%	0%
Heath pump and boiler	18 - 50	0%	100%	0%	0%

On the basis of the number of equipment manufactured and sold in the Italian market, of the average refrigerant charge and of the percentage of equipment by type of HFC, the quantities of HFC contained in the equipment manufactured and sold have been calculated (Table 4.35).

Table 4.35 Quantities of HFCs contained in the air conditioning equipment manufactured and sold in the Italian market, 1996-2021 (t)

AIR CONDITIONING	1996	2000	2005	2010	2015	2017	2018	2019	2020	2021
HFC in manufactured	d equipme	nt (t)								
HFC-134a	19.62	78.99	350.34	356.51	272.13	239.40	235.71	238.37	236.01	233.14
R-410A	3.39	8.60	238.39	623.31	544.11	540.77	532.24	527.51	446.78	455.14
R-407C	3.21	64.63	523.70	15.93	4.58	4.52	4.12	4.47	3.55	3.34
R-32	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	13.01	29.20
HFC in sold equipme	nt (t)									
HFC-134a	7.23	33.72	184.32	102.99	87.61	73.19	82.02	96.42	67.35	70.00
R-410A	4.26	8.54	1,189.29	1,954.84	1,639.51	1,535.76	1,296.99	963.78	561.79	635.82
R-407C	2.34	71.63	981.82	10.61	2.60	3.48	2.94	3.37	2.68	2.77
R-32	0.00	0.00	0.00	0.00	0.00	568.87	942.36	1,303.40	1,610.88	2,261.67

Emission factors for the Stationary air conditioning sector

Appropriate losses rates have been applied for each gas used in the stationary air conditioning sector, taking into account the equipment where refrigerants are generally used, as suggested by a pool of

experts during a specific meeting held at the Ministry of the Environment, Land and Sea (ISPRA-MATTM, 2013), in order to assess F-gas emissions from refrigeration and air conditioning. These experts represent the following national association of air conditioning sector:

- ASSOCLIMA-ANIMA (Air Conditioning) Association of Manufacturers of aerodynamic equipment and systems under the Federation of National Associations of Mechanical and Engineering similar (ANIMA), which is the sectoral industrial association within Confindustria (Confederation of Italian Industry) representing companies in this sector.
- AICARR Italian Association of Air Conditioning, Heating and Refrigeration.

For the years 1990-1999 leakage rates were supplied by the industrial associations of manufacturers as the best available country specific information for the years concerned. Industrial associations have revised the leakage rates for the years from 2000 to take into consideration the changes in technology which have been occurring in the manufacturing of the equipment concerned. The year 2000 has been taken as a turning point in terms of changes of technologies and good practice in the refrigerants handling, because of the transition from the use of CFCs and HCFCs towards the use of HFCs. The Regulation (EC) n. 2037/2000 of the European Parliament and of the Council of 29 June 2000 on substances that deplete the ozone layer (EC, 2000) entered into force in 2000, introducing the phase out of CFC and the phase down of HCFC and restriction in handling these substances. As a consequence of the legislation, the relevant operational procedures in manufacturing, during installation and in exercise, e.g. for split charging or appliances maintenance, changed resulting in a turning point of leakage rates. The manufacturing and operating emission factors of the stationary air conditioning sector have not changed compared to last year's estimates.

For the operating emission factors un update was carried out this year. Changes has regarded only the emission factors of split and VRF systems from 2015. So, for all the type of equipment, except split and VRF, as in the previous Submission two different periods have been considered: from 1996 to 2006 and from 2007, while for split and VRF three periods have been identified: from 1996 to 2006, from 2007 to 2014, from 2015. The new emission factors have been supplied by the experts of the sector we contacted in the last months. The emission factors for the period 1996-2006 have been assumed to be higher than those of the following period, because with the entry into force of Regulation 842/2006 on certain fluorinated greenhouse gases, improvements on the prevention of leaks from equipment containing F-gases were introduced.

Measures include in example containment of gases and proper recovery of equipment, training and certification of personnel and of companies handling these gases and labelling of equipment containing F-gases. Consequently, starting from that year, more attention has been paid by the technicians to install, service and maintain, repair or decommission AC systems and the year 2007 has been taken as another turning point in terms of changes of good practice in the refrigerants handling aimed at containing and preventing losses of HFCs from equipment. According to the sectoral experts, the emission factors of the period 1996-2006 are 50% higher than those from 2007 (Assoclima [b], several years).

Similarly, also the emission factors for the period from 2007 to 2014 have been estimated by expert judgment and the values of losses presented are an average of the risk relating to the entire fleet, by including machines that work correctly and those that may have problems.

For split system the leakages are directly proportional to the number of connections according to the following equations:

$$Leakrate_{split : multisplit} = 3\% \times (\frac{m _of _connections}{4})$$

For monosplit, the number of connections is equal to 4; for multisplit it has been considered a weighted average of the connections equals to 10, that means a loss rate of 7.5%. Chillers and rooftop (being packaged systems) are factory sealed products, therefore leak rate is estimated equals to 1%, while VRF

system, being similar to multisplit, have leak rate depending on the number of connections. The emission factor value for this equipment is 12%. More information on the assumptions is reported also in the document "Comments on Appendix A&B of the "Preparatory study for the Review of Regulation 842/2006 /Working group 1" (WG1, 2013).

For the period from 2015 onward the operating emission factors have been reduced to consider the good practices adopted in refrigerants management as the result of the F-gas Regulation implementation. Based on the expert judgment, the emission factor for mono-split has been assumed equal to 2%, the emission factor for multisplit has been assumed equals to 4% and that for VRF equal to 6%.

The appropriate **manufacturing and operating** emission factors for stationary air conditioning sector are reported in the following Tables 4.36 and 4.37.

As some procedures used in manufacturing or during the installation of the RAC systems has changed in 2000, also F-gases market price has influenced losses control. In fact, since the F-gases are also expensive material in the manufacturing process it was a matter of concern of the manufacturers to succeed in limiting losses in that stage and that was achieved by setting higher levels in the acceptance testing procedures.

Table 4.36 Manufacturing and operating emission factors for room air conditioners, packaged and root top, precision air conditioning systems, chiller and hybrid machines.

Town of an inner t	Manufac	turing (%)	Operating (%)		
Type of equipment	1996-1999 From 2000		1996-2006	From 2007	
ROOM AIR CONDITIONER (Monoblock without outdoor unit (ductable duct) Portable air conditioner up to 3 kW (single duct) Portable air conditioner with remote condenser up to 4 kW (split type)	3.0%	0.5%	1.5%	1.0%	
PACKAGED, ROOF TOP (Ductable or not)	3.0%	0.5%	1.5%	1.0%	
PRECISION AIR CONDITIONING	3.0%	0.5%	1.5%	1.0%	
CHILLER (Air/water cooled chiller, only cooling or heat pump)	3.0%	0.5%	1.5%	1.0%	
HYBRID MACHINES (Heath pump + boiler)	3.0%	0.5%	1.5%	1.0%	

Table 4.37 Manufacturing and operating emission factors for split and VRF.

MANUFACTURING AND OPERATING	LEAKAGE RATE	OF SPLIT AND	VRF EQUIPMEN	ITS			
Type of equipment	Manufact	uring (%)	Operating (%)				
rype of equipment	1996-1999	From 2000	1996-2006	2007-2014	From 2015		
MONOSPLIT Outdoor condensing units connected to an indoor unit (wall floor installation, cassette, ducted false ceiling)	3.00%	0.50%	4.50%	3.00%	2.00%		
MULTISPLIT Outdoor condensing units connected to indoor units (wall floor installation, cassette, ducted false ceiling)	3.00%	0.50%	11.30%	7.50%	4.00%		
VRF (Only external condensing units)	3.00%	0.50%	18%	12.00%	6.00%		

Since the National Inventory Submissions 2020, the emissions related to the refrigerant container management are also estimated. Unlike the previous submission, this year we updated the emission factors from containers, as suggested by the experts of the sector we contacted (Assogastecnici, 2022). These emission factors were reduced over the timeseries to account of the effects of HFC Regulations and the leakage containment. As reported in the following table, the emission factor decreased from 5% in 1996 to 0.5% in 2015 and it remains constant in the following years.

REFRIGERANT CONTAINER MANAGEMENT LEAKAGE RATE IN THE STATIONARY AIR									
CONDITIONING SECTOR									
1996-1999	2000-2004	2005-2014	From 2015						
5.00%	2.0%	1.0%	0.5%						

Table 4.38 Management containers emission factors of Stationary air conditioning sector

In the following box, the sources of activity data and emissions factors are summarized.

CRF Category	Category	Substance	Activity Data References	Emission Factors References
2.F.1.f	Stationary Air Conditioning	HFC-32 HFC-125 HFC-134a	ASSOCLIMA	Expert judgement

The average lifetime for each type of air conditioning systems is from expert judgement and from IPCC Guidelines (IPCC, 2006; Assoclima [b], several years; ISPRA-MATTM, 2013; WG1, 2013). Regarding the average lifetimes, a distinction must be made between air-conditioning units used for human comfort and those used with other purposes (in example to ensure an appropriate temperature level for flower foodstuffs shops or process plants). The formers are more susceptible to fashions and are often replaced before the end of their natural life cycle, also because these units are usually not subjected to constant maintenance that is often required by industrial machines. The machines aiming at human comfort are mainly with heat pump configuration while for the other uses only cooling machines are used. For this reason, only cooling chillers have a lifetime higher than heat pump chillers.

Regarding the HFC recovery at the end of life of equipment, the national experts communicated that almost all the gases of larger size machines are currently recovered, while in the smaller equipment the recovery quotas can be lower. For this smaller equipment, thanks to the experts we recently contacted, the gas recovery percentage has been changed: in detail from 1996 to 2015 it has been assumed equals to 50% as the previous submission, while from 2015 it has been increased to 70% to take into account the effect of F-gas Regulation (Assogastecnici, 2022). For chiller a 90% of recovery has been adopted. Future improvements could come from the National Register of fluorinated greenhouse gases and equipment containing fluorinated gases (DPR 146/2018). In recent months we have been working with the Responsible of the Registry to try to overcome some of the issues that have emerged after an initial check of the database. Although some gaps were overcome, there are still criticalities on data. For this reason, we have decided not to use the information contained in the registry yet.

Data on average lifetimes and recovery at decommissioningare reported in the following Table 4.39.

Turn of eminment	A	Recovery at decom	missioning (%)
Type of equipment	Average Lifetimes	From 1996 to 2014	From 2015
ROOM AIR CONDITIONER	12	50%	70%
MONOSPLIT	15	50%	70%
MULTISPLIT	15	50%	70%
VRF	15	50%	70%
PACKAGED, ROOF TOP	18	50%	70%
PRECISION AIR CONDITIONING	22	90%	90%
ONLY COOLING CHILLER	25	90%	90%
HEAT PUMP CHILLER	20	90%	90%
HYBRID MACHINES	25	90%	90%

Table 4.39 Average lifetimes and recovery at decommissioning for the Stationary air conditioning equipment

Since the National Inventory Submissions 2020, the topping up of gases are also considered.

The quantity of gas remaining in the equipment at the end of its life depends on the value of the operating emission factor and on the gas topping up. The air conditioning equipment will lose more or less depend on the year in which it has been placed on the market, because of the change of the emission factor during the period considered. As changes were made to the operating emission factors and to the percentages of recovered gas this year, the quantities of gas remaining in the equipment at the end of life and the estimated amounts for topping up are also changed. These changes affected the equipment and the years for which modifications were made. Without a gas topping up, the charge of gas will gradually decrease over time to reach the minimum value at the end of equipment's life. This value can be very low if the operating emission factor is high. For multisplit and VRF equipment this situation occurs after a few years the entering the market because of the major emission factors and a lifetime equals to 15 years. For this reason, a periodic gas refilling frequency based on the type of equipment has been adopted. Therefore, the total amount of refrigerant placed on the market every year is equal to the amount contained in the new equipment sold in that year plus the amount used for the maintenance in the same year.

As changes were made to the operating emission factors and to the percentages of recovered gas this year, the quantities of gas remaining in the equipment at the end of life and the estimated amounts for topping up are also changed. These changes affected the equipment and the years for which modifications were made.

In the following Table 4.40, the amounts of HFC placed on the market, by type of refrigerant are reported. As a result of updating the average charge of water-cooled chillers with larger capacity, the operating emission factors for some types of equipment since 2015, and some corrections in sales data, the time series of the amount of HFCs put on the market has changed compared the previous submission.

Table 4.40 Amounts of HFC placed on the market of Stationary air conditioning sector (amount in the sole	l
equipment plus amount used for topping up), 1996-2021 (t)	

AIR CONDITIONING	1996	2000	2005	2010	2015	2017	2018	2019	2020	2021
HFC placed on the m	narket (t)									
HFC-134a	7.23	33.72	184.32	107.54	107.89	90.02	96.42	107.42	78.30	81.74
R-410A	4.26	8.79	1,205.66	2,348.91	2,223.90	2,154.69	1,838.99	1,578.71	1,088.02	1,115.82

AIR CONDITIONING	1996	2000	2005	2010	2015	2017	2018	2019	2020	2021
R-407C	2.34	71.77	1012.89	295.02	211.82	145.39	99.50	79.96	40.51	18.98
R-32	0.00	0.00	0.00	0.00	0.00	568.87	942.36	1,314.23	1,629.78	2,293.06

HFC emissions estimation from Stationary air conditioning sector

On the basis of the amounts of refrigerant placed on the market, the HFC average annual stock for each year was calculated. This stock is given by the sum of the amount of refrigerant in the machines placed on the market in the considered year, plus the amount of the remainder refrigerant in the machines from the previous year and less the quantity of refrigerant in the machines that left the market in that year because at the end of their life. For each refrigerant the average annual stocks are calculated by the following equation:

Qt = Q(t-1)*(1 - product life leakage rate) + Qsoldt - Q(t-X)* end of life charge (%)

Where:

Qt = amount of refrigerant in operating systems year t

- Q(t-1) = amount of refrigerant in operating systems year t-1
- Qsoldt = amount of refrigerant sold year t
- Q(t-x) = amount of refrigerant in operating systems X years before

Q(t-X)* end of life charge (%) is the amount of refrigerant in the machines that left the market at the end of its life.

In Table 4.41 the HFC average annual stocks are reported. As mentioned earlier, changes in the average charge of water-cooled chillers with higher capacity, in the operating emission factors for some types of equipment since 2015, along with some corrections in sales data, have resulted in an update of the HFC average annual stock.

AIR CONDITIONING	1996	2000	2005	2010	2015	2017	2018	2019	2020	2021
HFC average annua	l stock (t)								
HFC-134a	7.23	98.23	746.42	1,346.51	1,577.13	1,653.29	1,703.16	1,769.71	1,820.22	1,874.38
R-410A	4.26	35.45	3,024.27	11,204.89	18,793.84	22,447.65	23,266.71	23,256.77	22,756.58	22,150.64
R-407C	2.34	127.60	3,824.71	5,783.75	5,732.87	5,295.59	4,661.73	3,693.87	3,016.20	2,421.65
R-32	0.00	0.00	0.00	0.00	0.00	874.42	1,794.41	3,062.84	4,607.87	6,733.39

Table 4.41 HFC average annual stock for the Stationary air conditioning sector, 1996-2021 (t)

Since the 2020 Submission, we also estimate the amount of refrigerants stocked in the containers. In the absence of specific information, we assumed this quantity as the sum of the HFC used to fill new equipment and the HFC use for servicing. The amount of HFC stocked in the containers are reported in Table 4.42.

AIR CONDITIONING	1996	2000	2005	2010	2015	2017	2018	2019	2020	2021
HFC in the container	rs (t)									
HFC-134a	19.62	78.99	350.34	361.06	292.41	256.23	250.12	249.37	246.96	244.88
R-410A	3.39	8.85	254.77	1,017.39	1,128.50	1,159.70	1,074.25	1,142.44	973.12	935.16
R-407C	3.21	64.77	554.77	300.34	213.80	146.43	100.68	81.06	41.39	19.54
R-32	0.00	0.00	0.00	0.00	0.00	0.00	0.00	10.84	31.91	60.59

Table 4.42 HFC stocked in the containers for the air conditioning sector, 1996-2021 (t)

HFC emissions from the Stationary air conditioning sector have been estimated according to IPCC's Tier 2a methodology. The F-gas total emission is the sum of charge emission, lifetime emissions, disposal emissions and containers emissions, calculated separately, according to the following IPCC 2006 equation:

EQUATION 7.10 SUMMARY OF SOURCES OF EMISSIONS $E_{total,t} = E_{containers,t} + E_{Charge,t} + E_{lifetime,t} + E_{end-of-life,t}$

The containers emissions have been calculated by using the IPPC's formula:

$$E_{containers,t} = RM_t \bullet \frac{c}{100}$$

where RM_t is the sum of HFC used to fill new equipment and HFC used for servicing in year t, and c is the emission factor from containers management. Without specific information regarding refrigerant management of containers an emission factor equals to 5% was adopted. As all the air conditioning units are factory charged with refrigerants, all the emissions due to the charging process of new equipment occur in the factory and thus, the charge emissions correspond to the manufacturing emissions. In this Report we use manufacturing emissions to indicate charge emissions.

The disposal emissions (end of life emissions) have been calculated as the difference between the remaining HFC in products at decommissioning and the quantity of HFC recovered. Based on the product life leakage rate and the average lifetimes, the charge remaining at decommissioning is calculated as (1-product life leakage rate) * average lifetimes. While in this report the HFC emissions from containers management are reported separately from the other quantities estimated according to the IPCC tier2a equation, in the "CRF reporting table" emissions from containers are included in the voice "Emissions from stocks", together with the operating emissions.

In the following tables (Tables 4.43, 4.44, 4.45) the manufacturing, lifetime (including containers emissions), and disposal emissions are reported.

Table 4.43 HFC manufacturing emissions of the Stationary air conditioning sector, 1996-2021 (t)

Stationary Air Conditioning	1996	2000	2005	2010	2015	2017	2018	2019	2020	2021
Manufacturing em	issions (t)									
HFC 134a	0.64	0.56	3.11	1.82	1.37	1.21	1.19	1.20	1.19	1.17
HFC-125	0.07	0.10	1.25	1.58	1.37	1.36	1.34	1.32	1.12	1.14
HFC-32	0.07	0.10	1.20	1.58	1.37	1.36	1.34	1.32	1.19	1.29

Stationary Air Conditioning Lifetime emissio	1996 ns (t)	2000	2005	2010	2015	2017	2018	2019	2020	2021
HFC 134a	1.21	6.67	115.07	118.53	80.64	76.08	68.78	57.41	49.13	42.46
HFC-125	0.24	2.68	141.56	291.36	273.67	317.20	327.35	322.58	311.52	300.23
HFC-32	0.24	2.54	137.70	287.46	271.24	337.33	371.21	399.83	428.73	471.32

 Table 4.44 HFC lifetime emissions (including containers emissions) of the Stationary air conditioning sector, 1996-2021 (t)

Table 4.45 HFC disposal emissions of the Stationary air conditioning sector, 1996-2021 (t)

Stationary Air Conditioning	1996	2000	2005	2010	2015	2017	2018	2019	2020	2021
Disposal emission	s (t)									
HFC-134a	NO	NO	NO	8.05	36.88	105.10	178.15	266.70	176.04	141.49
HFC-125	NO	NO	NO	0.16	11.07	72.27	150.85	281.25	240.66	247.13
HFC-32	NO	NO	NO	0.15	10.40	68.54	144.34	271.26	234.00	241.76

The HFC total emissions from the Stationary air conditioning sector are reported on the Table 4.46.

The new emission factors that have been adopted for splits, VRFs, and containers and the new end-of-life gases recovery rates for equipment have resulted in a reduction in total emissions compared to the previous submission. As reported above, this update was made possible thanks to the collaboration with industry experts who provided us with more accurate and up-to-date information on the Italian F-gas market (Assogastecnici, 2022).

Stationary Air Conditioning	1996	2000	2005	2010	2015	2017	2018	2019	2020	2021
				Tot	al emission	s (t)				
HFC-134a	1.85	7.23	118.19	128.40	118.89	182.39	248.13	325.31	226.36	185.12
HFC-125	0.32	2.78	142.81	293.10	286.11	390.82	479.53	605.15	553.31	548.50
HFC-32	0.31	2.64	138.90	289.18	283.00	407.23	516.89	672.41	663.92	714.37
Total HFC emissions	2.47	12.65	399.90	710.68	688.00	980.44	1,244.55	1,602.87	1,443.58	1,447.99

Table 4.46 HFC total emissions of the Stationary air conditioning sector, 1996-2021 (t)

Total HFC emissions from the stationary air conditioning equipment increased from 1996 driven by the increase of their consumptions. In years when the operating emission factor was decreased (2006 and 2015) to account for the effects of F-gas regulations, emissions decreased but the trend has been always increasing throughout the period from 1996 to 2019. 2020 was a particular year because, for the effect of the Sars-Covid 19 pandemic, a contraction in gas consumptions was registered, followed by a recovery in 2021.

HFC total consumptions increased significantly from 1996 to 2007, followed by a several-year contraction due to the economic crisis that affected several European countries, including Italy. Since 2015 there has been a recovery and overall the consumption trend throughout the period has been increasing.

Because of the methodology approach followed, emission reduction is postponed compared to consumption reduction.

4.7.4 Emissions from Refrigeration sector: commercial, domestic and industrial

Regarding the estimations from the refrigeration sector, no changes occurred in the methodology compared to the previous submission. However, significant updates have been carried out both to gas consumptions and emission factors, resulting in a change in total emissions for the sector.

Both emissions from commercial and industrial refrigeration have been estimated on the basis of Solvay and Assogastecnici data consumptions (Solvay, 1998; Solvay, 2006; Assogastecnici, 2022). Transport Refrigeration and professional refrigeration such as blast chiller estimations are included in Commercial Refrigeration because no detailed information is available to split consumptions and emissions in the different sectors. Domestic refrigeration estimations are based on data of manufactured and sold fridges and freezers provided by APPLiA Italia.

Refrigeration market: activity data and HFC used in the Refrigeration sector

Domestic refrigeration appliances started to use HFC-134a from 1994 (RAEE, 2017), as a consequence of the ban of CFC forced by the Law n. 549/1993, reporting the measures to protect the stratospheric ozone and the environment (Law 28th of December 1993). APPLiA Italia represents the manufacturers of the Domestic and Professional Appliance sector in Italy and supplied production data of fridges and freezers from 1987 to 2021 (APPLiA Italia, several years).Data for the other years (1992, 1994, 1995, 1996, 1998, 2000) have been interpolated. Production data have been used to estimate emissions from manufacturing.

Emissions from stocks have been estimated starting from the number of appliances placed on the market each year. Data have been supplied by APPLiA Italia for the year 1993 and from 2001 to 2021 (APPLiA Italia, several years), even if for the year 1993 the appliances placed on the market still used CFCs. Data for the other years have been interpolated (1994-2000). Data are reported in Table 4.47. APPLiA Italia also supplied data on HFCs coverage on the total of sales, the average charge of appliances and the lifetime (APPLiA Italia, several years), as reported in Table 4.48.

DOMESTIC REFRIGERATION	1994	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
Production (units*1	000)										
Fridges	5,461	5,746	7,169	5,496	2,400	1,804	1,467	1,459	1,515	1,438	1,714
Freezers	1,693	1,782	2,229	1,890	1,200	521.91	339	347	385	583	670
Sales (units*1000)											
Fridges	1,701	1,783	2,190	2,232	2,294	1,832	1,724	1,519	1,575	1,846	2,056
Freezers	420	455	630	593	647	425	340	339	378	671	733
		-	-		-						-

Table 4.47 Number of manufactured and sold equipment for domestic refrigeration, 1994-2021

Table 4.48 Average lifetimes, average charge and percentage of appliances containing HFC in domestic refrigeration equipment, 1994-2021

DOMESTIC REFRIGERATION	1994	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
Average lifetime (years)	14	14	14	14	14	14	14	14	14	14	14
Average charge (g)	137.5	137.5	137.5	110	110	110	110	110	110	110	110
% of appliances containing HFC 134a	35	70	60	20	7	0	0	0	0	0	0

The quantities of HFC contained in the domestic refrigeration equipment manufactured and in operating systems are reported in the following Table 4.49.

Table 4.49 Quantities of HFC contained in the manufactured domestic refrigeration equipment and quantities of HFC in operating systems, 1994-2021 (t)

DOMESTIC REFRIGERATION	1994	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
HFC in manufactured eq	uipment	(t)									
HFC-134a	344.26	724.53	775.33	162.51	27.72	0	0	0	0	0	0
HFC in operating system	ıs (t)										
HFC-134a	314.55	1,358.69	2,105.11	1,973.25	797.57	620.8	355.74	258.91	201.04	152.49	105.74

For the commercial and industrial refrigeration sub-sectors, national HFC consumption data were communicated by Solvay, the only manufacturer of fluorinated substances in Italy until 2012 (Solvay, 1998; Solvay, 2006) including consumption data and estimations of such consumption, from 1995 to 2013. Data from 2014 to 2021 have been supplied by Assogatecnici (Assogastecnici, 2022).

These data were subjected to a review process with the involvement of the refrigeration national association, import/export F-gas companies, and experts of the sector that validated them, as well as data from F-gases database. At present, these data represent the best available information of the refrigeration sector.

Refrigeration data provided by Solvay and by Assogastecnici included the following refrigerants: HFC-23, HFC-134a, R-404A, R-507A, R-448A, R-449A and R-452A.

As reported in the last submission, HFC emissions from industrial refrigeration have been calculated by assuming the consumption of HFC-23 from the industrial and no from commercial refrigeration. In fact, HFC-23 is used for very low temperature, typical for the industrial sector, and not in commercial refrigeration. We are aware that HFC 134a, R-404A R-507A are also used in industrial refrigeration but the available data do not allow us to allocate them correctly. For the commercial refrigeration sub-sector, HFC-134a is mainly used in small commercial appliances while R-404A and R-507a are mainly used in medium/large commercial applications with low/medium temperature; in particular, R-404A is the dominant refrigerant in supermarkets/other commercial applications.

Thanks to the support of sectoral experts, the commercial refrigeration sub-sector has been updated, in order to include the changing of the market occurred during the last years as a consequence of the introduction of the F-gas Regulation and more in general, the policies against the climate change.

In Table 4.50, HFC consumption data for the Refrigeration sector are reported. As all the domestic equipment are factory charged and are hermetically sealed units (and no gas refilling is necessary during their lifetime), the quantities of refrigerants used to fill new manufactured products coincides with the annual HFC domestic refrigeration consumption.

REFRIGERATION CONSUMPTION (t)	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
Commercial Refrigeration										
HFC-134a	0.0	2,941.8	2,950.0	1,688.9	640.0	580.0	520.0	480.0	360.0	380.0
R-404A	10.0	706.5	1,680.0	2,193.3	2,520.0	1,764.0	1,092.0	546.0	420.0	420.0
R-507A	8.0	235.5	320.0	417.8	480.0	336.0	208.0	104.0	80.0	80.0
R-448A	0.0	0.0	0.0	0.0	40.0	499.7	815.9	1,037.7	988.9	1,052.7
R-449A	0.0	0.0	0.0	0.0	30.0	295.0	425.9	477.0	398.4	424.1
R-452A	0.0	0.0	0.0	0.0	10.0	105.3	158.2	185.3	162.8	173.3
Total HFC consumption	18.0	3883.7	4,950.0	4,300.0	3,720.0	3,000.0	3,220.0	2,830.0	2,410.0	2,530.0

Table 4.50 HFC consumptions in commercial, industrial and domestic refrigeration sub-sectors, 1995-2021 (t)

REFRIGERATION CONSUMPTION (t)	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
Industrial Refrigeration										
HFC-23	15.0	16.6	21.1	11.1	11.2	10.7	10.5	10.2	10.0	9.5
Total HFC consumption	15.0	16.6	21.1	11.1	11.2	10.7	10.5	10.2	10.0	9.5
Domestic Refrigeration										
HFC-134a	724.5	775.3	162.5	27.7	0.0	0.0	0.0	0.0	0.0	0.0
Total HFC consumption	724.5	775.3	162.5	27.7	0.0	0.0	0.0	0.0	0.0	0.0
Total HFC consumption Refrigeration sector	757.5	4,675.6	5,133.6	4,338.8	3,731.2	3,590.7	3,230.5	2,840.2	2,420.0	2,539.5

This year, an update on the HFCs consumptions for both industrial and commercial refrigeration was carried thanks to the cooperation with the experts of the sector (Assogastecnici, 2022). For commercial refrigeration the main revision concerned the HFC-134A, R-404A and R-507A consumptions. A detailed analysis of the available activity data was made and the years for which gas consumption was certain were set: 1998, 2005 and from 2014 onward. The entire time series has been reconstructed taking into account the scenario communicated in the past by Solvay for the years 1998-2012 and 2005-2020 (Solvay, 1998; Solvay, 2006) and the updated market communicated by Assogastecnici (Assogastecnici, 2022). The consumptions of R-448A, R-449A and R-452A were also changed from 2016.

R-404A and R-507a have a very high GWP, greater than 2,500. As the use of HFCs with a GWP above 2,500 is banned in all new commercial refrigeration equipment placed on the EU market after January 1st, 2020, R-404A and R-507A use is no longer permit in new equipment. They can only be used for maintenance as a recycled or regenerated gas. As consequence of HFC bans and phase down, and of the market dynamic of the last years, with the increasing of the cost of HFC with higher GWP and a reduction of their availability, new HFC and alternative substances with lower or null GWP have been entering the market. As the experts of the sector communicated, the refrigerants market is moving towards a model characterized by a presence of many different gases, each one with a specific different application.

Emission factors for the refrigeration sector

Appropriate losses rates have been applied for each gas and subsector (commercial, industrial and domestic) taking into account the equipment where refrigerants are generally used, as suggested by a pool of experts during a specific meeting held at the Ministry of the Environment (ISPRA-MATTM, 2013), in order to assess F-gas emissions from refrigeration and air conditioning, with a focus on commercial refrigeration. These experts represent the following national association of refrigeration sector:

- ASSOFOODTEC-ANIMA (Commercial Refrigeration) Association of Italian manufacturers of machinery, plant, equipment for the production, processing and preservation of food, under the ANIMA Federation.
- AICARR Italian Association of Air Conditioning, Heating and Refrigeration.
- APPLiA Italia (Domestic Refrigeration) It represents the manufacturers of the Domestic and Professional Appliance sector in Italy; APPLIA is a member of ANIE Federation (The National Federation of Italian Electrotechnical, Electronics and ICT Companies) and Confindustria.

For the years 1990-1999 leakage rates were supplied by the industrial associations of manufacturers as the best available country specific information for the years concerned. Industrial associations have revised the leakage rates for the years from 2000 to take into consideration the changes in technology which have been occurring in the manufacturing of the equipment concerned.

The year 2000 has been taken as a turning point in terms of changes of technologies and good practice in the refrigerants handling, because of the transition from the use of CFCs and HCFCs towards the use of HFCs.

The Regulation (EC) n. 2037/2000 of the European Parliament and of the Council of 29 June 2000 on substances that deplete the ozone layer (EC, 2000) entered into force in 2000, introducing the phase out of CFC and the phase down of HCFC and restriction in handling these substances. As a consequence of the legislation, the relevant operational procedures in manufacturing, during installation and in exercise, e.g for split charging or appliances maintenance, changed resulting in a turning point of leakage rates. The manufacturing and operating (product life) emission factors for commercial, industrial and domestic refrigeration equipment are reported in the following table.

Unlike the previous submission, thanks to the cooperation with Assogastecnici, this year the operational emission factor of large commercial refrigeration has been updated. Specifically, a 10% emission factor has been adopted since 2015 (it was 12% in the submission 2022), to account for the entry into force of the F-Gas Regulation 517/2014, which has resulted in an increased focus on refrigerant gas management. In the following Table 4.51 the emission factors for commercial, industrial and domestic refrigeration subsectors are reported.

Refrigeration sector	1990-1 Leakage ra		2000-2 Leakage r		2015-2021 Leakage rate (%)		
sector	Manufacturing	Product life	Manufacturing	Product life	Manufacturing	Product life	
Small Commercial Refrigeration	0.5%	5.0%	0.5%	5.0%	0.5%	5.0%	
Large Commercial Refrigeration	3.0%	15.0%	0.5%	12.0%	0.5%	10.0%	
Domestic Refrigeration	3.0%	0.7%	3.0%	0.7%	3.0%	0.7%	
Industrial Refrigeration	1.8%	15.0%	1.8%	15.0%	1.8%	15.0%	

Table 4.51 Manufacturing and operating emission factors for refrigeration equipment

As some procedures used in manufacturing or during the installation of the RAC systems has changed in 2000, also F-gases market price has influenced losses control. In fact, since the F-gases are also expensive material in the manufacturing process it was a matter of concern of the manufacturers to succeed in limiting losses in that stage and that was achieved by setting higher levels in the acceptance testing procedures. According to the information supplied by the industry reported above, year 2000 is considered a turning point for the sector market together with 2015, when the Regulation 517/2014 entered into force. In the following Table 4.52, the sources of activity data and emissions factors are summarized.

Table 4.52 Summary of activity data and emission factors sources

CRF Category	Category	Substance	Activity Data References	Emission Factors References
2.F.1.a	Commercial Refrigeration	HFC 134a R-404A R-507A R-448A R-449A R-452A	Solvay, Assogastecnici	Expert Judgement
2.F.1.b	Domestic Refrigeration	HFC 134a	APPLiA Italia	Expert Judgement
2.F.1.c	Industrial Refrigeration	HFC 23	Solvay, Assogastecnici	2006 IPCC Guideline

The average lifetimes for each type of refrigeration systems are from expert judgement and from IPCC Guidelines (IPCC, 2006; Assoclima [b], several years; ISPRA-MATTM, 2013; WG1, 2013) and are reported in Table 4.53

Table 4.53 Average lifetime	. initial charge remain	ing and recovery at deco	ommissioning for refri	geration equipment
	,		······	ge

Refrigeration sector	Average Lifetimes	Initial Charge Remaining	Recovery at decommissioning
<u>-</u>	(years)	(%)	(%)
Small Commercial Refrigeration	12	40%	85%
Large Commercial Refrigeration	12	-	90%
Domestic Refrigeration	14	90.2%	85%
Industrial refrigeration	20	-	90%

HFC emissions estimation from refrigeration sector

On the basis of the HFC consumption data, the average annual stock for commercial, industrial and domestic sub-sectors was calculated. This stock is given by the sum of the amount of refrigerant in the machines placed on the market in the considered year, plus the amount of the remainder refrigerant in the machines from the previous year and less the quantity of refrigerant in the machines that left the market in that year because at the end of their life. For each refrigerant the average annual stocks are calculated by the following equation:

 $Qt = Q(t-1)^{*}(1 - product life leakage rate) + Qsoldt - Q(t-X)^{*} end of life charge (%)$

where:

Qt = amount of refrigerant in operating systems year t

Q(t-1) = amount of refrigerant in operating systems year t-1

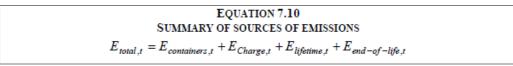
Qsoldt = amount of refrigerant sold year t

Q(t-x) = amount of refrigerant in operating systems X years before

Q(t-X)* end of life charge (%) is the amount of refrigerant in the machines that left the market at the end of its life.

In the following table 4.54 the HFC average annual stocks for refrigeration sector are reported. Data are reported by single F-gas, considering the composition of each blend.

Table 4.54 HFC average annual stocks from the Refrigeration sector, 1994-2021


Refrigeration HFC average annual stock (t)	1994	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
2.F.1.a Commerci	ial Refrig	eration									
HFC-32	0.00	0.00	0.00	0.00	0.00	18.70	269.51	573.93	920.60	1,198.50	1,472.47
HFC-125	0.00	8.15	781.55	3,780.50	6,216.43	8,664.24	9,361.03	9,415.10	9,258.83	9,005.89	8,807.24
HFC -134a	0.00	0.39	3,314.16	8,357.29	10,172.83	7,703.38	6,758.65	6,473.96	6,253.97	5,989.88	5,797.85
HFC-143a	0.00	8.92	886.46	4,303.62	7,123.45	9,920.19	10,364.75	9,996.76	9,331.32	8,655.30	8,046.88
HFC average annual stock	0.00	17.46	4,982.2	16,441.4	23,512.7	26,306.5	26,753.9	26,459.7	25,764.7	24,849.6	24,124.4
2.F.1.b Domestic	Refriger	ation									
HFC-134a	101.4	314.6	1,580.21	2,152.09	1,762.92	620.80	355.74	258.91	201.04	152.49	105.74
HFC average annual stock	101.4	314.6	1580.21	2152.09	1762.92	620.80	355.74	258.91	201.04	152.49	105.74
2.F.1.c Industrial	Refriger	ation									

Refrigeration HFC average annual stock (t)	1994	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
HFC-23	0.00	5.89	25.96	38.40	39.57	34.37	32.68	31.88	31.12	30.38	29.55
HFC average annual stock	0.00	5.89	25.96	38.40	39.57	34.37	32.68	31.88	31.12	30.38	29.55
Total HFC average annual stock Refrigeration sector	101.4	337.9	6,588.3	18,631.9	25,315.2	26,961.7	27,142.4	26,750.5	25,996.9	25,032.4	24,259.7

Regarding the estimations from the refrigeration sector, no changes in the methodology was made compared to the last submission.

Commercial and industrial refrigeration emissions have been estimated on the base of data consumption supplied by Solvay and expert of the sector (Solvay, 1998; Solvay, 2006; Assogastecnici, 2022) while domestic refrigeration emissions have been calculated on the basis of appliances produced and placed on the market (APPLiA Italia, several years). Transport refrigeration and professional refrigeration such as blast chiller estimations are included in Commercial refrigeration, because no detailed information is available to split consumptions and emissions in the different sectors.

The emissions have been estimated according to IPCC's Tier 2a methodologies. The F-gas total emission is the sum of charge emission, lifetime emissions, disposal emissions and containers emissions, calculated separately, according to the following 2006 IPCC Guidelines equation:

Commercial and industrial refrigeration estimates are based on single gas consumptions data that also include the quantity of gases used for the maintenance. The combination of the emission factors and the lifetime of the equipment implies that some appliance can lose its charge completely during its lifetime and consequently, the charge remaining at decommissioning is zero. In these particular cases, it can be assumed that emissions are included in "operating systems" emissions and no emissions from disposal and emissions from recovery are present. On the basis of information reported above, HFC emissions of the refrigeration equipment, from manufacturing, lifetime and disposal have been estimated and reported in tables 4.55, 4.56, 4.57. The disposal emissions have been calculated as the difference between the remaining HFC in products at decommissioning and the quantity of HFC recovered. The review of refrigerants consumptions for the commercial and industrial refrigeration and of operational emission factors for large commercial equipment resulted in a reduction in total emissions from the refrigeration sector compared to the 2022 submission.

Refrigeration MANUFACTURING EMISSION	1994	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
2.F.1.a - Commercial Re	frigeratio	n									
HFC-32 (t)	NO	NO	NO	NO	NO	0.09	1.07	1.67	2.03	1.86	1.98
HFC-125 (t)	NO	0.25	2.14	4.50	5.87	6.86	6.05	4.98	3.95	3.38	3.53

Refrigeration											
MANUFACTURING EMISSION	1994	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
HFC-134a (t)	NO	0.01	14.85	15.09	8.88	3.78	4.16	4.22	4.21	3.43	3.63
HFC-143a (t)	NO	0.28	2.43	5.17	6.75	7.75	5.43	3.36	1.68	1.29	1.29
Total HFC manufacturing emissions (t)	NO	0.54	19.42	24.75	21.50	18.49	16.69	14.22	11.87	9.97	10.43
2.F.1.b - Domestic Refrig	geration										
HFC-134a (t)	10.33	21.74	23.26	4.88	0.83	0.00	0.00	0.00	0.00	0.00	0.00
Total HFC manufacturing emissions (t)	10.33	21.74	23.26	4.88	0.83	0.00	0.00	0.00	0.00	0.00	0.00
2.F.1.c - Industrial Refrig	jeration										
HFC-23 (t)	NO	0.27	0.30	0.38	0.2	0.20	0.19	0.19	0.18	0.18	0.17
Total HFC manufacturing emissions (t)	NO	0.27	0.30	0.38	0.2	0.20	0.19	0.19	0.18	0.18	0.17
Total HFC manufacturing emissions - Refrigeration sector (t)	10.33	22.55	42.98	30.01	22.53	18.69	16.89	14.41	12.05	10.15	10.60

Table 4.56 HFC lifetime emissions from the refrigeration sector (t), 1994-2021

Refrigeration LIFETIME EMISSION	1994	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021		
2.F.1.a - Commercia	2.F.1.a - Commercial Refrigeration												
HFC-32 (t)	NO	NO	NO	NO	NO	1.87	26.95	57.39	92.06	119.85	147.25		
HFC-125 (t)	NO	1.22	93.79	453.66	745.97	866.42	936.10	941.51	925.88	900.59	880.72		
HFC-134a (t)	NO	0.06	169.38	436.17	540.39	417.96	382.86	380.27	381.64	377.81	377.63		
HFC -143a (t)	NO	1.34	106.37	516.43	854.81	992.02	1,036.48	999.68	933.13	865.53	804.69		
Total HFC lifetime emissions (t)	NO	2.62	369.54	1,406.27	2,141.17	2,278.27	2,382.39	2,378.85	2,332.72	2,263.77	2,210.29		
2.F.1.b - Domestic F	Refrigera	ation											
HFC-134a (t)	0.71	2.20	11.06	15.06	12.34	4.35	2.49	1.81	1.41	1.07	0.74		
Total HFC lifetime emissions (t)	0.71	2.20	11.06	15.06	12.34	4.35	2.49	1.81	1.41	1.07	0.74		
2.F.1.c - Industrial F	Refrigera	tion											
HFC-23 (t)	NO	0.88	3.89	5.76	5.94	5.16	4.90	4.78	4.67	4.56	4.43		
Total HFC lifetime emissions (t)	NO	0.88	3.89	5.76	5.94	5.16	4.90	4.78	4.67	4.56	4.43		
Total HFC													
lifetime emissions Refrigeration sector (t)	0.71	5.70	384.50	1,427.09	2,159.45	2,287.77	2,389.78	2,385.45	2,338.79	2,269.40	2,215.46		

Refrigeration DISPOSAL EMISSION	1994	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021		
2.F.1.a - Commercial R	2.F.1.a - Commercial Refrigeration												
HFC-32 (t)	NO	NO	NO	NO	NO	0.00	0.00	0.00	0.00	0.00	0.00		
HFC-125 (t)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
HFC-134a (t)	0.00	0.00	0.00	0.00	168.00	190.08	177.00	161.87	146.73	131.60	116.47		
HFC -143a (t)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Total HFC disposal emissions (t)	0.00	0.00	0.00	0.00	168.00	190.08	177.00	161.87	146.73	131.60	116.47		
2.F.1.b - Domestic Refr	igeration												
HFC-134a (t)	0.00	0.00	0.00	0.00	32.85	25.68	14.53	14.15	8.41	7.07	6.85		
Total HFC disposal emissions (t)	0.00	0.00	0.00	0.00	32.85	25.68	14.53	14.15	8.41	7.07	6.85		
2.F.1.c - Industrial Refr	igeration												
HFC-23 (t)	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Total HFC disposal emissions (t)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Total HFC disposal emissions (t)	0.00	0.00	0.00	0.00	200.85	215.76	191.53	176.02	155.14	138.67	123.32		

Table 4.57 HFC disposal emissions from the refrigeration sector (t), 1994-2021

Table 4.8 HFC total emissions from refrigeration sector (t) (manufacturing emissions plus lifetime emissions and disposal emissions), 1994-2021

Refrigeration Total emissions	1994	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
2.F.1.a - Commerci	ial Refrige	eration									
HFC-32 (t)	NO	NO	NO	NO	NO	1.96	28.02	59.06	94.09	121.71	149.23
HFC-125 (t)	NO	1.47	95.93	458.16	751.84	873.29	942.15	946.49	929.83	903.97	884.25
HFC-134a (t)	NO	0.07	184.23	451.26	717.27	611.82	564.01	546.36	532.59	512.84	497.73
HFC-143a (t)	NO	1.61	108.80	521.60	861.56	999.77	1,041.90	1,003.03	934.81	866.82	805.98
Total HFC emissions (t)	NO	3.16	388.96	1,431.02	2,330.67	2,486.84	2,576.08	2,554.94	2,491.32	2,405.34	2,337.19
2.F.1.b - Domestic	Refrigera	ation									
HFC-134a (t)	11.04	23.94	34.32	19.94	13.17	4.35	2.49	1.81	1.41	1.07	0.74
Total HFC emissions (t)	11.04	23.94	34.32	19.94	13.17	4.35	2.49	1.81	1.41	1.07	0.74
2.F.1.c - Industrial	Refrigera	tion									
HFC-23 (t)	NO	1.15	4.19	6.14	6.14	5.36	5.09	4.97	4.85	4.74	4.60
Total HFC emissions (t)	NO	1.15	4.19	6.14	6.14	5.36	5.09	4.97	4.85	4.74	4.60
Total HFC emissions (t) Refrigeration sector	11.04	28.25	427.47	1,457.10	2,349.98	2,496.54	2,583.67	2,561.72	2,497.58	2,411.15	2,342.53

Professional refrigeration

In 2019 a first investigation on the professional refrigeration subsector has been carry out by Applia Italia, the Italian Association of the manufactures of the Domestic and Professional sector.

The professional refrigeration sector includes the equipment used for storage, preservation and treatment for food, in use in the professional kitchens of public sector (such as restaurants, pizzerias, pubs, hotels) of collective catering (canteens) and commercial catering (restaurant and fast food chains). These appliances are mainly hermetically sealed stand-alone units (plug -in o self contained). Professional refrigeration equipment encompasses refrigerators, freezers, blast chillers and icemaking machines. All these types of equipment differ in terms of capacity, refrigerant charge, temperature levels and process techniques, factors that together with the climatic characteristics of the professional kitchen affect the feasibility of replacing hydrofluorocarbons with gas with low GWP (APPLiA Italia, 2019). In fact, according to the EU Regulation n. 517/2014, the placing on the market of professional refrigeration products is prohibited:

- From 1 January 2020: for refrigerators and freezers for commercial use (hermetically sealed equipment) that contain HFCs with GWP of 2,500 or more.
- From 1 January 2022: for refrigerators and freezers for commercial use (hermetically sealed equipment) that contain HFCs with GWP of 150 or more.
- From 1 January 2020: for stationary refrigeration equipment, that contains, or whose functioning relies upon, HFCs with GWP of 2,500 or more except equipment intended for application designed to cool products to temperatures below -50°C.

The main HFCs used in the professional refrigeration sector are: R-404A, R-452A and HFC-134a. As these refrigerants have a very high global warming potential, they will need to be replaced by alternatives with no or very low GWP. At present, according to the experts of the sector, the hydrocarbons (mainly propane R-290) represent the only feasible alternatives to HFC: in fact, the professional refrigeration sector is facing many difficulties in switching to alternatives to HFCs because of the safety standards regarding flammable products. The EN 60335-2-89 safety standard sets a charge limit of 150 g for flammables, limit that is often exceeded in this type of equipment.

In 2019, at the international IEC standard, with the contribution of EFCEM Italia, a new edition of the standard was approved. The new standard allows an increase in the propane charge up to 500 g.

European manufacturers are waiting the implementation of this standard at European level of CENELEC before they can implement an increase in the charge of natural refrigerant (APPLiA Italia, 2019).

The professional refrigeration equipment placed on the Italian market (excluding operators of collective and commercial catering) include 1,250,000 refrigerators (vertical and/or horizontal), 225,000 ice-making machines and 199,000 blast chillers. The number of equipment purchased in 2018 is estimated by considering a range of values relating to a prudential estimate and to an enlarged estimate. For the refrigerators the range of values is from 58,000 to 72,000 units, for ice making machines it is from 21,000 to 26,000 and for blust chillers the range is from 16,000 to 19,000.

More than the 23% of refrigerators stocked on the market are more than 10 years old. Ice making machines with more than 10 years old are more than 21% while the blust chillers are more than 15% of the corresponding stock on the market (APPLiA Italia, 2019).

Activity data on the professional refrigeration machines were collected for the year 2018 and are reported in the following box.

VERTICAL AND/OR **ICE MAKING BLAST CHILLER** HORIZONTAL REFRIGERATORS MACHINES Total professional refrigeration systems 1,250,000 225,000 199,000 placed on the market from 58,000 to 72,000 from 21,000 to 26,000 from 16,000 to 19,000 Number of equipment purchased in 2018 >15% >23% >21% Number of units older than 10 years: >6% >12% >9% of which more than 15 years old

PROFESSIONAL REFRIGERATION IN ITALY

The use of HFC as alternative refrigerants to HCFC for the professional refrigerators started in 1995. R-404A was the main refrigerant initially utilized and subsequently it was replaced by R-452A and HFC-134a. In particular, R-452A is used in refrigerators with positive temperature and with charge equals to 300 g and in the refrigerators with negative temperature with charge equals to 450 g (APPLiA Italia, 2019).

According to the APPLiA Italia report, propane is the main alternative to HFCs for the professional refrigerators, followed by isobutane and HFO. Professional refrigerators manufacturers expect HFC to be completely replaced by 2021. Regarding the blast chillers, HCFCs were used until the mid-90s and then replaced by HFCs, R-404A initially and then R-452A and HFC-134a (this one in less amount). The use of HFCs for the ice-making machines started at the end of 90s. At present the main refrigerant used are R-452A, HFC-134a e R-290 and for the future they forecast their complete replacement with HCs and HFOs by 2030. For all these products, the factory loss rate is estimated to be less than 1% (APPLiA Italia, 2019). *There is no updated information* on this sector available.

4.7.5 Emissions from Mobile Air Conditioning, Foam blowing Agents, Fire Protection and Aerosols

The estimates of emissions are based on single gas consumption data supplied by the only national refrigerants producer and by Assogastecnici, the Association of companies involved in the production and distribution of technical, special and medicinal gases (Solvay, 1998; Solvay, 2006; Assogastecnici, 2022) as well as by industry for medical aerosolos and refrigerants used in new vehicles.

For the mobile air conditioning equipment, following the cooperation with Assogastecnici, a revision of activity data has been made. In fact, data used for estimates until last year did not include refrigerants used for servicing. The national motor company and the agent's union of foreign motor-cars vehicles have provided HFC-134a yearly consumptions of HFC 134a used in new vehicles (FIAT, several years [a]; IVECO, several years; UNRAE, several years; CNH, several years). Regarding HFC 134a used in new trucks, at some years data is missing and an interpolation has been made. Data from national statistics on vehicles from the Automobile Club of Italy (ACI, several years) have been used together with the assumption of a nominal refrigerant charge of 1.2 kg according to IPCC Guidelines (IPCC, 2006) and a lifetime of 14 years (ACI, several years), as quality control.

Pharmaceutical industry has provided aerosols/metered dose inhaler data (Sanofi Aventis, several years; Boehringer Ingelheim, several years; Chiesi Farmaceutici, several years; GSK, several years; Lusofarmaco, several years; Menarini, several years; Istituto De Angeli, several years).

For the fire extinguishers sector the European Association for Responsible Use of HFCs in Fire Fighting was contacted (ASSURE, 2005), as well as the Consortium of fire protection systems (Clean Gas, 2001). More in details HFC-227ea partial consumptions for fire extinguishers along the whole time series has been provided by Clean Gas Consortium. Because other Consortia of fire protection systems are present in the country, consumption data provided by Clean Gas have been multiplied for a factor equal to five according to expert judgment and a comparison with the stock of gas estimated in 2005 (Gastec Vesta, 2017). HFC-227ea consumption levels have been supplied for the years 1990-2000 together with projections of consumptions for the years 2005 and 2010, for which Clean Gas estimated the same value (130 t). Data from 2000 to 2004 have been extrapolated, data from 2005 to 2010 has been assumed constant (130 t) and data from 2011 onwards have been estimated on the basis of the following assumptions. From 2010, according to information supplied by industry (Gastec Vesta, 2017) the amount of HFC-227ea started to decrease, replaced by the new chemical NOVEC concurrently with the entering in force of the Regulation n. 517/2014 (EU, 2014): in 2016 the consumption of HFC-227ea can be assumed the 80% of the 2010 consumption. In 2021 the value has been estimated on the basis of information on HFC 227ea placed on the market provided last December by Assogastecnici (Assogastecnici, 2022).

Assogastecnici has provided also information on HFC 23 and HFC 125 placed on the market for 2021. On the basis of expert judgment and ASSURE, because of HFC-227ea covers the 90% of the fire extinguishers market, consumption data of HFC-125 and HFC-23 have been estimated, considering that HFC-125 is 2/3 of the remaining quota. In addition to the Novec, among the best alternative solutions to HFCs on the market are inert gases but at the moment we don't have information about the quotas placed in the market.

ANIMA, the Federation of National Associations of Mechanical and Engineering similar which include fire protection industry, has been contacted in order to verify the presence of Consortia of fire protection systems. At present also the Federation did not provide update information. The main national fire protection industries (Gielle and Gastec Vesta), which were involved also for the Survey about HFCs alternative substances with low GWP, natural refrigerants and alternative technologies made in Italy (ISPRA[a], 2018) in the framework of the agreements with the Ministry of Ecological Transition, have been contacted and approved the estimation approach.

Investigation in order to collect information on the HFC recovery, recycling, regeneration or disposal activities used in fire extinguishers sector was carried out from Ispra, contacting one of the major fire protection Company, Gielle, that collects, throughout the national territory, exhausted refrigerant gases, CFCs, HCFCs and HFCs, to be sent for recovery, recycling, regeneration or disposal. According to Gielle, at the end of life no emissions occur when the equipment is delivered to an authorized and expert company.

For the foam blowing agents, Solvay provided consumption data of HFC-245fa and HFC-134a whereas Assogastecnici has provided also information on HFC-245fa and HFC-134a placed on the market for 2021. No information about other HFCs eventually used are available. Furthermore, no information is available on the type of foam, if open or closed cells, on which a different emission factor depends. To gather these information and data, we contacted the main national associations of foam blowing and the experts of the sector who reported that closed cell are more widespread than open cell foams and by reporting that other information at present are not available. For this reason, the HFC consumptions provided by Solvay have been entirely attributed to closed cells.

In the following Table 4.59, the sources of activity data and emissions factors are summarized.

Table 4.59 Activity data and emission factors references for MAC, Foam blowing, Aerosols and Fire extingu	uishers
Tuble 4.55 Activity data and emission factors ferences for mAc, Found blowing, Actosols and the example	alone o

CRF Category	Category Substance		Activity Data References	Emission Factors References
2.F.1.e	Mobile Air Conditioning	HFC-134a	FIAT, IVECO, UNRAE, CNH, ACI	IPCC, ACI
2.F.2.a	Foam blowing	HFC-245fa HFC-134a	Solvay, Assogastecnici	IPCC
2.F.4	Metered Dose Inhalers	HFC-134a	Menarini, Chiesi, Sanofi Aventis, GSK, Lusofarmaco, Istituto De Angeli, Boehringer	Chiesi
2.F.3	Fire Extinguishers	HFC-227ea	Clean Gas, Gastec Vesta, Expert judgment	ASSURE

Due to the methodology used to estimate emissions, based on the consumption of the F-gases in the different categories, where relevant, the estimated consumption also includes the amount of fluid contained in the imported products. As an example, the amount of F-gases used in the air conditioning devices mounted on vehicles manufactured abroad and imported in Italy is part of the information we use in the estimation process. UNRAE, which is the Association of foreign car makers, provide us every year with the amount of F-gases used in the imported vehicles.

As for aerosols (i.e. MDI), every year the relevant operators at national level provide us with the consumption of F-gases used in the national production process. Some of the reporting operators manufacture the MDI at Italian facilities as well as export the products, while some others just market in Italy imported MDI.

Emissions estimation from MAC systems is based on the methodology reported in Box 7.4 of the 2006 IPCC Guidelines:

E total, t = E containers, t + E charge, t + E lifetime (Operating and Servicing), t + E end-of-life, t

Emissions from manufacturing are based on gas consumption provided by the relevant national operators charged in new vehicles produced in Italy. Emission factor for the first fill (equal to 4%) have been provided by manufacturers and are in line with the default value in the IPCC Guidelines (4-5%). Lifetime emissions have been estimated from the quantity of HFC 134a accumulated every year. As reported in the IPCC Guidelines, in actuality, a given MAC will probably leak over several years before being serviced. Rather than attempting to account for this, we assume all MACs are serviced each year. According to national experts (Assogastecnici, 2022) and 2006 IPCC Guidelines, product's life leakage rates vary over the time series from 21% in 1990 to 13% from 2002 up to now: these values are the sum of annual emission rate during the use of MAC and the emission rate during servicing.

The containers emissions have been calculated by using the IPPC's formula:

$$E_{containers,t} = RM_t \bullet \frac{c}{100}$$

where RMt is the quantity of HFC 134a used for servicing in year t estimated on the basis of HFC 134a total consumption for RAC sector (Solvay, 1998; Solvay, 2006) and national experts (Assogastecnici, 2022) and c is the emission factor from containers management. In line with the air conditioning sector and according to national experts, vary from 5% in 1992 to 0.5% in 2021.

The disposal emissions (end of life emissions) have been calculated as the difference between the remaining HFC 134a in MAC at decommissioning and the quantity of HFC 134a recovered, equal to zero because vehicles are still dismantled in junkyard car. Based on the product life leakage rate and the average lifetimes (12 years), the charge remaining at decommissioning is calculated as (1- product life leakage rate) * average lifetimes. While in this report the HFC emissions from containers management are reported separately from the other quantities estimated according to the IPCC tier2a equation, in the "*CRF reporting table*" emissions from containers are included in the voice "*Emissions from stocks*", together with the operating emissions.

Emissions from MDI are estimated on the basis of HFC consumptions and losses rates provided by the relevant operators in Italy, using the Equation 7.6 of the 2006 IPCC Guidelines. Specifically, losses rate during manufacturing is set at 1.95% while it is assumed that 50% of the chemical charge escapes within the first year and the remaining charge escapes during the second year, according to 2006 IPCC Guidelines.

Concerning fire extinguishers, ASSURE, the European association for responsible use of HFCs in firefighting, provided us with the information concerning losses rates in manufacturing of firefighting systems (0%) and during the average lifetime of the fire extinguishers (less than 5%) (ASSURE, 2005). About the lifetime emission national fire protection industries explained that an alarm safety system installed in the fire protection equipment starts when losses are over 5%. The whole gas is considered emitted and not recovered as required by the latest European and National legislation.

Emissions from the foam blowing are estimated using the leakage rates reported in the 2006 IPCC Guidelines emission factors for the closed cells. Specifically, losses rate during manufacturing is equals to 10% while the operating rate is 4.5%. The emission factors reported in Table 4.60 have been used, for the whole time series.

Subsector	Leakage rate (%)				
Subsector	Manufacturing	Operating			
Mobile Air Conditioning – new vehicles	4%	21-13%			
Mobile Air Conditioning – retrofit vehicles	8%	20%			
Metered Dose Inhalers	1.95%	50%			
Foam blowing (closed cells)	10%	4.5%			
Fire Protection	0%	5%			

Table 4.60 Manufacturing and product life leakage rate for MAC, Foam blowing, Fire extinguishers and Aerosols

Finally, the following average lifetimes and the percentage of recovered gas at decommissioning have been applied, based on default values from 2006 IPCC Guidelines and expert judgment. This year we have adopted an average lifetime also for the foam. However, since an average life of 50 years has been assumed, the foam decommissioning will start only in 2048.

	Average Lifetimes	Recovery at decommissioning
	(years)	(%)
MAC	12	0%
Foam blowing (closed cells)	50	0%
Metered Dose Inhalers (MDI)	2	0%

In Table 4.61, an overview of the total emissions (manufacturing, lifetime and disposal) from the subsectors is given for the 1990-2021 period, per compound.

					-						
COMPOUND (t)	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
2.F.1.e - Mobile A	Air Cond	itioning									
HFC-134a (t)	0.00	238.17	964.61	1,574.64	2,677.88	2,786.01	2,755.70	2,841.60	2,751.83	2,585.80	2,427.40
Total HFC emissions (t)	0.00	238.17	964.61	1,574.64	2,677.88	2,786.01	2,755.70	2,841.60	2,751.83	2,585.80	2,427.40
2.F.2.a - Foam bl	owing (c	losed cell)									
HFC-245fa (t)	0.00	0.00	0.00	148.79	235.68	309.29	297.72	287.61	274.79	259.38	241.49
HFC-134a (t)	0.00	0.00	49.37	180.07	213.81	201.32	193.80	188.94	183.38	177.17	170.32
Total HFC emissions (t)	0.00	0.00	49.37	328.86	449.49	510.60	491.52	476.55	458.17	436.54	411.81
2.F.3 - Fire Exting	guishers										
HFC-227ea (t)	0.00	3.88	40.21	158.63	299.20	389.71	408.94	412.44	414.64	415.58	415.33
HFC-23 (t)	0.00	0.14	1.49	5.88	11.08	13.98	13.96	13.88	13.77	13.63	13.44
HFC-125	0.00	0.29	2.98	11.75	22.16	28.87	30.29	30.55	30.71	30.78	30.77
Total HFC emissions (t)	0.00	4.31	44.68	176.26	332.44	432.56	453.18	456.88	459.12	459.99	459.54
2.F.4 - Aerosol											

Table 4.61 HFC emissions from MAC, Foam blowing, Fire extinguishers and Aerosols sub-sectors, 1990-2021 (t)

COMPOUND (t)	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
HFC-134a (t)	0.00	0.00	81.54	225.32	200.69	129.37	144.97	179.74	182.87	158.49	142.34
Total HFC emissions (t)	0.00	242.48	1,058.66	2,079.75	3,459.82	3,729.17	3,700.40	3,775.03	3,669.12	3,482.33	3,298.75

4.7.6 Uncertainty and time-series consistency

The combined uncertainty in F-gas emissions for HFC emissions from HFC used as substitutes for ODS is estimated to be about 58% in annual emissions, 30% and 50%, concerning activity data and emission factors, respectively.

HFC emissions from the stationary air conditioning equipment increased from 1996 driven by the increase of their consumptions. The maximum value of emissions was registered in 2019 with 1,602.87 t while in 2021 emissions were 1,447.99 t, slightly higher than in 2020. HFC total consumptions increased significantly from 1996 to 2007, followed by a several-year contraction due to the economic crisis that affected several European countries, including Italy. Since 2014 there has been a recovery and overall, the consumption trend throughout the period has been increasing. Because of the methodology approach adopted, emission reduction is postponed compared to consumption reduction. The HFC substitution process with the alternatives with a lower or null GWP, some of which flammable, started in delay in respect the other sectors. In fact the Italian regulation remains highly restrictive for flammable refrigerants in public buildings. A number of Ministerial Decrees affecting various public access buildings restricts the use of flammable refrigerants (A2L and A3) such as hydrocarbons, HFO, R-32 in air-conditioning equipment. Besides, the standards on flammability is another critical factor that affects the choice of refrigerants in the sector: in Italy there is no a classification that distinguishes highly flammable, mildly flammable and not flammable substances (as for European and international standards) but at the legislative level it is distinguished only between flammable and non-flammable substances and thus, all the mildly flammable refrigerants (such as R-32) are classified as high flammable, by limiting their use. In June 2020 the decree of the Ministry of the Interior on "Fire prevention provisions for air conditioning systems included in activities subject to fire prevention controls¹¹"entered in force (DM 73/2020). This decree allows the possibility of using, in air conditioning systems for public activities (hotels, schools, etc..), machines equipped with refrigerants classified as AI or A2L, according to ISO 817 «Refrigerants designations and safety classification 'or equivalent standard. Thus, a major use of alternatives, some also flammable such as R-32 is expected for coming years.

Stationary Air Conditioning	1996	2000	2005	2010	2015	2017	2018	2019	2020	2021
Total emissions (t)									
HFC-134a	1.85	7.23	118.19	128.40	118.89	182.39	248.13	325.31	226.36	185.12
HFC-125	0.32	2.78	142.81	293.10	286.11	390.82	479.53	605.15	553.31	548.50
HFC-32	0.31	2.64	138.90	289.18	283.00	407.23	516.89	672.41	663.92	714.37
Total HFC emissions	2.47	12.65	399.90	710.68	688.00	980.44	1,244.55	1,602.87	1,443.58	1,447.99

Table 4.62 Total HFC emissions from Stationary Air Conditioning sector, 1996 - 2021 (t)

¹¹Air conditioning systems for activities open to the public, such as schools, hotels, sport centers etc.

HFC emissions from refrigeration equipment increased from 1994 driven by the increase of their consumptions. HFC total consumptions started to decrease from 2003 due to the reduction of the quantity of hydrofluorocarbons placed on the market. Over the entire series, the maximum value of gases consumptions was registered in 2003 with 6,135.06 t. From 2003 to 2020 consumptions constantly decreased until 2,003.39 tin 2020. In 2021 a slight increase was registered as a response to the 2020 pandemic crisis.

Due to the reduction of HFC consumptions, in 2018 total refrigeration emissions registered a decrease in comparation with the 2017 (2,561.72emitted in 2018 compared to *2,583.67* t emitted in 2017). With the methodology approach followed, emissions reduction has started after the reduction of consumption. The maximum value of emissions was registered in 2017 then emission started to decrease and in 2021 they were equal to 2,342.53 t.

Table 4.63 Total HFC emissions from Refrigeration sector (t) (manufacturing emissions plus lifetime emissions and
disposal emissions), 1994-2021

Refrigeration Total emissions	1994	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
2.F.1.a - Commercial	Refrigera	tion									
HFC-32 (t)	NO	NO	NO	NO	NO	1.96	28.02	59.06	94.09	121.71	149.23
HFC-125 (t)	NO	1.47	95.93	458.16	751.84	873.29	942.15	946.49	929.83	903.97	884.25
HFC-134a (t)	NO	0.07	184.23	451.26	717.27	611.82	564.01	546.36	532.59	512.84	497.73
HFC-143a (t)	NO	1.61	108.80	521.60	861.56	999.77	1,041.90	1,003.03	934.81	866.82	805.98
Total HFC emissions (t)	NO	3.16	388.96	1,431.02	2,330.67	2,486.84	2,576.08	2,554.94	2,491.32	2,405.34	2,337.19
2.F.1.b - Domestic Re	2.F.1.b - Domestic Refrigeration										
HFC-134a (t)	11.04	23.94	34.32	19.94	13.17	4.35	2.49	1.81	1.41	1.07	0.74
Total HFC emissions (t)	11.04	23.94	34.32	19.94	13.17	4.35	2.49	1.81	1.41	1.07	0.74
2.F.1.c - Industrial Ref	rigeratio	n									
HFC-23 (t)	NO	1.15	4.19	6.14	6.14	5.36	5.09	4.97	4.85	4.74	4.60
Total HFC emissions (t)	NO	1.15	4.19	6.14	6.14	5.36	5.09	4.97	4.85	4.74	4.60
Total HFC emissions (t) Refrigeration sector	11.04	28.25	427.47	1,457.10	2,349.98	2,496.54	2,583.67	2,561.72	2,497.58	2,411.15	2,342.53

HFC emissions from MAC, Foam blowing, Fire extinguishers and Aerosols sub-sectors increased from 1994 driven by the increase of their consumptions. HFC consumptions from Foam blowing started to decrease from 2007. A much more pronounced reduction in consumption has begun since 2014, due to the reduction of the quantity of hydrofluorocarbons placed on the market as well as the restrictions for some products and equipment derived from the entering in force of the European F-gases Regulation (EU, 2014). The foam emissions started to decrease since 2014 when they reached the maximum value of 514.37 t. In 2021, emissions were equal to 411.81 t.

For Fire extinguishers sub-sector, F-gas consumptions increased until 2005 and after a few years of stability, in 2011 they started to decrease. In fact, as with the foam sector, the availability of low- or zero-GWP alternatives has enabled a more rapid phase out of HFCs. The HFC total emissions for Fire extinguishers increased until 2020 when they reached the value of 459.99 t. In 2021, with 459.54 t, a slightly decrease compared the previous year was registered. Due to the methodological approach followed, the reduction in emissions is postponed in time compared to the reduction in consumptions.

HFC consumptions from MAC sub-sector increased until 2006 when they reached the value of 3.031.04 t. The decrease in consumption, which started from 2007, became more pronounced from 2018, which compared to 2017 recorded a 12.6% decrease compared to 2017. In 2021 HFC consumptions were equal to 1085.21 t (-12% compared to 2020). HFC total emissions from MAC continued to increase until 2013 when they reached the maximum value of 2,900.52 t. A major decrease started from 2018. In 2021 the emissions were equal to 2,427.40 t. The emissions reduction trend is postponed compared the consumption trend because of the methodology adopted.

For Aerosol sub-sector emissions increased from 1990 to 2006 when they registered the maximum value of 233.55 t. Then they decreased until 2016 with the minimum value of 114.80 t. A new increase was registered from 2016 to 2019 and then they came back to decline. In 2021 HFC emissions were equal to 142.34 t.

COMPOUND (t)	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021	
2.F.1.e - Mobile A	Air Condit	ioning										
HFC-134a (t)	0.00	238.17	964.61	1,574.64	2,677.88	2,786.01	2,755.70	2,841.60	2,751.83	2,585.80	2,427.40	
Total HFC emissions (t)	0.00	238.17	964.61	1,574.64	2,677.88	2,786.01	2,755.70	2,841.60	2,751.83	2,585.80	2,427.40	
2.F.2.a - Foam bl	2.F.2.a - Foam blowing (closed cell)											
HFC-245fa (t)	0.00	0.00	0.00	148.79	235.68	309.29	297.72	287.61	274.79	259.38	241.49	
HFC-134a (t)	0.00	0.00	49.37	180.07	213.81	201.32	193.80	188.94	183.38	177.17	170.32	
Total HFC emissions (t)	0.00	0.00	49.37	328.86	449.49	510.60	491.52	476.55	458.17	436.54	411.81	
2.F.3 - Fire Exting	Juishers											
HFC-227ea (t)	0.00	3.88	40.21	158.63	299.20	389.71	408.94	412.44	414.64	415.58	415.33	
HFC-23 (t)	0.00	0.14	1.49	5.88	11.08	13.98	13.96	13.88	13.77	13.63	13.44	
HFC-125	0.00	0.29	2.98	11.75	22.16	28.87	30.29	30.55	30.71	30.78	30.77	
Total HFC emissions (t)	0.00	4.31	44.68	176.26	332.44	432.56	453.18	456.88	459.12	459.99	459.54	
2.F.4 - Aerosol												
HFC-134a (t)	0.00	0.00	81.54	225.32	200.69	129.37	144.97	179.74	182.87	158.49	142.34	
Total HFC emissions (t)	0.00	242.48	1,058.66	2,079.75	3,459.82	3,729.17	3,700.40	3,775.03	3,669.12	3,482.33	3,298.75	

Table 4.64 HFC emissions from MAC, Foam blowing, Fire extinguishers and Aerosols sectors, 1990-2021 (t)

4.7.7 Source-specific QA/QC and verification

This source category is covered by the general QA/QC procedures.

Air conditioning category, as well as refrigeration, foam blowing, fire extinguishers and aerosols has been analysed with experts of the national associations, in the framework of the study planned by the agreements with the Ministry of Ecological Transition for a survey, about HFCs alternative substances with low GWP, natural refrigerants and alternative technologies. Besides, a continuous sharing of information between the experts of national association and the Inventory team is ongoing by enabling both the collection of new data and the verification and updating of those used to date.

In January 2019, the new National Telematic Registry of fluorinated greenhouse gases and equipment containing fluorinated gases that has been instituted by the DPR 146/2018, entered in force. Compared to the previous National F-gas Data Bank (established by Presidential Decree 43/2012), which includes refrigeration, air conditioning and fire protection systems, the new Registry also contains data on electrical switches and cold rooms in refrigerated trucks or trailers. ISPRA in not involved in the data collection but has access to the database.

We have already started to check data of the Registry and, from a first analysis, it emerged that the information contained is not always in the form and at the level of detail useful for estimating of the Inventory. In recent months we have been working with the Responsible of the Registry to try to overcome some of the issues that have emerged after an initial check of the database. Although some gaps were overcome, there are still critical on data. For this reason, we have decided not to use the information contained in the registry yet.

4.7.8 Source-specific recalculations

Recalculation affected the emission estimates of Commercial and Industrial Refrigeration, Stationary Air conditioning. mobile air conditioning and foams sectors.

Regarding the commercial refrigeration the recalculation is due to the revision of HFC-134A, R-404A and R-507A consumptions, thanks to the support of sectoral experts that provided us new data. The entire time series of gases consumptions has been reconstructed taking into account the scenario communicated in the past by Solvay for the years 1998-2012 and 2005-2020 (Solvay, 1998; Solvay, 2006) and the updated market communicated by Assogastecnici from 2014 to 2021 (Assogastecnici, 2022). The consumptions of R-448A, R-449A and R-452A were also changed from 2016. Recalculation is also due to the update of the operating emission factor for large commercial refrigeration from 2015 to take into account the effects of F-gas Regulation. In fact, the greater attention in the gas's manipulation caused a reduction of the emission factor, so unlike the previous submission, where an emission factor of 12% was adopted since 2000 onward, this year this emission factor of 10% has been adopted from 2015 onward. Lastly, the year in which equipment begins to be dismantled has been corrected (not 2011 but 2010). For industrial refrigeration recalculation is due to the update of HCF-23 consumptions based on the data

supplied by the national expert (Assogastecnici ,2022).

For the Stationary air conditioning sector, the recalculation is due to the revision of the average charge of water-cooled chillers with higher capacity, to the updated of the recovery percentage of gases at the end of life of some equipment, to the updated of the operating emission factors for split and VRF since 2015 and of the emission factor from containers since 2000.

In detail, the charge of water-cooled chillers with capacity from 700 to 900 kW was increased from 88.8 kg to 120 kg while the charge of water-cooled chiller with capacity from 900 kW and more was increased from 127.31 kg to 200 kg. This updated data was supplied by the experts of the national association of Air Conditioning.

Regarding the end of life of equipment, since 2015 based on what industry experts have reported, the gases recovery rate for all the equipment, excepting chiller, has been increased from 50% (that was the value adopted in the previous Submission) to 70%, to take into account the effect of F-gas Regulation. Emission factors have been reduced to consider the good practices adopted in refrigerant management as the result of the implementation of the F-gas regulations. The updated values were provided by sectoral experts we contacted (Assogastecnici, 2022). Since 2015 the operating emission factors for

monosplit and multisplit have been reduced from 3% to 2% and from 7.5% to 4% respectively, while the operating emission factor for VRF systems decreased from 12% to 6%. The sectoral experts also supplied new emission factor from containers: for the period 1996-1999 the emission factor is 5% (like the previous submission), for the period 2000-2004 an emission factor of 2% has been adopted. For the period 2005-2014 it decreased to 1% and since 2015 an emission factor of 0.5% has been considered.

A review of the activity data was also carried out which resulted in the correction of some values. The following table 4.65 shows the differences between the current submission and last year submission for what concern the Commercial refrigeration and the Stationary Air Conditioning sectors.

Table 4.65 Difference air conditioning sector		2022 and	2023 subn	nission for	Commercia	al, industri	al refriger	ation and	stationary
COMPOUND (t)	1996	2000	2005	2010	2015	2017	2018	2019	2020

COMPOUND (t)	1996	2000	2005	2010	2015	2017	2018	2019	2020
2.F.1.a – Commercial R	efrigeration	1							
Submission 2022									
HFC-32	0.00	0.00	0.00	0.00	2.34	34.57	62.24	86.8	108.88
HFC-125	8.09	84.51	379.17	668.53	880.15	909.1	888.43	857.27	816.79
HFC-134a	0.61	163.85	402.94	624.02	887.66	916.59	920.12	916.96	907.57
HFC-143a	9.32	96.75	435.44	768.25	1,008.20	994.92	931.21	860.92	783.96
Total HFC emissions	18.02	345.11	1,217.55	2,060.80	2778.35	2,855.18	2,802.00	2,721.95	2,617.20
Submission 2023									
HFC-32	0.00	0.00	0.00	0.00	1.96	28.02	59.06	94.09	121.71
HFC-125	8.09	95.93	458.16	751.84	873.29	942.15	946.49	929.83	903.97
HFC-134a	0.61	184.23	451.26	717.27	611.82	564.01	546.36	532.59	512.84
HFC-143a	9.32	108.80	521.60	861.56	999.77	1041.90	1003.03	934.81	866.82
Total HFC emissions	18.02	388.96	1,431.02	2,330.67	2,486.84	2,576.08	2,554.94	2,491.32	2,405.34
2.F.1.c – Industrial Refi	rigeration						- 		
Submission 2022									
HFC-23	2.04	5.69	11.92	15.30	15.28	14.78	14.03	13.29	12.52
Total HFC emissions	2.04	5.69	11.92	15.30	15.28	14.78	14.03	13.29	12.52
Submission 2023									
HFC-23	1.93	4.19	6.14	6.14	5.36	5.09	4.97	4.85	4.74
Total HFC emissions	1.93	4.19	6.14	6.14	5.36	5.09	4.97	4.85	4.74
2.F.1.f - Stationary Air	Conditionin	g			-	-		-	
Submission 2022									
HFC-134a	1.84	10.58	142.47	146.57	183.06	228.85	283.65	345.72	236.94
HFC-125	0.32	3.40	153.45	316.45	495.28	634.25	751.43	925.31	855.12
HFC-32	0.31	3.22	149.10	312.30	490.61	663.98	817.22	1043.63	1077.66
Total HFC emissions	2.46	17.19	445.03	775.32	1,168.95	1,527.09	1,852.30	2,314.67	2,169.72
Submission 2023									
HFC-134a	1.85	7.23	118.19	128.40	118.89	182.39	248.13	325.31	226.36
HFC-125	0.32	2.78	142.81	293.10	286.11	390.82	479.53	605.15	553.31
HFC-32	0.31	2.64	138.90	289.18	283.00	407.23	516.89	672.41	663.92

COMPOUND (t)	1996	2000	2005	2010	2015	2017	2018	2019	2020
Total HFC emissions	2.47	12.65	399.90	710.68	688.00	980.44	1,244.55	1,602.87	1,443.58

A review process also affected the MAC, foam blowing and fire extinguisher sub-sector and, as a consequence, the HFC emissions have been changed.

For foam blowing, consumption data were updated. In detail. HFC-134a and HFC-245fa consumption data supplied by Assogastecnici in recent months, were adopted for 2021. Due to the estimation approach used, data consumptions for the years prior 2021, were also revised.

Unlike the previous submission, leakage rates product's life that vary over the time series has been adopted. According to national experts (Assogastecnici, 2022) and the 2006 IPCC guidelines, leakage rates over the product's life decrease in the time series from 21% in 1990 to 13% from 2002 up to now. Consumptions for aftermarket have been used for the estimation of emissions from containers. Assogastecnici provided the emissions factor from containers management. In line with the air conditioning sector and according to national experts, vary from 5% in 1992 to 0.5% in 2021.

An update of the estimation methodology of emissions from the Fire extinguishers sub-sector was made. Compared to the previous submission, this year the end-of-life gas quantities, recovered gas quantities, and end-of-life emissions were estimated. Besides, a review of the data consumptions has been carried out, thanks to the cooperation con Assogastecnici (Assogastecnici, 2022) that provided HFC-23, HFC-227ea and HFC-125 consumptions for the year 2021.

The following table 4.66 shows the differences between the current submission and last year submission for what concern Mobile air conditioning, Foam blowing, Fire extinguishers sub-sectors.

COMPOUND (t)	1995	2000	2005	2010	2015	2017	2018	2019	2020
2.F.1.a – Mobile	e air condit	tioning							
Submission 2022	2								
HFC-143a	204.59	685.04	928.82	1,063.88	1,072.73	1,091.70	1,081.59	1,069.38	1,040.89
Total HFC emissions	204.59	685.04	928.82	1,063.88	1,072.73	1,091.70	1,081.59	1,069.38	1,040.89
Submission 2023	3								
HFC-134a	238.17	964.61	1,574.64	2,677.88	2,786.01	2,755.70	2,841.60	2,751.83	2,585.80
Total HFC emissions	238.17	964.61	1,574.64	2,677.88	2,786.01	2,755.70	2,841.60	2,751.83	2,585.80
2.F.1.f - Foam									
Submission 2022	2								
HFC-134a	0.00	49.37	180.07	213.81	234.74	229.62	221.87	212.20	200.71
HFC-245fa	0.00	0.00	140.56	229.14	302.03	297.96	288.28	275.77	260.55
Total HFC emissions	0.00	49.37	320.63	442.95	536.77	527.58	510.14	487.97	461.27
Submission 2023	3								
HFC-134a	0.00	49.37	180.07	213.81	201.32	193.80	188.94	183.38	177.17
HFC-245fa	0.00	0.00	148.79	235.68	309.29	297.72	287.61	274.79	259.38

Table 4.66 Differences between 2022 and 2023 submission for MAC, Foam blowing, Fire extinguishers sub-sector.

COMPOUND (t)	1995	2000	2005	2010	2015	2017	2018	2019	2020
Total HFC emissions	0.00	49.37	328.86	449.49	510.60	491.52	476.55	458.17	436.54
2.F.1.f - Fire ext	tinguisher								
Submission 202	2								
HFC 227ea	3.88	40.21	158.63	299.20	389.71	408.94	412.44	414.07	413.90
HFC 23	0.14	1.49	5.88	11.08	13.98	12.62	11.99	11.39	10.82
HFC 125	0.29	2.98	11.75	22.16	28.87	30.29	30.55	30.67	30.66
Total HFC emissions	4.31	44.68	176.26	332.44	432.56	451.84	454.98	456.13	455.37
Submission 202	3								
HFC 227ea	3.88	40.21	158.63	299.20	389.71	408.94	412.44	414.64	415.58
HFC 23	0.14	1.49	5.88	11.08	13.98	13.96	13.88	13.77	13.63
HFC 125	0.29	2.98	11.75	22.16	28.87	30.29	30.55	30.71	30.78
Total HFC emissions	4.31	44.68	176.26	332.44	432.56	453.18	456.88	459.12	459.99

No recalculation has occurred for Aerosols sub-sectors.

4.7.9 Source-specific planned improvements

To improve our estimation in all the sectors above described we are constantly in contact with the national experts and Associations in order to collect any new information that gradually become available by taking into account changes in the market both in terms of the entry of new refrigerants and technological advances in equipment, and also considering good practices in gas management that affect emission factors.

Concerning the recovery of gas at the end of life of equipment, from last November we are in contact with Erion, the largest Italian system of extended producer responsibility for the management of waste associated with electronic products. Erion are finalizing a study on stationary conditioning appliances end-of-life. Based on the results of this study, we expect to improve information on end-of-life gases recovery.

Improvements should be also obtained by consulting the new National Telematic Registry of fluorinated greenhouse gases and equipment containing fluorinated gases that has been instituted by the DPR 146/2018, entered in force in January 2019. Compared to the previous National F-gas Data Bank (established by Presidential Decree 43/2012), which includes refrigeration, air conditioning and fire protection systems, the new Registry also contains data on electrical switches and cold rooms in refrigerated trucks or trailers. Therefore, it will be possible to investigate these types of systems as well. We have already started to check data of the Registry and, from a first analysis, it emerged that the information contained is not always in the form and at the level of detail useful for estimating of the Inventory. In recent months we have been working with the Responsible of the Registry to try to overcome some of the issues that have emerged after an initial check of the database. Although some gaps were overcome, there are still critical on data. For this reason, we have decided not to use the information contained in the registry yet. We expect to report the results of processing the data contained in the Registry in the next year submission.

4.8 Other product manufacture and use (2G)

4.8.1 Source category description

The sub-sector "Other product manufacture and use" consists of the following sub-applications:

- 2.G.1 SF₆ Emissions from electrical equipment
- 2.G.2 SF₆ used in equipment in university and research particle accelerators
- $2.G.3 N_2O$ from product uses

The share of SF₆ emissions from the sector in the national total of SF₆ was 72% in the base-year 1990, and 84.2% in 2021, whereas in the national total of F-gases, the share of SF₆ emissions from the sector was 8.9% in 1990 and 1.35% in 2021. N₂O accounts for only 2.6% of the national total N₂O emissions in 2021.

4.8.2 Methodological issues

Electrical Equipment (SF6)

As regard SF₆ emissions from electrical equipment, these have been estimated according to the IPCC Tier 2 approach. Concerning manufacturing and installation emissions, since 1995 the methodology used is largely in accordance with the IPCC Tier 3 methodology. In 1997, the ANIE Federation has begun a statistical survey within their associated companies, in accordance with ISPRA, in order to monitor yearly SF₆ used in electrical equipment > 1kV, and thus SF₆ manufacturing emissions (ANIE, 2001). ANIE Federation is the Confindustria member representing the electrotechnical and electronic companies operating in Italy. ANIE has developed data sheets for their associated companies in accordance with the methodology drawn up by CAPIEL, the Coordinating Committee for the Associations of Manufacturers of Switchgear and Controlgear equipment in the European Union: the CAPIEL inventory methodology covers all sorts of use of SF₆ in the electrical sector, from the SF₆ purchase till the end of life of the equipment and covers all aspects of the required data (CAPIEL, 2002). It is based on a Mass Balance Methodology, as given by IPCC Tier 3b, comparing the input and output on a yearly basis.

In the following box the summary sheet used for manufacturing inventory is reported (ANIE, several years).

INVENTORY'S CATEGOR	IES				Year 2021 (kg)
1 Durch and an and	1.1 In Italy		Weight of SF ₆ contained in the tanks		3,999
1. Purchased amount	1.2 Abroad		Weight of SF ₆ contained in the tanks		63,149
				TOTAL 1.	67,148
		2.1.1 ENEL	Weight of SF ₆ contained in the equipment and in the tanks		24,130
2. Amount contained in the equipment at the terms of sale	2.1 In Italy	2.1.2 Energy industry and railways	Weight of SF $_6$ contained in the equipment and in the tanks		31,789
terms of sale		2.1.3 Others (Industry, Tertiary, Private, etc.)	Weight of SF ₆ contained in the equipment and in the tanks		3,759

SF₆ inventory at manufacturing level (ANIE, reporting year 2021)

INVENTORY'S CATEGORI	IES				Year 2021 (kg)	
	2.2 Abroad		Weight of SF ₆ contained in the equipment and in the tanks		9,859	
				TOTAL 2.	69,537	
3. Amount contained in t the manufacturer	the equipment		Neight of SF $_6$ contained in the equipment and in the tanks	TOTAL 3.	75	
4. a) Destroyed amount			Neight of SF ₆ in the equipment sent to authorized disposal treatment		751	
4. b) Amount returned to	o the manufact		Neight of SF ₆ returned to nanufacturer for authorized recycling		7,232	
				TOTAL 4.	7,983	
5. Annual stock changes				TOTAL 5.	-10,543	
SF ₆ emissions from manufacturing	Balance input-output (1+3-5)-(2+4)					

From 1990 to 1994 emissions have been estimated on the basis of leakage rate during manufacturing and installation and the amount of SF₆ contained in the equipment sold to the end users, because, for this period, only data referred to point 1 and point 2 of the box, are available from ANIE. The loss rates during manufacturing and installation of the equipment, used to estimate the SF₆ emissions, are reported in Table 4.67. Leakage rates have been derived from ANIE Federation expert judgement.

Table 4.67 Leakage rates used to estimate SF6 emissions from manufacturing and installation from 1990 to 1994

	1990	1991	1992	1993	1994
Manufacturing	0.060	0.060	0.060	0.060	0.060
Installation	0.060	0.055	0.050	0.045	0.040

In Table 4.68, SF₆ emissions from manufacturing (which include installation), use and disposal are reported. Emissions from manufacturing were about 14 tons in 1995, whereas in 2019 are only 0.79 tons, due to the great increase of the SF₆ recycled. Emissions trend from manufacturing is strongly decreasing thanks to the diligence of the companies involved, which have taken voluntary actions to reduce emissions as much as technically possible. Probable fluctuations within the time series in manufacturing emissions are basically due to yearly variation of the stocked quantity of SF₆.

SF6 EMISSIONS (Mg)	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
Manufacturing	8.470	14.657	5.637	3.562	3.185	1.259	1.255	1.558	0.795	0.488	0.246
Use	0.460	4.886	6.469	9.592	10.302	11.648	12.313	12.769	12.568	8.442	8.128
Disposal	0.000	0.623	0.464	0.199	0.059	0.037	0.044	0.089	0.088	0.000	0.002
Total	8.930	20.166	12.570	13.353	13.546	12.944	13.612	14.415	13.452	8.930	8.376

Table 4.68 SF6 emissions from manufacturing, use and disposal from 1990 to 2021

SF₆ use emissions are those from Closed Pressure Systems, including high voltage equipment that requires refilling with gas during its lifetime. Equipment use emissions are estimating by multiplying the quantity of SF₆ yearly accumulated by a use emission factor. The quantity of SF₆ accumulated is estimated using SF₆ annual sales activity data (ANIE, several years), multiplied for the factor 0.8, which consider the

percentage of the total sales referred to Closed Pressure Systems. Moreover, equipment use emissions are the sum of three components:

- emissions from ENEL (the former electricity monopoly);
- emissions from electricity utilities and the national railways company;
- emissions from industries and other private operators.

Since 1994, refilling data of SF₆ used in high voltage gas-insulated transmission lines have been supplied by the main energy distribution companies (in the past included in ENEL) checked with data reported under the national PRTR register (EDIPOWER, several years; EDISON, several years; ENDESA, 2004; ENDESA, several years [a] and [b]; ENEL, several years; TERNA, several years). The leakage rate used to estimate the SF₆ use emissions is assumed equal to 0.01 from 1990 to 2009 and 0.005 from 2010, based on national expert judgment (AIET, 2007). Finally, SF₆ disposal emissions from electrical equipment are estimating by multiplying the quantity of SF₆ contained in retired equipment by the fraction of SF₆ left in the equipment at the end of its life, assumed to be constant and equal to 0.15 from 1990 to 1995, and linearly decreasing until to 2010 value 0.03, as reported in Table 4.69. Since 1995, activity data (point 3 of the SF₆ inventory at manufacturing level reported above) are directly supplied by ANIE (ANIE, several years), whereas from 1990 to 1994 the total amount of SF₆ accumulated in the equipment is multiplied by a disposal rate which is equal to zero in that period. Leakage disposal rate and disposal rate derived from personal communication.

Table 4.69 Disposal rates and leakage rate at disposal used to estimate SF6 emissions from disposal, 1990-2021

	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
Disposal rate	0.000	0.000	0.010	0.020	0.030	0.030	0.030	0.030	0.030	0.030	0.030
Leakage rate at disposal	0.150	0.150	0.110	0.070	0.030	0.030	0.030	0.030	0.030	0.030	0.030

As for fluctuation in emissions within the years, Figure 4.3 is reported for a better understanding. As regard the years from 1995 to 2000, please consider that the total SF₆ emission values result by the sum of emissions from "manufacturing", "operating" and "retiring" and that concerning the trends of these contributions the following facts should be pointed out:

1) emissions from manufacturing reach a peak in 1997;

2) emissions from operating reach a peak in 1997;

3) emissions from retiring reach a peak in 1997 although the relevant contributions to total SF_6 emissions are those from manufacturing and operating.

Data between 1995 and 2000 are consistent and come from the SF₆ mass balance. In Figure 4.3 the time series for SF₆ purchased amounts and of the three contributions to SF₆ emissions from electrical equipment are illustrated. It could be noted that the trend of the amounts of SF₆ estimated for "manufacturing" is driven by the trend of purchased SF₆.

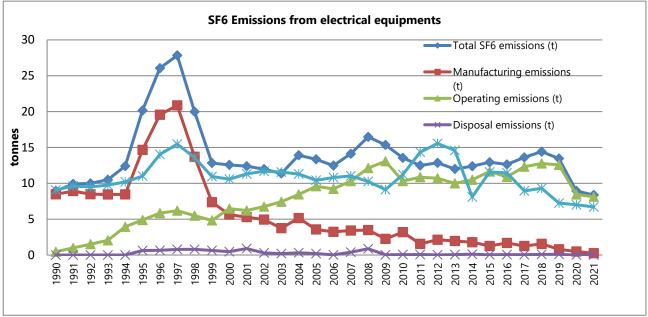


Figure 4.3 Time series for SF6 purchased amounts and emissions from electrical equipment.

SF6 used in equipment in university and research particle accelerators

SF₆ Emissions from research particle accelerators have been estimated from 1990. A survey on the particle accelerators used for research purpose has been carried on, asking directly information to the national research institutes: INFN, the National Institute for Nuclear Physics and INAF the National Institute of Astrophysics.

INFS has supplied refilling data of SF₆ for four particle accelerators located in three laboratories, Catania, Legnaro and Firenze (INFN, several years), for the entire time series 1990–2021. These particle accelerators use SF₆ from 1984, 1981, 1976 and 2004 respectively. INAF doesn't use SF₆ in their research activities.

SF₆ emissions from industrial and medical particle accelerators have been estimated from 1990 too. As for research particle accelerators, a survey on the accelerators used for medical purposes has been carried on. In Italy particle accelerators for medical purposes are supplied by only three companies, Siemens Healthcare, Varian Medical System and Elekta. Data on the number of accelerators and the charge of SF₆ have been communicated from 1990 (Siemens, several years; Varian, several years).

N₂O from product use

N₂O emissions from the use of N₂O for anesthesia, aerosol cans and explosives are estimated.

Emissions of N₂O have been estimated considering information available by industrial associations. Specifically, the manufacturers and distributors association of N₂O products has supplied data on the use of N₂O for anesthesia from 1994 (Assogastecnici, several years). For previous years, data have been estimated by the number of surgical beds published by national statistics (ISTAT, several years [a]). It is assumed that all N₂O used will eventually be released to the atmosphere, therefore the emission factor for anesthesia is equal to 1 Mg N₂O/Mg product use.

Moreover, the Italian Association of Aerosol Producers (AIA, several years [a] and [b]) has provided data on the annual production of aerosol cans used for whipped cream which contain N₂O as propellant. Emission factor used is 0.025 Mg N₂O/Mg product use, because the N₂O content is assumed to be 2.5% on average (Co.Da.P., 2005). The association also provides the number of aerosol cans for other uses (cosmetics, household and cleaning products, pharmaceutical products) and the propellants (LPG and HFC-134a for pharmaceutical products); relevant emissions are estimated in domestic solvent use category as NMVOC and in HFC-134a emissions from aerosols/metered dose inhalers category.

For the estimation of N₂O emissions from explosives, data on the annual consumption of explosives have been obtained by a specific study on the sector (Folchi and Zordan, 2004); as stated in the document, this figure is believed to be constant for all the time series with a variation within a range of 30%. As for the emission factor, the estimated N₂O emissions represent the theoretically maximum emittable amount; in fact, no figures are available on the amount of N₂O emissions actually emitted upon detonations and the value of 3,400 Mg N₂O/Mg explosive use is provided by a German reference (Benndford, 1999) which corresponds to the assumption of 68 g N₂O per kg ammonium nitrate.

N₂O emissions have been calculated multiplying activity data, total quantity of N₂O used for anesthesia, total aerosol cans and explosives, by the related emission factors.

4.8.3 Uncertainty and time series consistency

The uncertainty in SF₆ emissions from electrical equipment and particle accelerators is estimated to be 20.6% in annual emissions, 5% and 20% concerning respectively activity data and emission factors.

In Table 4.70 an overview of SF₆ emissions from electrical equipment and particle accelerators is given for the 1990-2021 period. SF₆ emissions from electrical equipment increased from 1990 to 1997 and decreased in the following years; from 2004 emissions are stable enough, from 2020 a significant decrease was registered especially due to a drop in operating emissions.

COMPOUND (t)	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
2.G.1			·	-		-		_			
SF6 emissions from electrical equipment	8.93	20.17	12.57	13.35	13.55	12.94	13.61	14.42	13.45	8.93	8.38
2.G.2.b	•	·		-	·		·	-	·	-	
SF6 emissions from research particle accelerators	3.95	3.95	3.95	4.63	1.55	5.58	1.69	3.08	3.10	0.32	0.72
Total SF6 emissions from 2G sector	12.88	24.11	16.52	17.98	15.09	18.52	15.30	17.50	16.55	9.25	9.10

Table 4.70 SF6 emissions from other product manufacture and use, 1990-2021 (t)

The combined uncertainty in N_2O emissions is estimated equal to 11.2% due to an uncertainty in activity data of 5% and 10% in the emission factor. N_2O emissions remain almost at the same levels from 1990 onwards although, from 2000, a reduction is detected, due to a decrease in the anesthetic use of N_2O that has been replaced by halogen gas.

Table 4.71 shows the N₂O emission trend from 1990 to 2021.

Table 4.71 Trend in N₂O emissions from product uses, 1990 – 2021 (kt)

GAS/SUBSOURCE	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
2.G.3 Other product manufacture and use: <u>N₂O</u> (kt)	1										
N ₂ O from product uses (use of N ₂ O fo anesthesia, aerosol cans and explosives)	r 2.6	2 2.4	9 3.3	31 2.6	6 2.0	2 1.5	7 1.8	7 1.8	9 1.7	4 1.7	1 1.68

4.8.4 Source-specific QA/QC and verification

This source category is covered by the general QA/QC procedures. Where information is available SF₆ data for refilling have been checked with data reported to the national EPER/E-PRTR registry. For N₂O emissions from anesthesia and aerosol cans, emission factors and emissions are also shared with the relevant industrial associations.

Other relevant uses of SF₆, as listed in the IPCC Guidelines, have been investigated to study the occurrence at national level. Some of these applications could be excluded, such as car tyres, sound proof windows and shoes soles also due to manufacturing additional costs.

With regard to the other potential sources of emissions, such as SF₆ emissions from AWACs, in 2014 the Italian Air Force has been contacted in order to investigate the presence of such aircraft. The Italian Air Force answered that such kind of aircraft is a NATO aircraft and according to the Decision 3/CP.3 of the Kyoto Protocol, emissions resulting from multilateral operations pursuant to the Charter of the United Nations shall not be included in national total.

4.8.5 Source-specific recalculation

Minor recalculation occurred due to the update of activity data.

4.8.6 Source-specific planned improvements

For SF₆ emissions from electrical equipment, improvements should be also obtained by consulting the new National Telematic Registry of fluorinated greenhouse gases and equipment containing fluorinated gases that has been instituted by the DPR 146/2018, entered in force in January 2019. In fact, compared to the previous National F-gas Data Bank (established by Presidential Decree 43/2012), which includes refrigeration, air conditioning and fire protection systems, the new Registry also contains data on electrical switches. Therefore, it will be possible to investigate these types of systems as well.

4.9 Other production (2H)

4.9.1 Source category description

Only indirect gases and SO₂ emissions occur from these sources. In this sector, non-energy emissions from pulp and paper as well as food and drink production, especially wine and bread, are reported. CO₂ from food and drink production (e.g., CO₂ added to water or beverages) can be of biogenic or non-biogenic origin but only information on CO₂ emissions of non-biogenic origin should be reported in the CRF.

According to the information provided by industrial associations, CO₂ emissions do not occur, but only NMVOC emissions originate from these activities. CO₂ emissions from food and beverages do not occur since they originated from sources of carbon that are part of a closed cycle. As regards the pulp and paper production, NO_x and NMVOC emissions as well as SO₂ are estimated. NO_x and SO₂ emissions have been referred to the paper and pulp production from acid sulphite and neutral sulphite semichemical processes up to 2009, activity data and emissions were provided by the two Italian production plants: in 2008 the bleached sulphite pulp production has stopped while in 2009 the neutral sulphite semi-chemical pulp process has closed (reconversion of the plant is currently under negotiation). NMVOC emissions are related to chipboard production and have been estimated and reported.

5 AGRICULTURE [CRF sector 3]

5.1 Sector overview

In this chapter information on the estimation of greenhouse gas (GHG) emissions from the Agriculture sector, as reported under the IPCC Category 3 in the Common Reporting Format (CRF), is given. Emissions from enteric fermentation (3A), manure management (3B), rice cultivation (3C), agriculture soils (3D), field burning of agriculture residues (3F), liming (3G), urea application (3H) and other carbon-containing fertlizers (3I) are included in this sector. Methane (CH₄), nitrous oxide (N₂O) and carbon dioxide (CO₂) emissions are estimated and reported. Savanna areas (3E) are not present in Italy. Emissions from other sources (3J) do not occur. Also, F-gas emissions do not occur.

To provide update information on the characteristics of the agriculture sector in Italy, figures from the latest available Agricultural Census (2020) are reported. According to the first data released by ISTAT related to the 2020 Agricultural Census, in Italy there are 1.6 million of farms with a total Utilized Agricultural Area (UAA) of 12.5 million hectares. Comparing the data from the censuses (see box below), it can be noted as the number of farms and the agricultural area have decreased; in particular, between 2000 and 2010, the reduction of farms is equal to 33% (780,684 units). At national level, the average size of farms varied from 5.5 hectares in 2000 to 8.0 hectares in 2010. This trend is in line with the average size of farms increment from 7.4 hectares (in 2005) to 7.6 hectares (in 2007) observed by FSS. According to 2020 data, more than about 480 thousand farms have been closed, and the average farm size with UAA has risen further and is 11.2 hectares. According to 2010 data, more than 50% of farms have an area of less than 2 hectares of UAA. The distribution of farms by type confirms a typical family conduction system, which characterized the Italian agriculture system. About 1.5 million farms (95.4% of the total agricultural holdings with UAA) are under direct farmers conduction. These farms hold about 11 million hectares of UAA (82.8% of total)¹² (EUROSTAT, 2007[a], [b], 2012; ISTAT, 2008[a]). CREA¹³ annually update figures of the agriculture sector such as added value, employment, productivity, are available (CREA, 2020).

Farms characteristics	1982	1990	2000	2010	2020
Number of farms	3,133,118	2,848,136	2,393,161	1,615,590	1,133,023
Utilized agricultural area - hectares	15,833,000	15,026,000	13,181,859	12,856,048	12,535,000
Total area of farms - hectares	22,398,000	21,628,000	18,767,000	17,081,000	16,474,000
Average size of farms - hectares	5.1	5.3	5.5	8.0	11.1

Farms characteristics from Agricultural Censuses

Based on the 2013 FSS (ISTAT, 2015), the number of farms and the UAA decreased by 9.5% and 3.3% respectively, compared to the figure recorded in the last agricultural census. A further decrement of 29.4% and 2.0% of number of farms and the UAA, respectively, with respect to 2010 values (see table above) are described in 2016 FSS (ISTAT, 2018). Therefore, the average size of farms increases from 7.9 to 8.5 hectares (according to the 2013 FSS) and 11.0 hectares (according to the 2016 FSS). In 2013 the number of organic farms exceeded 47 thousand units (equivalent to 3.2% of the total farms and 5.8% of the total UAA), an increase of 4.7%, compared to the 2010 Census. In 2016 the number of organic farms become 132 thousand units and, therefore, it has almost tripled compared to the 2010 Census. The utilized agricultural area, which corresponds to 1,555,522 hectares in 2016, has increased by 24% in the same period.

¹² Agricultural Census data are available at the link http://dati-censimentoagricoltura.istat.it/

¹³ Council for agricultural research and analysis of the agrarian economy https://www.crea.gov.it/en/about-crea

5.1.1 Emission trends

Emission trends per gas

In 2021, 7.8% of the Italian GHG emissions, excluding emissions and removals from LULUCF, (7.2% in 1990) are originated from the agriculture sector. Therefore, it is the second source of emissions, after the energy and followed by IPPU sector which accounts for 79.7% and 7.6%, respectively. For the agriculture sector, the trend of GHGs from 1990 to 2021 shows a decrease of 13.2% due to the reduction of the activity data, such as the number of animals, the cultivated surface/crop production, the amount of synthetic nitrogen fertilisers applied, and the changes in manure management systems (see Figure 5.1). In 2021, CH₄, N₂O and CO₂ emissions have decreased by 13.8%, 12.0% and 9.5%, respectively (see Table 5.1). In 2021, the agriculture sector has been the first source for CH₄ sharing 45.1% of national CH₄ levels and for N₂O accounting for 64.2% of national N₂O emissions. As for CO₂, the agriculture sector represents 0.1% of national CO₂ emissions.

	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
CH₄	24,634	24,101	23,502	21,712	21,245	21,168	21,517	21,301	21,243	21,450	21,225
N₂O	12,532	13,408	13,112	12,353	10,599	10,476	10,607	10,563	10,518	11,473	11,031
CO ₂	510	567	571	564	381	458	456	442	430	503	461
Total	37,676	38,076	37,185	34,629	32,225	32,102	32,581	32,306	32,190	33,427	32,717

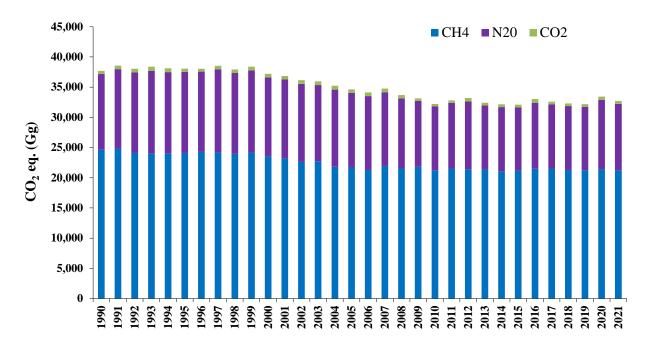


Figure 5.1 Trend of GHG emissions for the agriculture sector from 1990 to 2021 (Gg CO₂ eq.)

Emission trends per sector

Total GHG emissions and trends by subcategory from 1990 to 2021 are shown in Table 5.2 (expressed in Gg. CO_2 eq.). CH_4 emissions from enteric fermentation (3A) and N_2O emissions from direct managed soils (3D) are the most relevant categories. In 2021, their individual share in national GHG emissions excluding LULUCF was 3.5% and 2.2%, respectively.

		GH	G emissions (Gg CO ₂ eq.) by	subcategory	1	
Year	3A	3B	3C	3D	3F	3G-H-I	TOTAL
1990	17,093	7,942	2,102	10,011	19	510	37,676
1995	16,697	7,567	2,228	10,998	19	567	38,076
2000	16,509	7,451	1,855	10,779	19	571	37,185
2005	14,484	7,392	1,962	10,206	21	564	34,629
2010	14,100	7,161	2,041	8,521	20	381	32,225
2015	14,272	6,875	1,868	8,607	20	458	32,102
2017	14,698	6,844	1,843	8,720	20	456	32,581
2018	14,612	6,731	1,793	8,708	20	442	32,306
2019	14,584	6,699	1,776	8,683	19	430	32,190
2020	14,771	6,711	1,788	9,634	20	503	33,427
2021	14,671	6,582	1,756	9,228	20	461	32,717

Table 5.2 Total GHG emissions from 1990 to 2021 for the agriculture sector (Gg CO2 eq.)

5.1.2 Key categories

In 2021, CH₄ emissions from enteric fermentation and manure management, direct N₂O emissions from manure management, direct and indirect N₂O emissions from managed soils were ranked among the level key sources with the Approach 2, including the uncertainty (L2). CH₄ emissions from enteric fermentation and direct N₂O emissions from managed soils were ranked among the trend key sources with Approach 2, including the uncertainty (T2). Including LULUCF sector in the analysis, CH₄ emissions from enteric fermentation and direct N₂O emissions from managed soils are key sources at trend assessment with Approach 2 (T2). In Table 5.3, key and non-key categories from the agriculture sector are shown, with a level and/or trend assessment (*IPCC Approach 1 and Approach 2*), excluding and including the LULUCF sector in the analysis.

GHG s	source categ	ories	excluding LULUCF	including LULUCF
3A	CH ₄	Emissions from enteric fermentation	Key (L, T)	Key (L, T)
3B	CH ₄	Emissions from manure management	Key (L)	Key (L, T1)
3Ba	N ₂ O	Direct emissions from manure management	Key (L)	Key (L1)
3Bb	N ₂ O	Indirect emissions from manure management	Non-key	Non-key
3C	CH ₄	Rice cultivation	Key (L1)	Key (L1)
3Da	N ₂ O	Direct emissions from managed soils	Key (L, T)	Key (L, T)
3Db	N ₂ O	Indirect emissions from managed soils	Key (L)	Key (L)
3F	CH_4	Emissions from field burning of agriculture residues	Non-key	Non-key
3F	N ₂ O	Emissions from field burning of agriculture residues	Non-key	Non-key
3G	CO ₂	Liming	Non-key	Non-key
3H	CO ₂	Urea application	Non-key	Non-key
31	CO ₂	Other carbon-containing fertilizers	Non-key	Non-key

5.1.3 Activities

Emission factors used for the preparation of the national inventory reflect the characteristics of the Italian agriculture sector. Information from national research studies is considered. Activity data are mainly collected from the National Institute of Statistics (ISTAT, *Istituto Nazionale di Statistica*). Every year, national and international references, and personal communications used for the preparation of the agriculture inventory are archived in the *National References Database*.

Improvements for the Agriculture sector are described in the Italian Quality Assurance/Quality Control plan (ISPRA, several years [a]). Moreover, an internal report describes the procedure for preparing the agriculture UNFCCC/CLRTAP national emission inventory and projections (Di Cristofaro, several years).

Results from several research projects have improved the quality of the agriculture national inventory (MeditAIRaneo project and Convention signed between ISPRA and the Ministry for the Environment, Land and Sea; CRPA, 2006[a], CRPA, 2006[b], CRPA, 2018). Furthermore, recommendations and outcomes from the UNFCCC inventory review processes have been considered and implemented. Methodologies for the preparation of agriculture national inventory under the Convention on Long-Range Transboundary Air Pollution (CLRTAP) and the United Nations Framework Convention on Climate Change (UNFCCC) are consistent. Synergies among international conventions and European directives while preparing the agriculture inventory are implemented.

The national agriculture UNFCCC/CLRTAP emission inventory is used, every 4 years (from 2021; previously it was every 5 years), to prepare a more disaggregated inventory by region and province as requested by CLRTAP (Cóndor *et al.*, 2008[b]). A database with the time series for all sectors and pollutants is available (ISPRA, 2021; ISPRA, 2009; ISPRA, several years [b]). The methods and emission factors applied for GHG inventory are also used for emission scenarios and projections (MASE, 2022).

5.1.4 Agricultural statistics

Every year, the Italian National Statistical System (SISTAN¹⁴) revises the National Statistical Plan that covers three years and includes, among others, the system of agricultural statistics. In this framework, the Agriculture, Forestry and Fishing Quality Panel has been established under the coordination of the agriculture service of ISTAT where the producers and key users of agricultural statistics (mainly public institutions) meet each other every year to monitor and improve national statistics. ISTAT plays the major role in the agricultural sector collecting comprehensive data through different surveys (Greco and Martino, 2001):

- Structural surveys (Farm Structure Survey, survey on economic results of the farm, survey on the production inputs);
- Conjunctural surveys¹⁵ (survey on the cultivation area and relative production, livestock number, milk production, slaughter, fertilizers, etc.);
- General Agricultural Census¹⁶, carried out every 10 years (1990, 2000, 2010).

Detailed information on the agriculture sector is found every two/three years in the Farm Structure Survey, FSS¹⁷ (ISTAT, 2018; ISTAT, 2015; ISTAT, 2008[a]; ISTAT, 2007[a]; ISTAT, 2006[a]). ISTAT has provided quality reports of the FSS 2005 and FSS 2007 (ISTAT, 2008[b]; ISTAT, 2007[d]) and a report on the assessment of the quality of the agricultural census data (ISTAT, 2013). The main agricultural statistics used for the agriculture emission inventory are available on-line. Detailed information is provided in Table 5.4.

Agricultural statistics	Time series	Web site
Livestock number	Table 5.7; 5.8; 5.12; 5.15	<u>http://dati.istat.it/</u>
Milk production	Table 5.7	http://dati.istat.it/
Fertilizers	Table 5.38; 5.45	http://dati.istat.it/
Crops production/surface	Table 5.48; Tables A.7.17-18	http://dati.istat.it/

¹⁴ SISTAN, Sistema Statistico Nazionale (<u>http://www.sistan.it/</u>)

¹⁵ http://agri.istat.it/

¹⁶ http://censagr.istat.it/; http://dati-censimentoagricoltura.istat.it/

¹⁷ Indagine sulla struttura e produzione delle aziende agricole (SPA), survey carried out every two years in agricultural farms.

Differences on some animal populations data are found comparing national statistics and FAOSTAT¹⁸ data. FAO publishes figures of the *x*-1 year on 1st January of the *x* year. Each year ISPRA verifies the official statistics directly contacting the experts responsible for each agricultural survey (number of animals, agricultural surface/production, fertilizers, etc). Agricultural statistics reported by ISTAT are also those published in the European statistics database¹⁹ (EUROSTAT). A couple of anomalies were found in the EUROSTAT cattle statistics: the data for cattle subcategories also contain values for buffaloes, despite the fact that there are specific labels for buffaloes in the EUROSTAT database; between 2014 and 2015 for some subcategories there was a methodological change in the estimation of the number of animals, with obvious anomalous increases/decreases in the data. These anomalies have been reported to EUROSTAT.

Whenever outliers are identified, these are shown to ISTAT and category associations. Slight differences in the livestock number (cattle and other swine) are found comparing conjunctural surveys (used for emissions estimation) and the Agricultural census for the year 2010 (ISTAT, 2012), while differences are more relevant²⁰ for the other categories. The verification of statistics is part of the implemented QA/QC procedures. The livestock data represents the number of animals present on the farm at any given time of the year (conventionally June the 1st or December the 1st). Therefore, livestock figures do not represent the number of animals produced annually; for animal populations that are alive for only part of a complete year, the annual average population is estimated on the basis of "places" instead of the days of life and the number of cycles.

5.2 Enteric fermentation (3A)

5.2.1 Source category description

Methane is produced as a by-product of enteric fermentation, which is a digestive process where carbohydrates are degraded by microorganisms into simple molecules.

Methane emissions from enteric fermentation are a key category, in terms of level and trend assessment, for Approach 1 and Approach 2. All livestock categories have been estimated except camels and llamas, which are not present in Italy. Methane emissions from poultry and fur animals are not applicable. Emissions from rabbits, mules and asses, goats, buffalo and horses are estimated and included in "Other livestock" as shown in the CRF tables. In 2021, CH₄ emissions from this category were 523.96 Gg which represents 69.1% of CH₄ emissions for the agriculture sector (69.4% in 1990) and 31.2% for national CH₄ emissions excluding LULUCF (31.1% in 1990). Methane emissions from this source consist mainly of cattle emissions: dairy cattle (224.66 Gg) and non-dairy cattle (190.95 Gg). These two sub-categories represented 42.9% (48.1% in 1990) and 36.4% (36.2% in 1990) of total enteric fermentation emissions, respectively.

5.2.2 Methodological issues

Methane emissions from enteric fermentation are estimated by defining an emission factor for each livestock category, which is multiplied by the population of the same category. Data for each livestock category are collected from ISTAT (several years [a], [b], [c], [f], [g]; ISTAT, 1991; 2007[a], [b]). Livestock categories, provided by ISTAT, are classified according to the type of production, slaughter or breeding,

¹⁸ FAOSTAT <u>http://www.fao.org/faostat/en/#home</u>

¹⁹ http://ec.europa.eu/eurostat/data/database

²⁰ The number of heads of conjunctural surveys of the sows, sheep, goats, mules and asses, broilers, laying hens categories is on average 15% higher than the census, whereas for other poultry the difference is 30% and for horses and rabbits is more than double.

and the age of animals. In Table 5.5, livestock categories and source of information are provided. Parameters for the livestock categories are shown in Table 5.31. In order to have a consistent time series, it was necessary to estimate the number of animals for some categories. The estimation is based on information available from other official sources such as FAO and UNAITALIA (FAO, several years; UNAITALIA, several years).

Livestock category	Source
Cattle	ISTAT
Buffalo	ISTAT
Sheep	ISTAT
Goats	ISTAT
Horses	ISTAT/FAO(a)
Mules and asses	ISTAT/FAO(a)
Swine	ISTAT
Poultry	ISTAT/UNAITALIA(b)
Rabbits	ISTAT(c)

Table 5.5 Activity data for the different livestock categories

(a) Reconstruction of a consistent time series; (b) For 1990 data from the census and reconstruction for broilers, hens and other poultry based on meat production (UNAITALIA, several years); (c) For 1990 data from the census and reconstruction based on a production index (ISTAT, 2007[b]; ISTAT, several years [k]).

Dairy cattle

Methane emissions from enteric fermentation for dairy cattle are estimated using a Tier 2 approach, following the 2006 IPCC Guidelines (IPCC, 2006). Feeding characteristics are described in a national publication (CRPA, 2004[a]) and have been discussed in a specific working group in the framework of the MeditAIRaneo project (CRPA, 2006[a]; CRPA, 2005). Parameters used for the calculation of the emission factor are shown in Table 5.6.

Parameter	Value	Reference	IPCC 2006(*)
Average weight (kg)	602.7	CRPA, 2006[a]	600
Coefficient NE _m (lactating cows)	0.386	NRC, 2001; IPCC, 2006	0.386
Pasture (%)	5	CRPA, 2006[a]; ISTAT, 2003	0(**)
Weight gain (kg day ⁻¹)	0.051	CRPA, 2006[a]; CRPA, 2004[b]	0
Milk fat content (%)	3.59-3.82	ISTAT, several years[a], [b], [d], [e], [h]	
Hours of work per day	0	CRPA, 2006[a]	0
Portion of cows giving birth	0.97-0.92	AIA, several years[a]	0.9
Milk production (kg head ⁻¹ day ⁻¹)	11.5-25.0	CRPA, 2006[a]; OSSLATTE/ISMEA, 2003; ISTAT, several years[a], [b], [c], [d], [e], [f], [h]; OSSLATTE, 2001	16.4
Digestibility of feed (%)	68.69	CRPA, 2006[a]; CRPA, 2005; IPCC, 2006	65
Methane conversion factor (%)	5.99	CRPA, 2006[a]; IPCC, 2006	6.5
Energy content of methane (MJ/kg methane)	55.65	IPCC, 2006	55.65

(*) Data for estimating tier 1 enteric fermentation CH4 emission factors for dairy cows (Western Europe); (**) Stall fed (feeding situation).

The coefficient for calculating net energy for maintenance (NE_m) for dairy cattle is the default value of the 2006 IPCC Guidelines.

The national statistics on milk production were analysed. Milk used for dairy production and milk used for calf feeding contributes to total milk production. The latter was estimated on national and ISTAT publications (ISTAT, several years[h]). For the calculation of milk production (kg head⁻¹ d⁻¹), total production is divided by the number of animals and by 365 days, as suggested by the IPCC (IPCC, 2006). Therefore, lactating and non-lactating periods are included in the estimation of the CH₄ dairy cattle EF (CRPA, 2006[a]).

Following a recommendation raised during 2018 UNFCCC review, additional information on the share of grazing animals is reported. The dairy cattle, reared in the mountain areas (above the 600 meters of altitude) were assigned to pasture for three months a year (MeditAIRaneo project - CRPA, 2006[a]); the percentage of abovementioned animals is equal to 5% of the national total, in line with 2010 General Agricultural Census data.

In Table 5.7, the time series of the dairy cattle population, fat content in milk, portion of cows giving birth and milk production are shown. Further information on parameters used for dairy cattle estimations is reported in Annex 7.1.

According to the 2019 IPCC Refinement (IPCC, 2019), DE e Ym parameters for dairy cows have been estimated considering average annual milk production per cow and per production level (low "<5000 kg/head/year", medium "5000-8500 kg/head/year" and high ">8500 kg/head/year") and information on animal diets. On the basis of data from the Italian Livestock Breeders' Association (AIA) on average annual milk production and the number of dairy cows in production, by region and breed, the distribution of animals was calculated according to the three productivity levels identified by the 2019 IPCC Refinement, for the years 2004-2019. The AIA carries out milk productivity checks on behalf of the Ministry of Agriculture and each year the sample of animals checked is about 50% of the number of animals reared. The difference in cow numbers between the AIA total and the ISTAT total (used for emission estimates) was attributed to the low production level. The DE values assigned to the three production levels (low, medium, high) are 62, 65 and 70.11% of gross energy intake respectively and were identified in collaboration with the CRPA (Research Centre on Animal Production) dairy cow feeding experts. The value 62 is the minimum value of the range indicated in Table 10.12 for low producing cows of the 2019 IPCC Refinement (Chapter 10 of the Volume 4). The value 65 is lower than the average value of the range indicated in Table 10.12 for medium producing cows. The value 70.11 for high-producing cows is a weighted average of two values: the first is 65 (corresponding to diets with $DE \ge 70$ and $NDF \ge 35$) and was attributed to 27% of the high-producing cows fed without silage fodder; the second is 72 (corresponding to diets with DE≥70 and NDF≤35) and was attributed to 73% (=100-27%) of the high-producing cows fed with silage fodder. With reference to the 27% of cows, this value includes cows whose milk is intended for the production of Parmigiano Reggiano (17% of total cows), and cows fed with good quality dry and green fodder (e.g. for the production of Trentingrana PDO (Protected Designation of Origin), Latte Fieno STG (Traditional Speciality Guaranteed) and other mountain cheeses) which correspond to the other 10% of total cows. In support of the choices made for high productivity values, mention is made of a study published in 2020 (Gislon et al, 2020) carried out on eight Italian Friesian cows in multiparous lactation, with high productivity, using a 4 × 4 replicated Latin square pattern. The experimental design of the square involves all cows receiving all diets (with adaptation periods between each), so 2 groups of 4 cows that rotated 4 times on 4 diets have been considered. The number of observations for each diet is 32. According to CRPA experts, the cow effect is nullified because all of them received all diets and, therefore, the results obtained are irrefutable and highly representative. Four diets, based on the following forages (expressed in % of dry matter of forages, DM, and in the neutral detergent fiber content, NDF, expressed as % of dry matter intake), were tested: corn silage (CS, 49.3; 32.8 NDF), alfalfa silage (AS, 26.8; 27.1 NDF), wheat silage (WS, 20.0; 33.7 NDF), and a typical hay-based Parmigiano Reggiano cheese production diet (PR, 25.3 of both alfalfa and Italian ryegrass hay; 36.7 NDF). The lowest DM digestibility was observed for the PR diet (64.5%) and the highest for the CS diet (73.3%); AS and WS diets showed intermediate values (71.4 and 70.3% respectively). PR diet is associated with diets with DE≥70 and NDF≥35 in Table 10.12 of the 2019 IPCC Refinement (Chapter 10 of the Volume 4) and the other three diets are associated with diets with DE \geq 70 and NDF \leq 35 in the same table. For the year 2021, the percentages of dairy cows according to the three productivity levels (low, medium e high milk production) are 7.4%, 16.0% and 76.6%, respectively. The digestibility values associated with these productivity levels are, as previously mentioned, 62% and 70.11%, respectively. With these data, the average digestibility value of the diets consumed by dairy cows was estimated in 68.69%. The weighted average value of Ym for the year 2021 is 5.99% of gross energy intake. This value was estimated from the percentage distribution of dairy cows according to the three productivity levels and using the default factors given in Table 10.12 of the 2019 IPCC Refinement (Chapter 10 of the Volume 4). These values are: for lactating phase, 6.5 for low producing cows, 6.3 for medium producing cows, 6.0 and 5.7 for high producing cows; for dry phase, 7 for low producing cows, 6.3 for medium and high producing cows. From the two values for high producing cows in lactating phase, a weighted average value of 5.78 was estimated, with the distribution of cows according to diet type, shown above: 27% of high-productivity cows are associated with diets with DE \geq 70 and NDF \leq 35 (Ym 6.0); 73% of high-productivity cows are associated with diets with DE \geq 70 and NDF \leq 35.

In Table 5.14, the dairy cattle emission factors (EF) are reported. In 2021, the CH₄ dairy cattle EF was 139.5 kg CH₄ head⁻¹ year⁻¹ with an average milk production of 9,123 kg head⁻¹ year⁻¹ (25.0 kg head⁻¹ day⁻¹). The IPCC default EF is 117 kg CH₄ head⁻¹ year⁻¹ with a milk production of 6,000 kg head⁻¹ year⁻¹ (IPCC, 2006).

Year	Dairy cattle (head)	Fat content in milk (%)	Portion of cows giving birth	Milk production yield (kg head ⁻¹ d ⁻¹)
1990	2,641,755	3.59	0.97	11.5
1995	2,079,783	3.64	0.95	14.8
2000	2,065,000	3.65	0.93	15.1
2005	1,842,004	3.71	0.91	17.2
2010	1,746,140	3.72	0.90	18.8
2015	1,826,484	3.76	0.89	19.1
2017	1,791,120	3.81	0.91	20.7
2018	1,693,332	3.71	0.91	22.2
2019	1,643,117	3.72	0.91	22.9
2020	1,638,382	3.88	0.91	23.7
2021	1,609,948	3.82	0.92	25.0

Table 5.7 Parameters used for the estimation of the CH4 emission factor for dairy cattle

Non-dairy cattle

For non-dairy cattle, CH₄ emissions from enteric fermentation are estimated with a Tier 2 approach of the 2006 IPCC Guidelines. The estimation of the EF uses country-specific data, disaggregated livestock categories (see Table 5.8), and it is based on dry matter intake (kg head⁻¹ day⁻¹) calculated as percentage of live weight as estimated by CRPA during 2022 and described in the Annex 7. Dry matter intake is converted into gross energy (MJ head⁻¹ day⁻¹) using 18.45 MJ/kg dry matter conversion factor (IPCC, 2006). Emission factors for each category are calculated with equation 10.21 from 2006 IPCC guidelines (Chapter 10 of the Volume 4).

In Table 5.9, parameters used for the estimation of non-dairy cattle EF are shown. Average weights have been assessed with information from the Nitrogen Balance Inter-regional Project (CRPA, 2006[a]; Regione Emilia Romagna, 2004). For reporting purposes, some animal categories are aggregated, such as the non-dairy cattle and the swine categories. The non-dairy cattle category includes different sub-categories as shown in Table 5.8; consequently, the gross energy intake, CH₄ conversion factor and EFs for this category are calculated as a weighted average.

Yea	<1 year		1-2 yea	ars males	1-2 years	s females	>2 years males	>2	years fema	ales	
r	for slaught er	others	breedi ng	for slaughte r	breedin g	for slaughte r	all	breedin g	for slaughte r	others	Total
1990	300,000	2,127,959	72,461	708,329	749,111	186,060	128,958	467,216	57,654	312,649	5,110,397
1995	458,936	1,796,034	27,871	783,300	684,881	154,548	155,116	430,564	40,198	657,856	5,189,304
2000	408,000	1,783,000	27,521	641,479	736,000	160,000	93,000	500,000	51,000	588,000	4,988,000
2005	500,049	1,418,545	26,424	615,921	588,660	181,971	102,081	466,566	37,971	471,733	4,409,921
2010	507,452	1,228,696	23,913	557,386	597,733	212,983	70,284	445,370	70,411	372,089	4,086,317
2015	492,126	1,141,545	19,966	465,391	638,566	205,966	82,304	524,745	64,570	319,685	3,954,864
2017	485,250	1,206,116	21,294	496,344	704,296	231,499	100,101	543,379	79,508	290,486	4,158,273
2018	468,628	1,197,152	22,385	521,772	707,316	238,496	102,171	565,573	91,878	314,501	4,229,872
2019	461,877	1,241,787	22,615	527,137	723,737	256,341	99,095	546,867	99,932	352,442	4,331,830
2020	463,597	1,253,974	22,574	526,175	726,873	260,935	101,006	536,547	101,810	361,142	4,354,633
2021	450,312	1,214,907	22,025	513,390	706,874	260,270	99,930	552,414	101,821	338,983	4,260,926

Table 5.8 Non-dairy cattle population (heads) classified by type of production and age

Table 5.9 Main parameters used for non-dairy cattle CH₄ emission factor estimations

	<1 year	1-2 years	males	1-2 years	females	>2 years males	>2 y	/ears femal	es
Parameters	others (*)	breeding	for slaughter	breeding	for slaughter	all	breeding	for slaughter	others
Average weight (kg)	236	557	557	405	444	700	540	540	557
Percentage weight ingested	2.1	2.0	1.7	3.0	2.0	2.0	2.5	1.7	2.0
Dry matter intake (kg head ⁻¹ day ⁻¹)	4.8	11.1	9.5	12.2	8.9	14.0	13.5	9.2	11.1
Gross Energy (MJ head ⁻¹ day ⁻¹)	89.4	205.5	174.7	224.2	163.8	258.3	249.1	169.4	205.5
CH ₄ conversion (%)	4.16	4.72	4.62	4.63	4.68	4.32	4.54	4.65	4.48

(*) It has been considered that calves for slaughter of <1 year do not emit CH_4 emissions, as they are milk fed. Therefore, the average weight for the category "others" of <1 year considers fattening male cattle, fattening heifer and heifer for replacement.

EFs reflect the national characteristics of Italian breeding as well as the age classification of animals and dry matter intake.

Detailed information on the CH₄ conversion factors for non-dairy cattle category is reported in Annex 7.

In Table 5.14, Implied Emission Factors (IEF) for non-dairy cattle are shown. In 2021, the non-dairy cattle EF was 44.8 kg CH₄ head⁻¹ year⁻¹, while the 2006 IPCC Guidelines default EF is 57 kg CH₄ head⁻¹ year⁻¹ (Chapter 10 of Volume 4). The subcategory of calves (included in 'less than 1 year for the slaughter' category) has not been considered when estimating methane emissions as calves are milk fed. The relevant parameters, for estimating N₂O emissions from manure management, for this category, are the following:

- Average body weight: 157 kg;
- Nitrogen excretion: 14.6 kg N/head/year;
- Average milk period: 4-6 months;
- Average weight at slaughter: less than 300 kg.

As regards the share of grazing animals, the same value used for dairy cattle was assumed for the other females in the category non-dairy cattle and no grazing is assumed for the males (see paragraph *Dairy cattle*).

Buffalo

Data collected in the framework of the MeditAlRaneo project allowed for the implementation of the 2006 IPCC Tier 2 approach for the buffalo category. Two different country specific CH₄ EFs, for cow buffalo and other buffaloes, were estimated. Detailed description of the methodology is reported in Cóndor *et al.* (Cóndor *et al.*, 2008[a]). In 2021, the CH₄ EFs were 87.7 and 61.8 kg CH₄ head⁻¹ year⁻¹ for cow buffaloes and other buffaloes respectively. The CRF IEF is an average value for the two categories (76.6 kg CH₄ head⁻¹ year⁻¹). Parameters used for the Tier 2 approach are shown in Table 5.10 and 5.11.

Parameters	Value	Reference
Average body weight (kg)	630	Infascelli, 2003; Consorzio per la tutela del formaggio mozzarella di bufala campana, 2002
Coefficient NEm (lactating cows)	0.386	IPCC, 2006
Pasture (%)	2.90	ISTAT, 2003; Zicarelli, 2001; De Rosa and Di Francia, 2006
Weight gain (kg day 1)	0.055	Infascelli, 2003; Consorzio per la tutela del formaggio mozzarella di bufala campana, 2002
Milk fat content (%)	7.73-6.97	ISTAT, several years [a], [b], [d], [e], [h]
Hours of work per day	0	De Rosa and Di Francia, 2006
Proportion of calving cows	0.89-0.84	Barile, 2005; De Rosa and Trabalzi, 2004
Milk production (kg head ⁻¹ day ⁻¹)	1.91-3.31	OSSLATTE/ISMEA, 2003; OSSLATTE, 2001; ISTAT, several years [a], [b], [c] [d], [e], [f], [h]
Digestibility of feed (%)	65	Infascelli, 2003; Masucci et al., 1997, 1999
Methane conversion factor (%)	6.5	CRPA, 2006[a]; IPCC, 2006
Energy content of methane (MJ/kg methane)	55.65	IPCC, 2006

Table 5.10 Parameters to estimate emission factors from enteric fermentation of cow buffalo

The buffalo grazing is very infrequent, equal to 5%, in the provinces of Caserta and Frosinone, where according to the University of Naples experts (MeditAIRaneo project (CRPA, 2006[a]), 58% of national livestock are rised.

Parameter	Calves (3 months-1 year)	Sub-adult buffaloes (1-3 years)
Average body weight (kg)	150	405
Dry matter intake (% of body weight head ⁻¹ day ⁻¹)	3.0	2.5
Dry matter intake (kg head ⁻¹ day ⁻¹)	4.5	10.1
Gross Energy (MJ head ⁻¹ day ⁻¹)	82.75	186.58
CH₄ conversion (%)	6.5	6.5
CH ₄ emission factor (kg head ⁻¹ year ⁻¹)	26.46 (*)	79.54

(*) original CH₄ emission factor was 35.28 kg CH₄ head⁻¹ year⁻¹; a correction factor of 9/12 has been applied in order to consider the time between 3 months and 1 year, therefore the final emission factor was 26.46 kg CH₄ head⁻¹ year⁻¹.

The coefficient for calculating net energy for maintenance (NE_m) and the methane conversion factor (Ym) for buffalo are the default values of the 2006 IPCC Guidelines.

Sheep

Methane emissions from enteric fermentation for sheep are estimated using a Tier 2 approach, following the 2006 IPCC Guidelines (IPCC, 2006). Gross energy intake was estimated separately for three sub-categories: mature ewes, growing lambs, other mature sheep. Data of mature ewes and other sheep (which includes growing lambs and other mature sheep) are provided by ISTAT (as reported in the 5.1.4)

Agricultural statistics). Growing lambs and other mature sheep were estimated by applying the percentages of 85% and 15% respectively to the total number of other sheep (CRPA, 2006[a]). In Table 5.12, time series of sheep population are shown.

Year	Mature ewes (head)	Growing lambs (head)	Other mature sheep (head)
1990	7,492,089	1,060,089	187,075
1995	8,518,496	1,827,054	322,421
2000	8,334,000	2,341,750	413,250
2005	7,007,217	804,908	142,043
2010	7,089,123	689,259	121,634
2015	6,196,466	809,258	142,810
2017	6,271,593	802,264	141,576
2018	6,187,969	842,511	148,678
2019	6,086,538	777,191	137,151
2020	6,110,114	785,443	138,608
2021	5,867,151	732,020	129,180

Table 5.12 Sheep population (heads) classified by sub-categories

The sharp decline between 2000 and 2005 is mainly due to the spreading of Bluetongue infectious disease in 2001. In addition, the sheep number reduction along the whole time-series has been cause by the gradual erosion of profit margins in the production system of Sardinia, the Italian administrative region which holds the largest number of farms rearing sheep. Parameters used for the calculation of the emission factor are shown in Table 5.13.

Table 5.13 Parameters for the calculation of sheep emission factors from enteric fermentation

Parameter	Mature ewes	Growing lambs	Other mature sheep	Reference
Average weight (kg)	51	14	59	CRPA, 2006[a]
Coefficient NE _m	0.217	0.236	0.217-0.250 (1)	IPCC, 2006
Pasture (%) (2)	29	31	33	Estimated data
Weight gain (kg day ⁻¹) (3)		0.019		ARA, 2017; Agraria, 2009; AIA, several years[b]
Milk production (kg head ⁻¹ day ⁻¹)	0.30-0.39			ISTAT, several years[h], [l], [b]; ISTAT, 2006[a]
Wool production (kg head ⁻¹ y ⁻¹)	1.88-1.31			ISTAT, several years[l]
Portion of ewes giving birth	0.93			AIA, several years[c]
Single birth fraction (%)	70.8-74.8			AIA, several years[b]
Double birth fraction (%)	29.2-25.2			AIA, several years[b]
Digestibility of feed (%)	65	75 (4)	65	IPCC, 2006 (5)
Methane conversion factor (%)	6.5	4.5 (4)	6.5	IPCC, 2006 (5)

(1) The value increased by 15% for intact males; (2) Values estimated assuming an average of 11 month on pasture for 8 hours per day; (3) Assumptions made: sex ratio 40% males and 60% females; weight at weaning (30 days) 10 kg; weight at slaughter (90 days) 18 kg for males and 17 kg for females; (4) diets based on forage and concentrates (LAORE, 2014); (5) see Table 10.2 and 10.13 of the 2006 IPCC Guidelines.

In the CRF tables, the weighted average values of parameters reported in Table 5.13 were considered for sheep category.

Considering DE parameter, Italy uses the average default value of Table 10.2 of the 2006 IPCC Guidelines, relating to the ruminant categories and class 'pasture fed animals'. DE parameter is accompanied by a general description of the type of diets corresponding to the default values indicated. A literature review

on dairy sheep feeding (Molle et al., 2008) and an available database on fresh forages and supplement composition commonly used for feeding sheep (Molle and Cannas, 2015) show that sheep diet digestibility (on dry matter basis) averages 70% in adult ewes during lactation (6-4 months) when they are usually fed at pasture and receive concentrate and hay as supplements. In contrast, diet digestibility as low as 60% (FU²¹ 0.5-0.7/ kg dry matter) is common in mature ewes fed standing-hay or hay with a low amount of concentrate during dry period (8-6 months). These data support the use of the median level of diet digestibility (65%) shown in Table 10.2 and 10.13 of the 2006 IPCC Guidelines.

Rabbits

Methane emissions from rabbits have been estimated using a country-specific EF suggested by the CRPA. Daily dry matter intake for brood-rabbits and other rabbits are 0.13 kg day⁻¹ and 0.11 kg day⁻¹, respectively. Besides, a value of 0.6% has been assumed as CH₄ conversion rate (CRPA, 2004[c]).

Other livestock categories

A Tier 1 approach, with IPCC default EFs, is used to estimate CH₄ emissions from swine, goats, horses, mules and asses (IPCC, 2006). In Table 5.14, EFs for all livestock categories (dairy cattle, non-dairy cattle, buffalo, swine, sheep, goats, horses, mules and asses and rabbits) are presented. In Table 5.15, time series of the number of animals are shown.

Year	Dairy cattle	Non- dairy cattle	Buffalo	Sheep	Goats	Horses	Mules and asses	Sows	Other swine	Rabbits
				average C	H ₄ EF (kg	CH₄ head ⁻¹	year ⁻¹)			
1990	111.1	43.2	74.4	7.2	5.0	18.0	10.0	1.5	1.5	0.08
1995	123.6	43.7	75.8	7.0	5.0	18.0	10.0	1.5	1.5	0.08
2000	124.6	43.9	78.2	6.5	5.0	18.0	10.0	1.5	1.5	0.08
2005	122.5	43.1	84.6	7.4	5.0	18.0	10.0	1.5	1.5	0.08
2010	122.6	43.0	76.7	7.4	5.0	18.0	10.0	1.5	1.5	0.08
2015	124.8	44.0	77.2	7.3	5.0	18.0	10.0	1.5	1.5	0.08
2017	128.3	44.4	77.3	7.4	5.0	18.0	10.0	1.5	1.5	0.08
2018	130.8	45.0	76.5	7.5	5.0	18.0	10.0	1.5	1.5	0.08
2019	131.9	44.9	76.2	7.5	5.0	18.0	10.0	1.5	1.5	0.08
2020	135.7	44.8	76.6	7.5	5.0	18.0	10.0	1.5	1.5	0.08
2021	139.5	44.8	76.6	7.6	5.0	18.0	10.0	1.5	1.5	0.08

Table 5.14 Average CH₄ emission factors for enteric fermentation (kg CH4 head⁻¹ year⁻¹)

Table 5.15 Time series of number of animals from 1990 to 2021 (heads)

Year	Buffalo	Sheep	Goats	Horses	Mules and asses heads	Sows	Other swine	Rabbits	Poultry
1990	94,500	8,739,253	1,258,962	287,847	83,853	650,919	7,755,602	14,893,771	173,341,562
1995	148,404	10,667,971	1,372,937	314,778	37,844	689,846	7,370,830	17,110,587	184,202,416
2000	192,000	11,089,000	1,375,000	280,000	33,000	708,000	7,599,000	17,873,993	176,722,211
2005	205,093	7,954,167	945,895	278,471	30,254	721,843	8,478,427	20,504,282	174,667,361

²¹ Feed unit is the net energy contained in one kg of barley = 1760 kcal

Year	Buffalo	Sheep	Goats	Horses	Mules and asses	Sows	Other swine	Rabbits	Poultry
2010	365,086	7,900,016	982,918	373,324	46,475	717,366	8,603,753	17,957,421	175,912,339
2015	374,458	7,148,534	961,676	384,767	70,872	582,447	8,092,346	15,760,502	177,391,671
2017	400,792	7,215,433	992,177	367,561	72,455	561,654	8,009,153	14,000,931	178,635,180
2018	401,337	7,179,158	986,255	367,561	72,455	556,807	7,935,425	12,089,836	175,021,627
2019	402,286	7,000,880	1,058,720	367,561	72,455	556,009	7,954,259	11,755,922	175,520,313
2020	407,027	7,034,164	1,065,712	367,561	72,455	568,550	7,974,479	11,010,203	178,906,532
2021	409,408	6,728,351	1,060,748	367,561	72,455	550,991	7,856,977	10,945,940	178,243,638

5.2.3 Uncertainty and time-series consistency

Uncertainty related to CH₄ emissions from enteric fermentation was 20.2% for annual emissions, resulting from the combination of 3% of uncertainty for activity data and 20% for emission factors.

In 2021, CH₄ emissions from enteric fermentation were 523.46 Gg, i.e., 14.2% lower than in 1990 (610.46 Gg). Between 1990 and 2021 cattle livestock has decreased by 24.3% (from 7,752,152 to 5,870,874 heads). Dairy cattle and non-dairy cattle have decreased by 39.1% (from 2,641,755 to 1,609,948) and 16.6% (from 5,110,397 to 4,260,926), respectively. The reduction in number of cattle is the main driver for the reduction in CH₄ emissions, particularly as emissions per head from cattle are more than 10 times greater than those of sheep or goat. In 2021, cattle contribute with 79.3% to total CH₄ emissions from enteric fermentation. In Table 5.16, emission trends from the enteric fermentation category are shown. Emissions from swine (12.81 Gg), as reported in the CRF tables, are disaggregated in 'other swine' and 'sow'.

Year	Dairy cattle	Non- dairy cattle	Buffalo	Sheep	Goats	Horses	Mules and asses	Sows	Other swine	Rabbits	Total
1990	293.57	220.88	7.03	62.89	6.29	5.18	0.84	0.98	11.63	1.16	610.46
1995	256.99	226.59	11.25	75.17	6.86	5.67	0.38	1.03	11.06	1.33	596.32
2000	257.36	218.97	15.02	72.18	6.88	5.04	0.33	1.06	11.40	1.39	589.62
2005	225.58	190.23	17.36	58.69	4.73	5.01	0.30	1.08	12.72	1.59	517.29
2010	214.02	175.66	28.02	58.39	4.91	6.72	0.46	1.08	12.91	1.39	503.56
2015	227.92	173.88	28.90	52.34	4.81	6.93	0.71	0.87	12.14	1.22	509.71
2017	229.75	184.59	30.98	53.36	4.96	6.62	0.72	0.84	12.01	1.09	524.92
2018	221.49	190.22	30.69	53.52	4.93	6.62	0.72	0.84	11.90	0.94	521.87
2019	216.67	194.44	30.67	52.75	5.29	6.62	0.72	0.83	11.93	0.91	520.84
2020	222.29	195.06	31.16	52.68	5.33	6.62	0.72	0.85	11.96	0.86	527.53
2021	224.66	190.95	31.38	50.87	5.30	6.62	0.72	0.83	11.79	0.85	523.96

Table 5.16 Trend of CH₄ emissions from enteric fermentation (Gg)

5.2.4 Source-specific QA/QC and verification

Data on cow's milk collection from farms for dairy industry provided by the AGEA²² were compared to official statistics provided by ISTAT, for the years 2004-2015. AGEA data were higher than the ISTAT ones, on average by 6% and 3% for the 2004-2007 and 2011-2013 period, respectively. In other years, the differences are negligible, in particular for the years 2014 and 2015.

²² AGEA is the Agency for Agricultural Payments. The Agency has the task of performing the functions of coordination, monitoring and disbursement of European funds for agriculture - http://www.agea.gov.it/portal/page/portal/AGEAPageGroup/HomeAGEA/home. Data are available online at the link http://www.sian.it/downloadpub/jsp/zfadlx001.jsp (the filename is Riepilogo per regione di produzione delle consegne mensili non rettificate registrate).

Differences on sheep's milk collection data are found between FAOSTAT and national statistics (ISTAT). On average, FAO data are more than 40% higher than the ISTAT ones for the 1990-1995 period; then the difference decreases. After 2003, FAO data becomes lower than official ISTAT statistics. In the period 2005-2008, FAO data are equal to the total of the milk collected at the farms including the amount used on farms (of the ISTAT data). The milk directly suckled by calves is not considered. In the period 2009-2013, FAO data is only equal to the total of milk collected at the farms without the amount used on farms (of the ISTAT data).

Information related to the 2010 Agricultural census has been analysed and verified, as mentioned in the paragraph 5.1.4.

Information and administrative data related to number of heads, average weight by livestock category, milk production data will be collected by the Ministry of Agriculture as part of the 2016 December the 9th Decree of Ministry for the Environment, Land and Sea enteteled "*Attuazione della legge 3 maggio n. 79 in materia di ratifica ed esecuzione dell'Emendamento di Doha al Protocollo di Kyoto*" (GU, 2016[b]) and comparisons and verifications were made with the data used to estimate emissions.

5.2.5 Source-specific recalculations

The recalculation of the entire time series is due to an update of the dry matter intake (DMI) and methane conversion factors (Ym) values of the subcategories of the non-dairy cattle category. The recalculation was done in collaboration with experts from CRPA who, based on a large database, recalculated the percentage of DMI to the average weight of the animal. The Ym values of the different subcategories were calculated using the formula of Ellis et al 2007 based on the DMI and the percentage of forages in the ration.

5.2.6 Source-specific planned improvements

Additional data and information will be collected to improve the estimation of methane emissions from sheep, in particular for the DE parameter for mature ewes and other mature sheep, as recommended during the 2019 UNFCCC review. Actually, Italy uses the average default value of Table 10.2 of the 2006 IPCC Guidelines, relating to the ruminant categories and class 'pasture fed animals' and which is accompanied by a general description of the type of diets corresponding to the default values indicated. In the 2006 IPCC Guidelines (Chapter 10 of Volume 4), the data reported in Table 10A-9 (where there is no description of the data reported) do not fit with those of Table 10.2 probably because the Table 10A-9 was affected by a typo error (0.6% instead of 60%). This table has been removed from the 2019 IPCC Refinement. The data used have been confirmed by experts in the sheep sector of AGRIS Sardegna, the agency of the Region of Sardinia for scientific research, experimentation and technological innovation in the agricultural, agro-industrial and forestry sectors.

5.3 Manure management (3B)

5.3.1 Source category description

In 2021, CH₄ emissions from manure management were 170.79 Gg, which represents 22.5% of CH₄ emissions for the agriculture sector (22.0% in 1990) and 10.2% of national CH₄ emissions (9.9% in 1990). CH₄ emissions from cattle were 86.64 Gg and from swine were 68.58 Gg. These two sub-categories represented 50.7% and 40.2% of total CH₄ manure management emissions, respectively. CH₄ emissions from manure management also include emissions from ostriches and emissions from pasture of cattle and buffalo categories, as recommended during 2019 UNFCCC review.

N₂O direct and indirect emissions, produced during the storage and treatment of manure before it is applied to soils, are reported separately. In 2021, N₂O emissions from manure management were 6.79 Gg (of which 4.26 Gg are direct emissions and 2.53 Gg are indirect emissions), which represents 16.3% of total N₂O emissions for the agriculture sector (20.1% in 1990) and 10.5% of national N₂O emissions (10.4% in 1990). In 2021, direct N₂O emissions from manure management consist of the solid storage system (2.14 Gg), which also includes the chicken-dung drying process system, and of liquid system (2.12 Gg). N₂O emissions of the anaerobic digesters, another management system used in the country, are reported equal to zero in line with the 2006 IPCC Guidelines (IPCC, 2006).

In the framework of the Nitrogen Balance Inter-regional Project, parameters related to the estimation of CH₄ and N₂O emissions, such as average weight, production of slurry and solid manure and the nitrogen excretion rates, have been set.

CH₄ emissions and direct N₂O emissions from manure management are key sources at level, following Approach 1 and Approach 2, excluding. Including the LULUCF sector in the analysis, the results are the same except for N₂O emissions from manure management that are key sources at level following Approach 1.

5.3.2 Methodological issues

The IPCC Tier 2 approach is used for estimating methane EFs for manure management of cattle, buffalo and swine. For estimating slurry and solid manure EFs and the specific conversion factors, a detailed methodology (*Method 1*) was applied at a regional level for cattle and buffalo categories. Then, a simplified methodology, for estimating EF time series, was followed (*Method 2*). Livestock population activity data is collected from ISTAT (see Table 5.7; Table 5.8; Table 5.15).

Methane emissions (cattle and buffalo)

Method 1: Regional basis

Methane emission estimations for manure management are drawn up on a regional basis and depend on specific manure management practices and environmental conditions (Safley *et al.*, 1992; Steed and Hashimoto, 1995; Husted, 1993; Husted, 1994). The following factors are used: average monthly temperatures (ISPRA, 2020), amount of slurry and solid manure produced per livestock category (CRPA, 2018; CRPA, 2006[a]; Regione Emilia Romagna, 2004), storage temperatures and timescale for emptying manure storages for the application of slurry and solid manure to soils for agricultural purposes in Italy (CRPA, 1993).

For cattle and buffalo, the estimation of the EF starts with the calculation of the *methane emission rate* (g $CH_4 \text{ m}^{-3} \text{ day}^{-1}$), which is obtained from equations 5.1 and 5.2 reported below for slurry and solid manure respectively.

For the quantification of emissions from storage of cattle manure, the methodology adopted is based on the studies conducted by Husted. The Husted methodology allows estimating methane based on the parameters defining the manure storage in Italy. These parameters, which are mentioned in the introduction of this section, are average monthly temperatures, amount of slurry and solid manure produced per livestock category, storage temperatures and timescale for emptying manure storages. This method was adopted as it is based on experimental surveys carried out in the field, in environmental and breeding conditions that are transferable to the Italian reality with appropriate adaptations. This methodology allows to modulate the mass of methane emitted in relation to changes in temperature on a monthly basis. The average annual temperature represents an approximate datum for the elaboration of the methane emission estimates, since the same average annual value can correspond to more or less wide temperature excursions between the months (Steed and Hashimoto, 1995). This is followed by different methane emissions from manure storage depending on the number of months for which the 10°C threshold is exceeded, below which emissions are considered negligible. According to the

methodology adopted, the mass of methane is calculated based on two parameters, one of which is measured experimentally in field conditions (emission per unit volume of manure in relation to temperature) and the other estimated (the amount of slurry and solid manure produced and stored).

Average monthly temperature data were updated based on SCIA²³ data. SCIA made available the climatic normal temperature values for the 30-year climatological periods 1971-2000, 1981-2010 and 1991-2020 in raster format. Using GIS software, the raster data were converted into points and intersected with the shape of the municipal boundaries to which altitude and LU data (i.e., data on the number of animals reared at municipal level, expressed in livestock unit, where 1 LU=one adult dairy cow) were also associated. Average data of 1971-2000 climatological period were considered to estimate the emissions in the first decade of the time series (1990-2000), while average data of 1981-2010 climatological period were considered to estimate the emissions for the period 2001-2010 and average data of 1991-2020 climatological period were considered to estimate the emissions from 2011 onward. Temperature data above 1000 m were not considered. National average monthly temperature data (obtained by weighing provincial average monthly temperature data with LUs) were used to update methane emissions from storage, according to the country-specific methodology. This update resulted in a revision of the CH₄ estimate from manure management for cattle and buffalo categories. Temperature data, aggregated per province by weighting with LUs, were used to recalculate MCF.

Equations are presented below (CRPA, 2006[a]; Husted, 1994).

For slurry:	
CH ₄ (g m ⁻³ day ⁻¹) = e $(0.68+0.12) * t (°C)$ (average monthly temperature)	Eq. 5.1

For solid manure:

CH₄ ($q m^{-3} day^{-1}$) = $e^{(-2.3+0.1)*t} (°C)$ (average monthly storage temperature)

The monthly storage temperature from the solid manure is estimated with the following equation (Husted, 1994):

Eq. 5.2

T solid manure storage = 6,7086e ^{0.1014t (°C)} (average monthly temperature)

For temperatures below 10°C emissions are considered negligible.

The volume of slurry and solid manure produced per livestock category (m³ head⁻¹) was obtained by multiplying the average production of slurry and solid manure per livestock category per day (m³ head⁻¹ day⁻¹) by the days of storage of slurry and solid manure. The volume of slurry and solid stored manure is based on regional regulations concerning the spreading of manure on agricultural land. Information about days of storage considers the retention time in storage facilities and temporal dynamics of storage and application on soils of slurry and manure (CRPA, 1997[a]). The production of solid manure and slurry were estimated assuming a distribution of housing systems in Italy. The distribution of housing for dairy cattle has been assessed on the basis of a 1998 CRPA survey carried out in Lombardy, Emilia Romagna and center of Italy, and on the basis of ISTAT statistics of 2003 (CRPA, 2006[a]; Bonazzi *et al.*, 2005; APAT, 2004[a]; APAT, 2004[b]) for the period 1990-2005; from 2010 onward, the housing systems distribution has been deduced by the results of the 2010 Agricultural Census. Between 2005 and 2010 a gradual transition to the updated distribution of housing systems to ensure animal welfare. For non-dairy cattle and buffalo categories data on distribution of housing systems derive from national studies and expert judgment (CRPA, 2006[a]).

²³ SCIA is the national system for the collection, elaboration and dissemination of climatological data, by ISPRA, in the framework of the national environmental information system, in collaboration with the relevant institutions: <u>http://www.scia.isprambiente.it/wwwrootscia/Home_new_eng.html</u>

By multiplying the *methane emission rates* (obtained from equations 5.1 and 5.2) with the volume of slurry and solid stored manure, the methane emissions were calculated.

The next step is to estimate the volatile solid (VS) production, calculated by multiplying the average production of slurry and solid manure (previously converted from volume to weight: slurry and solid manure values expressed in volume were multiplied by 1 t/m³ and 0.75 t/m³, respectively, to obtain the values in mass unit) by the factors proposed by Husted: 47.5 g VS/kg (slurry) and 142.7 g VS/kg (solid manure) (Husted, 1994; CRPA, 2006[a]). These values are very close to those obtained from a survey carried out by the CRPA on the characteristics of zootechnical manure in different types of breeding, equal to 48.21 g VS/kg (slurry) and 128.31 g VS/kg (solid manure). This survey allowed a collection of national data relating to solid and liquid manure of dairy cows for different types of housing. This collection of samples made it possible to quantify the production of manure, the total solids and the volatile solids (APAT, 2004[a]).

Finally, the *specific conversion factors* for slurry and solid manure are calculated as the ratio between methane emissions and VS production. These *specific conversion factors* are used for the simplified methodology (*Method 2*). The *specific conversion factor* values for slurry are 17.25, 18.12 and 19.24 g CH₄/kg VS for the period 1990-2000, 2001-2010 and from 2011 onward, respectively; and for solid manure are 8.11, 9.28 and 10.68 g CH₄/kg VS for the period 1990-2000, 2001-2010 and from 2000, 2001-2010 and from 2011 onward, respectively.

Method 2: National basis

A simplified methodology (*Method 2*) for estimating methane EFs from manure management was used for the whole time series. Slurry and solid manure EFs (kg CH₄ head⁻¹ year⁻¹) were calculated with Equations 5.3 and 5.4, respectively. These equations include the *specific conversion factors* and the production of VS (kg head⁻¹day⁻¹), estimated with the slurry and solid manure production and the Husted factors (Husted, 1994; CRPA, 2006[a]): 47.5 g VS/kg (slurry) and 142.7 g VS/kg (solid manure).

The daily VS excreted, estimated for slurry and solid manure, are summed and used for calculating the methane producing potential (Bo).

In Table 5.17, EF estimations are shown.

EF slurry (for the period 1990-2000) = 17.25 g CH₄/kg VS \bullet VS production slurry (kg VS head-1 day-1) \bullet 365 days Eq. 5.3(a)

EF slurry (for the period 2001-2010) = 18.12 g CH₄/kg VS • VS production slurry (kg VS head-1 day-1) • 365 days Eq. 5.3(b)

EF solid manure (for the period 1990-2000) = 8.11 g CH₄/kg VS • VS production solid manure (kg VS head-1 day-1) • 365 days Eq. 5.4(a)

EF solid manure (for the period 2001-2010) = 9.28 g CH₄/kg VS • VS production solid manure (kg VS head-1 day-1) • 365 days Eq. 5.4(b)

EF solid manure (for the period since 2011) = 10.68 g CH₄/kg VS • VS production solid manure (kg VS head-1 day-1) • 365 days Eq. 5.4(c)

Livestock category	Slurry (kg CH₄ head ⁻¹ yr ⁻¹)	Solid manure (kg CH₄ head⁻¹ yr⁻¹)	CH₄ manure management EF (kg CH₄ head ⁻¹ yr ⁻¹)
Calf	7.89	0.00	7.89
Male cattle	6.62	6.39	13.00
Female cattle	3.23	7.24	10.47
Other non-dairy cattle (*)	3.88	11.67	15.55
Dairy cattle	10.17	14.70	24.87
Cow buffalo	6.28	13.99	20.27
Other buffaloes	3.41	6.36	9.77

Table 5.17 Methane manure management EFs for cattle and buffalo in 2021 (kg CH₄ head⁻¹ yr⁻¹)

(*) Suckling cows and cows in late career (average weight 557 kg).

The sub-category 'Other non-dairy cattle' includes suckling cows (cows farmed for feeding of calves, whose milk is not normally intended for human consumption) and cows in late career defined as cows after the last lactation, no longer productive that will be slaughtered. Dairy cows in late career but still productive are included in dairy cattle category.

The average production of slurry and solid manure per livestock category per day (m³ head⁻¹ day⁻¹) has been set with results from the Nitrogen Balance Inter-regional Project (Regione Emilia Romagna, 2004). The updating on manure production for cattle and buffalo, based on Ministerial Decree of 25 February 2016 on criteria and general technical standards for the regional regulation of the agronomic use of farmed effluents and wastewater, as well as for the production and agronomic use of digestate (GU, 2016[a]), has been done. Based on the type and housing systems distribution for the different animal categories, and on the average weight of animals, a time series of slurry and solid manure production was obtained. The manure production data (liquid/slurry and solid) from the 2016 Ministerial Decree were used for the cattle and buffalo categories from 2016 onward and a gradual change from 2006 to 2016 production factors was calculated over the period from 2007 to 2015.

In Table 5.18 the disaggregated manure management EFs for cattle and buffalo are shown. In Table 5.24 the average EFs of main categories (dairy, non-dairy, buffalo and swine) are reported.

Year	Calf	Male cattle	Female cattle	Other non dairy cattle (*)	Dairy cattle	Cow buffalo	Other buffaloes
			(kg C				
1990	7.07	11.08	9.81	15.85	22.38	23.61	9.32
1995	7.07	11.70	9.82	15.85	22.38	23.45	9.26
2000	7.07	11.29	9.95	15.85	22.38	23.29	9.19
2005	7.43	12.92	11.31	17.71	25.01	25.94	10.11
2010	7.43	12.48	10.51	16.15	25.09	22.80	9.56
2015	7.89	12.93	10.71	15.99	25.39	21.18	9.92
2017	7.89	12.80	10.47	15.55	24.87	20.27	9.77
2018	7.89	12.91	10.55	15.55	24.87	20.27	9.77
2019	7.89	12.97	10.43	15.55	24.87	20.27	9.77
2020	7.89	12.98	10.40	15.55	24.87	20.27	9.77
2021	7.89	13.00	10.47	15.55	24.87	20.27	9.77

Table 5.18 Methane manure management E	Fs for cattle and buffalo (kg CH₄ head ⁻¹ yr ⁻¹)	
Tuble 5.10 methane manufe manugement E	s for cattle and barraio (kg cri4 ficually)	

(*) Suckling cows and cows in late career (average weight 557 kg).

As recommended during the 2019 UNFCCC review, in Table A.7.12-14 in Annex 7, all data, parameters and equations used to estimate CH₄ emission from manure management for cattle and buffalo are reported. These data are: the average monthly temperature; storage temperatures and timescale for

emptying manure storages; the amount of manure generated by each subcategory of cattle and buffalo (m³/head day⁻¹); the *methane emission rates* (g CH₄/m³ day⁻¹) calculated on the basis of the equations 5.1 and 5.2; the specific conversion factors (g CH₄/kg VS); the content of VS in manure (g VS/head day⁻¹) produced by different subcategories of cattle (dairy and non-dairy cattle) and buffalo (cow buffaloes and other buffaloes); the slurry and solid manure EFs (kg CH₄/head year⁻¹) calculated with Equations 5.3 and 5.4 respectively; the total (slurry and solid manure) amount of VS handled in slurry/liquid and solid manure management systems for the entire reporting period; the total (slurry and solid manure) CH₄ emission factors.

CH₄ emissions from manure management category (3B) also include emissions from the biogas production.

A national census on biogas production/technology/installed power/organic matrix used is available in CRPA and CRPA/AIEL (CRPA, 2013; CRPA, 2011; ENAMA, 2011; CRPA, 2008[a]; CRPA/AIEL 2008). Biogas production data are collected annually by the National Electric Network (TERNA, several years). Emissions of methane, from biogas produced by anaerobic digesters fed with animal manure, to be deducted to the total amount of methane from manure management, were calculated using the information and data provided by TERNA and CRPA. For further information on the country-specific methodology used see Annex 7.2.

On the basis of the recent study for the evaluation of the effects on emissions of livestock management practices carried out by CRPA (CRPA, 2018), the percentages of the different substrates feeding the anaerobic digesters and data on the average content of volatile solids by type of substrates have been changed resulting in a decrease of the estimated amount of manure feeding anaerobic digesters. For the year 2021 this amount is equal to about 16 million of tons and that is 46% of the total amount of feed treated in anaerobic digesters. Emissions from plant biogas losses, fueled by manure, energy crops and agro-industrial by-products, are greater than avoided emissions due to biogas recovery (for cattle until 2011). This is due to the estimated amount of manure that feeds the digesters, which is low compared to other substrates. Therefore, increases in CH₄ emissions related to biogas recovery are assumed for cattle until 2011 according to the methodology described in Annex 7.2 (see paragraph *CH₄ emissions to be subtracted*).

In 2021, the CRF IEFs, for dairy cattle and non-dairy cattle, were 24.57 kg CH₄ head⁻¹ year⁻¹ and 11.05 kg CH₄ head⁻¹ year⁻¹, respectively. IPCC default EFs of cool temperature are 29 kg CH₄ head⁻¹ year⁻¹ and 8 kg CH₄ head⁻¹ year⁻¹ for dairy cattle and non-dairy cattle, respectively (IPCC, 2006). The IPCC default EFs of cool temperate are considered as the estimate of the national average temperature is 14.8 °C calculated from SCIA data of 1991-2020 climatological period.

The IEF for non-dairy cattle and buffalo represent a weighted average. The non-dairy cattle IEF includes: calves, male cattle, female cattle and other non-dairy cattle. The buffalo category includes: cow buffalo and other buffaloes categories. In Table 5.19, EFs and IEFs are shown. Differences, as mentioned before, are related to the amount of CH₄ reductions from biogas recovery and IEFs include also CH₄ emissions from pasture. In Table 5.19, the default EFs of the IPCC 2006 Guidelines are also reported.

Table 5.19 CH ₄ EFs, IEF and default EF for cattle and buffalo (kg CH ₄ head ⁻¹ yr ⁻¹)

Livestock category	EF (*) (kg CH₄ head⁻¹ yr⁻¹)	IEF (**) (kg CH₄ head ⁻¹ y ^{r-1})	IPCC 2006 default EF (kg CH₄ head⁻¹ yr⁻¹)
Dairy cattle	24.87	24.57	29
Non-dairy cattle	11.21	11.05	8
Buffalo	15.78	15.85	5

(*) Data do not include EFs for pasture; (**) IEF as reported in the CRF submission 2023.

Emissions from the biogas combustion for energy production are estimated and reported in the energy sector in the 1.A.4.c category, agriculture, forestry and fisheries, biomass fuel.

Following previous UNFCCC review's remark, detailed information on the estimate of weighted average values of CH₄ producing potential (Bo) and methane conversion factor (MCF) is provided below.

The methodology used, based on Husted studies, do not require the estimate of Bo. Therefore, the factor is estimated with 2006 IPCC Guidelines Equation 10.23 (Chapter 10 of Volume 4) and using country specific EFs and VS by livestock category described above and the average value of MCF by livestock category.

The 2006 IPCC MCF values by temperature for manure management systems (solid storage, pasture, liquid/slurry system) are used. In particular for liquid/slurry system, at first, the values of MCF at the provincial level were calculated based on the 2006 IPCC MCFs, by temperature, on the basis of the average provincial temperatures (i.e., the average temperature at provincial level was calculated by weighing the temperature at municipal level data with the percentage of animals at provincial level). Subsequently, the MCF national average values by livestock category for climate zone (considering cool (<15°C) and temperate ($\geq 15^{\circ}$ C) climate zone) were calculated as the average of the provincial MCF values weighed with the animals distributed by province for climatic zone. In relation to the climatic zones of the country and the average temperatures, see also the paragraph *Other livestock categories* below. The number of animals at provincial level come from the Agriculture Census from 1990, 2000 and 2010, and from the FSS for 2005 (ISTAT, 2007[a]), 2007 (ISTAT, 2008[a]), 2013 and 2016²⁴.

Information on the estimation process of the weighted average values of MCF for animal manure digested in anaerobic digesters are reported in Annex 7.2. Average MCFs were not used for estimating manure management EF, but they are useful to verify the EF accuracy.

In Table 5.20, estimated country-specific VS and Bo parameters, and IPCC default values are shown (IPCC, 2006). Differences are mainly attributed to country-specific characteristics.

Livestock category	VS country-specific (*) (kg dm head ⁻¹ day ⁻¹)		B _o country-specific (*) (CH ₄ m ³ /kg VS)	Bo IPCC default (CH₄ m³/kg VS)
Dairy cattle	5.22	5.10	0.24	0.24
Non-dairy cattle	2.35	2.60	0.27	0.18
Buffalo	3.47	3.90	0.18	0.10
Swine	0.33	0.31(**)	0.40	0.45

Table 5.20 VS and Bo parameters for cattle, buffalo and swine

(*) as reported in the CRF submission 2023; (**) weighted average with the number of heads of sows and other swine categories.

As recommended during 2019 UNFCCC review, the VS for cattle and buffalo are calculated also using equation 10.24 of the 2006 IPCC Guidelines (Chapter 10 of Volume 4). The results are: for dairy cattle 5.07 kg dm/head/day in 1990 and 6.25 kg dm/head/day in 2021; for non-dairy cattle 2.86 kg dm/head/day in 1990 and 2.94 kg dm/head/day in 2021; for buffalo 3.44 kg dm/head/day in 1990 and 3.55 kg dm/head/day in 2021.

For dairy cows, VS from manure are affected by the variation over the years of the housing systems, which affect the production of manure; the equation 10.24 of the 2006 IPCC Guidelines does not allow for this important parameter to be considered when estimating methane emissions from storage. For non-dairy cattle category, the enteric VS was calculating assuming DE equal to 65%, but this value should be higher given the Ym values estimated using Ellis' formula, as described in Section 5.2.2 Methodological issues (Non-dairy cattle).

As regard the contribution of straw, the methodology used, based on Husted studies, does not require a control on the straw used. As reported in the MeditAIRaneo project, the VS produced in slurry/liquid and solid animal manure were elaborated using Husted data, i.e., 47.5 gVS/kg of slurry and 142.7 gVS/kg of solid manure (Husted, 1994; CRPA, 2006[a]). As reported in Husted (Husted, 1994), cattle slurry does not

²⁴ http://dati.istat.it/?lang=en&SubSessionId=cead0f83-139d-4121-9178-e7de3f81675f

contain bedding material and cattle solid manure consisted mainly of faeces and a minor fraction of bedding material. Finally, as reported in the 2006 IPCC Guidelines, since the bedding materials typically are associated with solid storage systems, their contribution would not add significantly to overall methane production. However, the amount of straw used as bedding was estimated and the cross-check of amounts of bedding material contained in the manure used to estimate CH₄ emissions and N₂O emissions from animal manure applied to agricultural soils has been done, as recommended by the 2019 UNFCCC review. The amount of straw used as bedding that ends up on agricultural land during the spreading of manure was estimated considering the amount of straw per day (per tonnes of live weight, per type of housing, for cattle and buffalo), contained in the Ministerial Decree of 25 February 2016 on the use of zootechnical effluents, combined with the manure production coefficients used in the estimation of CH₄ emissions from storage. The nitrogen content was considered and was added to the nitrogen input from manure applied to soils for N₂O emissions estimate. Data for cattle were updated, while data for buffaloes, previously missing, were included. Data have been updated since 1990. Further information and data can be found in paragraph 5.5.2 (Direct N₂O emissions from FAM) and in the Annex 7.3.

As recommended during 2019 UNFCCC review, CH₄ emissions from pasture of cattle and buffalo categories have been estimated (using the equation 10.23 of the 2006 IPCC Guidelines) and reported in manure management emission category. As recommended during 2021 UNFCCC review, the revision of CH₄ EFs used to estimate emissions from pasture, paddock and range for cattle (dairy and non-dairy) and buffalo by correcting the allocation of MCF and manure handled by climate zone, in line with equation 10.23 of the 2006 IPCC Guidelines (Chapter 10 of Volume 4), has been made and CH₄ emissions for this subcategory has been recalculated. In the calculation of CH₄ EFs, the MCF value for both cool and temperate climate conditions was considered in the estimate. In Table 5.21 the disaggregated manure management EFs from pasture of cattle and buffalo are shown.

Year	Calf	Male cattle	Female cattle	Other non- dairy cattle (*)	Dairy cattle	Cow buffalo	Other buffaloes
			(kg (CH₄ head⁻¹ yr⁻	¹)		
1990	0.019	0.029	0.026	0.042	0.164	0.128	0.050
1995	0.020	0.033	0.028	0.045	0.164	0.123	0.048
2000	0.023	0.036	0.032	0.051	0.164	0.118	0.047
2005	0.022	0.038	0.034	0.053	0.182	0.128	0.050
2010	0.023	0.039	0.033	0.050	0.145	0.106	0.045
2015	0.030	0.049	0.041	0.061	0.157	0.086	0.040
2017	0.030	0.049	0.040	0.059	0.159	0.082	0.039
2018	0.030	0.050	0.041	0.060	0.159	0.082	0.039
2019	0.030	0.050	0.040	0.060	0.159	0.081	0.039
2020	0.032	0.053	0.042	0.063	0.167	0.081	0.039
2021	0.033	0.054	0.043	0.064	0.169	0.081	0.039

Table 5.21 CH4 EFs from pasture for cattle and buffalo (kg CH₄ head⁻¹ yr⁻¹)

(*) Suckling cows and cows in late career (average weight 557 kg).

Methane emissions (swine)

For the estimation of CH₄ emissions for swine, a country-specific *methane emission rate* was experimentally determined by the Research Centre on Animal Production (CRPA, 1996). The estimation of the EF considers: the storage systems for slurry (tank and lagoons), type of breeding and production of biogas.

Different parameters were considered, such as the livestock population, average weight for fattening swine and sows, and *methane emission rate*. Methane emission rates used are 41 normal litres CH₄/100 kg live weight/day for fattening swine, and 47 normal litres CH₄/100 kg live weight/day for sows including piglets (CRPA, 2006[a]). These data were based on experimental measurements on covered storage systems.

The shares of covered/uncovered storage systems are equal to 4% and 96% (CRPA, 2006[b]), respectively; the CH₄ emission rates used for uncovered storage systems were: 37.6 normal litre CH₄/100 kg live weight/day for fattening swine and 43.1 normal litre CH₄/100 kg live weight/day for sows, including piglets. These figures have been estimated on the basis of data provided by CRPA on methane emission rates from covered and total storages (CRPA, 1997 [a]; CRPA, 2006[a]; CRPA, 2006[b]).

The uncovered systems are emitting less than the covered ones since the temperatures are lower. According to the information on the storage systems collected by the 2010 Agriculture Census, the shares of covered/uncovered storage systems are equal to 11% and 89%, respectively; the shares of covered/uncovered storage systems are equal to 25% and 75%, respectively, taking into account the outcomes of the 2013 FSS ISTAT survey.

Characteristics of swine breeding and EFs are shown in Table 5.22; the emission factors reflect the share of covered/uncovered storage systems. The slurry production considered the different swine categories (classified by weight and housing characteristics); the average weight of sows, the production of slurry (t year⁻¹ per t live weight) and the volatile solid content in the slurry (g SV/kg slurry w.b.) have been set based on 598 measurements carried out by CRPA (CRPA, 1996; CRPA, 2006[a]).

In 2021, the EF from sow was 22.89 kg CH₄ head⁻¹year⁻¹, and for the other swine category was 8.85 kg CH₄ head⁻¹ year⁻¹ (average swine EF is 8.31 kg CH₄ head⁻¹year⁻¹). In Table 5.24 the time series of EFs for the swine category (sow and other swine) are shown. The CRF IEF reported is 8.16 kg CH₄ head⁻¹ year⁻¹. IPCC 2006 Guidelines default EF is 8 kg CH₄ head⁻¹year⁻¹ for market swine and 12 kg CH₄ head⁻¹year⁻¹ for breeding swine respectively, for cool temperature and 14°C as average annual temperature (IPCC, 2006). The difference between the EF and the IEF is due to the reduction in CH₄ because of biogas recovery (see Annex 7.2).

For reporting purposes, the VS daily excretion and Bo is estimated and is useful to verify the EF accuracy. The VS daily excretion was estimated for each sub-category with the following parameters: animal number, production of slurry (t/y/t live weight) and the volatile solids content in the slurry (g VS/kg slurry). Methane producing potential (Bo) used 2006 IPCC Guidelines Equation 10.23 (Chapter 10 of Volume 4). See paragraph *Methane emissions (cattle and buffalo)* for more details on the estimation process.

Livestock category	Average weight Breed live weight (kg) (t)		Methane emission rate reduction (NI CH₄/100 kg live weight)	Emission factor (kg CH₄ head⁻¹ yr⁻¹)	
Other swine	87	565,835	14,036	8.85	
20-50 kg	35	56,397	14,036	3.54	
50-80 kg	65	86,358	14,036	6.58	
80-110 kg	95	131,388	14,036	9.62	
110 kg and more	135	287,237	14,036	13.67	
Boar	200	4,455	14,036	20.25	
Sows	172	108,666	16,090	22.89	
Piglets	10	13,841	16,090	1.16	
Sows	172.1	94,826	16,090	19.98	
			Total	8.31	

The fundamental characteristic of Italian swine production is the high live weight of the animals slaughtered as related to age; the optimum weight for slaughtering to obtain meat suitable for producing the typical cured meats is between 155 and 170 kg of live weight. Such a high live weight must be reached in no less than nine months of age. Other characteristics are the feeding situation, to obtain high quality meat, and the concentration of Italian pig production, limited to a small area (*Lombardia, Emilia-Romagna, Piemonte* and *Veneto*), representing 75% of national swine resources (Mordenti *et al.*, 1997). These peculiarities of swine production influence the methane EF for manure management as well as nitrogen excretion factors used for the estimation of N₂O emissions.

Other livestock categories

Methane EFs used for calculating the other livestock categories are those included in the 2006 IPCC Guidelines. CH₄ emissions from pasture of other livestock categories (i.e., sheep, goats, horses, mules and asses) were not calculated as the manure management emissions for these animal categories were calculated using Tier1 emission factors, which include all management systems, including grazing.

Data on the number of broilers and laying hens in the period 2001-2009 and since 2011 have been updated. The estimation methodology involved successive steps. Firstly, ISTAT data from the Census and FSS surveys (available for the years 2000, 2005, 2007, 2010, 2013 and 2016) were considered; on the basis of these data the number of heads has been estimated for the missing years from 2001, assuming a linear trend. Secondly, the number of animals since 2001 based on production data provided by UNAITALIA. The annual variation in production was multiplied by the number of animals in the 2000 Census. Thirdly, the average of the two time series, which were recreated in the previous steps, was calculated.

Based on the number of heads at provincial level (NUTS2) and the average temperature of each province, CH₄ emissions were calculated using the 2006 IPCC default emission factors by average annual temperature (considering cool (<15°C) and temperate (\geq 15°C) climate zone) at the provincial level. For the national estimate an IEF was calculated based on the sum of the provincial emissions.

In Table 5.23 the distribution of animals of 2019 are distributed between temperate and cool zones based on provincial FSS 2016 (ISTAT) survey data and provincial average temperatures for the 30-year period 1991-2020.

Livestock categories in 2019 based on data from the FSS 2016	Heads		emperate zone 15°C)		in cool zone 15°C)
		N animals	% animals	N animals	% animals
Non-dairy cattle	4,331,830	1,099,630	25.38	3,232,200	74.62
Dairy cattle	1,643,117	368,382	22.42	1,274,735	77.58
Buffalo	402,286	368,323	91.56	33,963	8.44
Other swine	7,954,259	358,731	4.51	7,595,528	95.49
Sows	556,009	56,357	10.14	499,652	89.86
Sheep	7,000,880	5,621,944	80.30	1,378,936	19.70
Goats	1,058,720	774,441	73.15	284,279	26.85
Horses	367,561	158,228	43.05	209,333	56.95
Mules and asses	72,455	26,135	36.07	46,320	63.93
Broilers	102,143,056	6,627,016	6.49	95,516,041	93.51
Layer hens	39,045,286	6,946,533	17.79	32,098,753	82.21
Other poultry	34,331,971	1,422,174	4.14	32,909,797	95.86
Rabbits	11,755,922	212,962	1.81	11,542,960	98.19

Table 5.23 Number of animals of 2019 in temperate and cool zones

In order to verify the used animal distribution, the 2010 Agriculture Census (ISTAT, 2012) has been used to infer the percentages of animals in temperate zone. Comparing the assessed percentage with the used distribution, slight differences have registered for all the categories, except for other swine (-30%), other equines (-30%) and laying hens categories (+27%); a high difference is present for the other poultry and broilers categories.

In Table 5.24, the average methane EFs for cattle, buffalo and swine categories are shown for the whole time series.

For the other categories, the EFs are as follows:

- rabbits, 0.080 kg CH₄ head⁻¹ year⁻¹
- sheep, 0.244 kg CH₄ head⁻¹ year⁻¹
- goats, 0.169 kg CH₄ head⁻¹ year⁻¹
- horses, 1.794 kg CH₄ head⁻¹ year⁻¹
- mules and asses, 0.840 kg CH₄ head⁻¹ year⁻¹
- laying hens, 0.030 kg CH₄ head⁻¹ year⁻¹
- broilers, 0.020 kg CH₄ head⁻¹ year⁻¹
- other poultry, 0.090 kg CH₄ head⁻¹ year⁻¹
- fur animals, 0.680 kg CH₄ head⁻¹ year⁻¹
- ostriches, 5.67 kg CH₄ head⁻¹ year⁻¹

The difference between the EF and the IEF for poultry is due to the reduction in CH₄ because of biogas recovery (see Annex 7.2).

Verse	Dairy cattle	Non-dairy cattle	Buffalo	Sows	Other swine						
Year	(kg CH₄ head⁻¹ year⁻¹)										
1990	22.54	10.63	18.84	22.12	8.53						
1995	22.54	11.13	18.37	21.94	8.51						
2000	22.54	10.97	17.87	21.95	8.42						
2005	25.19	12.20	20.88	22.28	8.34						
2010	25.24	11.33	18.58	22.48	8.41						
2015	25.55	11.50	16.97	22.78	8.94						
2017	25.02	11.28	16.42	22.84	8.98						
2018	25.02	11.40	16.33	22.91	8.92						
2019	25.02	11.37	15.96	22.92	8.91						
2020	25.03	11.37	15.90	22.88	8.92						
2021	25.03	11.40	15.90	22.89	8.85						

Table 5.24 Average methane EFs for manure management (*) (kg CH₄ head⁻¹ year⁻¹)

(*) These are the EFs used for estimating CH₄ emissions from manure management (for cattle and buffalo data include EFs for pasture). CH₄ reductions are not included.

Nitrous oxide emissions from manure management

Direct and indirect N₂O emissions, produced during the storage and treatment of manure before it is applied to soils, are reported separately, as indicated in the 2006 IPCC Guidelines.

Direct N₂O emissions from manure management

N₂O emissions were estimated with equation 10.25 (IPCC, 2006, Chapter 10 of Volume 4). Different parameters were used for the estimation: number of livestock species, country-specific nitrogen excretion rates per livestock category, fraction of total annual nitrogen excretion for each livestock category managed in each manure management systems and EFs for manure management systems (IPCC, 2006).

Liquid system and solid storage are considered according to their significance and major distribution in Italy. For these management systems, the same EF is used: 0.005 kg N₂O-N/kg N excreted (IPCC, 2006). Solid storage includes the chicken-dung drying process system. This system has been considered since 1995, since it has become increasingly common (CRPA, 2000; CRPA, 1997[b]). As regards the anaerobic digesters, another management system used in the country, the nitrogen quantities in livestock manure sent to anaerobic digestion were updated. Based on CRPA data on measurements of nitrogen quantities in livestock manure (downstream of releases to housing and storage) per animal category and type of manure, the nitrogen quantities in livestock manure sent to anaerobic digestion were estimated. The coefficients, expressed in g N/kg manure, were calculated gross of losses and then the losses to housing were deducted. Then, the resulting coefficients were then multiplied by the quantities of manure sent for anaerobic digestion. The whole time series was updated. N₂O emissions of the anaerobic digesters are reported as zero in line with the 2006 IPCC Guidelines (IPCC, 2006).

When estimating emissions from manure management, the amount related to manure excreted while grazing is subtracted and reported in 'Agricultural soils' under soil emissions - urine and dung deposited by grazing animals (see Table 5.25). As recommended during the 2021 UNFCCC review, N₂O direct and indirect emissions for ostriches are estimated and reported in the IPCC 'Agricultural soils'category because the manure management system for this category is pasture, range and paddock. The estimate of nitrogen excretion per manure management system is reported in CRF Table 3.B(b) (consistently with CRF Table 3.B(a)s2), in pasture range and paddock in other livestock. Further details on the estimate are given in 5.5.2 *Methodological issues* paragraph, in Direct N₂O emissions from managed soils, in *Urine and dung from grazing animals* (F_{PRP}). Different parameters such as the nitrogen excretion rates (CRPA, 2006[a]; GU, 2006; Xiccato *et al.*, 2005), the slurry and solid manure production, and the average weight (CRPA, 2006[a]; GU, 2006; Regione Emilia Romagna, 2004) were updated.

In Table 5.25, nitrogen excretion rates used for the estimation of N₂O are shown. In 2021, the nitrogen excretion rate for swine is 14.54 kg head⁻¹ yr⁻¹. This last parameter is a weighted average of sow (28.51 kg head⁻¹ yr⁻¹) and other swine (13.35 kg head⁻¹ yr⁻¹). The value for sows also includes the excreted nitrogen from piglets. The average nitrogen excretion rate for swine reported in the CRF is equal to 12.14 kg head⁻¹ yr⁻¹. The figure is lower than the average rate for swine reported here since the value reported in the CRF is calculated by comparing the excreted nitrogen to the total pigs, including piglets.

Livestock category	Average weight (kg)	N excreted housing (kg N head ⁻¹ yr ⁻¹)	N excreted grazing (kg N head ⁻¹ yr ⁻¹)	Total nitrogen excreted (kg N head ⁻¹ yr ⁻¹)
Non-dairy cattle	388.2	50.90	1.44	52.34
Dairy cattle	602.7	105.35	5.54	110.89
Buffalo	497.3	57.50	1.72	59.22
Other swine	87.4	13.35		13.35
Sows	172.1	28.51		28.51
Sheep	47.2	1.62	14.58	16.20
Goats	45.2	1.62	14.58	16.20
Horses	550.0	20.00	30.00	50.00
Mules and asses	300.0	20.00	30.00	50.00
Poultry	1.8	0.48		0.48
Rabbits	1.6	1.02		1.02
Fur animals	1.0	4.10		4.10

Country-specific annual nitrogen excretion rates have been set, based on the Nitrogen Balance Interregional Project results (nitrogen balance in animal farms); this project involved *Emilia Romagna*, *Lombardia*, *Piemonte* and *Veneto* regions, where animal breeding is concentrated. The N-balance methodology has been applied in real case farms, monitoring their normal feeding practice, without specific diet adaptation. In the project, the most relevant dairy cattle production systems in Italy have been considered. Contrary to what is normally found in European milk production systems, poor correlation between the N excretion and milk production has been found. The two possible reasons are: a) an extreme heterogeneity in the protein content of the forage and in the use of the feed; b) the non-optimisation of the protein diet of less productive cattle (De Roest and Speroni, 2005; CRPA, 2010). The N-balance methodology was followed, as suggested by the IPCC. As a result, estimations of nitrogen excretion rates²⁵ and net nitrogen arriving to the field²⁶ were obtained. In order to get reliable information on feed consumption and characteristics, and composition of the feed ratio, the project considered territorial and dimensional representativeness of Italian breeding. The final annual nitrogen excretion rates used for the UNFCCC/CLRTAP agriculture national inventory are included in a CRPA report (CRPA, 2006[a]).

In Table 5.26, nitrogen excretion rates for the main livestock categories are shown for the whole time series. For the other livestock categories, nitrogen excretion is the same for the whole time series, as shown in Table 5.25.

For the dairy cattle category, following a recommendation raised during the 2019 UNFCCC review, the annual average values of nitrogen excretion rates are estimated using equations 10.31-33 of the 2006 IPCC Guidelines, and therefore are calculated with the data used to estimate the enteric fermentation emissions. Following the update of the gross energy intake (GE), based on the estimation of the parameters digestibility (DE) of diet and methane conversion factor (Ym), the excreted nitrogen value of dairy cows was updated from the year 2004 onward. Excreted nitrogen is in fact calculated from GE using equations 10.31-10.33 of the 2006 IPCC Guidelines. In addition, the percentage for protein in diet has been updated since 2000 with respect to the previous submission. This parameter is used with GE in the estimation of excreted nitrogen. As regards the percentage for protein in diet, the crude protein of the ration was updated based on data from around 500 samples of rations (unifeed) of lactating and dry dairy cows, analyzed by the CRPA's zootechnical feed service for the three-year period 2017-2019, from all over Italy. The data were obtained by weighing the values expressed as % of the dry matter of the ration with the average annual lactation period (equal to 305 days) and the dry period (equal to 60 days). The value obtained is 14.22% and it was used for the time series from 2010 onwards, as indicated by the CRPA experts. For the previous years, the previous figure of 15.32% (Bittante et al., 2004) was left until 2000, and an average value of 14.5% was used for the intermediate years between 2000 and 2010. This change results in a change in the nitrogen excreted by dairy cows (which is down from the previous submission).

For non-dairy cattle, buffalo and swine categories, the average values of nitrogen excretion rates are calculated on the basis of the weight of the annual number of animal subcategories and fluctuate over the years. For the 'Less than 1 year' subcategory of the non-dairy cattle category, an average value of nitrogen excreted was calculated based on the weight of the number of animals of the subcategories calf, fattening male cattle, fattening heifer and heifer for replacement subcategories. For the sows' category, an average weighted nitrogen excretion rate is calculated taking in account the nitrogen excretion from piglets (swine less than 20 kg).

Year	Dairy cattle	Non-dairy cattle	Buffalo	Other swine	Sows				
rear	(kg N head⁻¹ yr⁻¹)								
1990	104.85	49.89	94.32	13.13	28.10				
1995	112.58	49.89	92.84	13.10	27.86				
2000	105.65	50.07	91.20	12.96	27.87				

Table 5.26 Nitrogen excretion rates for main livestock categories (kg N head⁻¹ yr⁻¹)

²⁵ Nitrogen excretion = N consumed - N retained

 $^{^{26}}$ Net nitrogen to field = (N consumed – N retained) – N volatilized

Year	Dairy cattle	Non-dairy cattle	Buffalo	Other swine	Sows					
rear	(kg N head ⁻¹ yr ⁻¹)									
2005	105.70	49.85	95.28	12.84	28.30					
2010	102.02	50.07	81.99	12.85	28.36					
2015	103.48	51.37	63.57	13.48	28.36					
2017	105.15	51.87	60.60	13.54	28.44					
2018	105.95	52.43	60.37	13.45	28.53					
2019	106.57	52.15	59.38	13.44	28.55					
2020	109.06	52.01	59.21	13.45	28.50					
2021	110.89	52.34	59.22	13.35	28.51					

For verification purpose, a time series reported by ISTAT in the yearbooks (animal weight before slaughter) was collected (CRPA, 2006[a]). For the specific case of sheep and goats, a detailed analysis was applied with information coming from the National Association for Sheep Farming (ASSONAPA, 2006). In order to estimate the average weight for sheep and goats, breed distribution in Italy and consistency for each breed were considered (CRPA, 2006[a]; PROINCARNE, 2005).

Slurry and solid manure production parameters are set based on Italian breeding characteristics, taking into account the slurry and solid manure effluents, housing systems and the distribution for the different animal categories (CRPA, 2006[a]; Bonazzi *et al.*, 2005; APAT, 2004[a]; APAT, 2004[b]).

Fractions of total annual nitrogen excretion for dairy cattle category managed in solid manure and liquid/slurry systems have been updated considering the distribution of housing systems resulting from the 2010 Agricultural Census.

Indirect N₂O emissions from manure management

 N_2O emissions result from volatile nitrogen losses occurring primarily in the forms of ammonia and NO_x and from nitrogen leaching and run-off.

N₂O emissions due to atmospheric deposition of NH₃ and NO_x have been estimated following the IPCC Tier 2 approach (Equation 10.26 and 10.27 of the 2006 IPCC Guidelines, Volume 4, Chapter 10). The following parameters are used: total N excreted by livestock (kg head⁻¹yr⁻¹), the fraction of total annual nitrogen excretion for each livestock category managed in each manure management systems, Frac_{GasMS} emission factor, which is the percentage of managed manure nitrogen that volatilises as NH₃ and NO_x in the manure management systems (see Table 5.27) and emission factor 0.01 kg N₂O-N per kg NH₃-N and NO_x-N emitted (IPCC, 2006). The Frac_{GasMS} emission factor is equal to the ratio between the amount of NH₃-N and NO_x-N emissions at housing and storage system and the total nitrogen excreted.

NH₃ and NO_x emissions are estimated on the basis of the methodology indicated in the EMEP/EEA Guidebook for transboundary air pollutants. The estimation procedure for NH₃ and NO_x emissions of the manure management category consists in successive subtractions from the quantification of nitrogen excreted annually for each livestock category. This quantity can be divided in two different fluxes, depending on whether animals are inside (housing, storage and manure application) or outside the stable (grazing). More in detail, part of the nitrogen excreted in housing volatilizes during the settle of manure in the stable and it is calculated with the relevant emission factor in housing for the different livestock; this amount is therefore subtracted from the total nitrogen excreted to derive the amount of nitrogen for storage), and, therefore, it is subtracted to obtain the amount of nitrogen available for the agronomic spreading. For the nitrogen excreted in the pasture, losses due to volatilization, calculated with the relevant emission factor for spreading. For the nitrogen excreted in the pasture, losses due to volatilization, calculated with the relevant emission factor for spreading. For the nitrogen excreted in the pasture, losses due to volatilization, calculated with the relevant emission factor for spreading. For the nitrogen excreted in the pasture, losses due to volatilization, calculated with the relevant emission factor for spreading. For the nitrogen excreted in the pasture, losses due to volatilization, calculated with the relevant emission factor for grazing by livestock, only occur at this stage. Ammonia and NO_x emissions

coming from housing and storage by each livestock category are then summed and divided by the total nitrogen excreted for each year (CRPA, 2006[a]). Ammonia emissions related to the housing and storage by cattle, swine and laying hens categories have been updated based on ISTAT statistics such as 2010 Agricultural Census and 2013 Farm Structure Survey, on the distribution of housing and storage systems. In relation to the ammonia emissions from storage, NH₃ emissions from digesters biogas facilities (in particular due to different phases of the process: during storage of feedstock on the premises of the biogas facility; during open storage of the digestate) have been estimated taking into account the amount of excreted nitrogen feeding anaerobic digesters and the Tier 1 emission factor derived by the EMEP/EEA Guidebook (EMEP/EEA, 2019). NH₃ emissions from digesters biogas facilities have been subtracted from manure management category (only for cattle, swine and poultry categories) and allocated in the anaerobic digestion at biogas facilities (5B2 of the waste sector in the NFR classification under UNECE/LRTAP Convention). The percentage of nitrogen lost through N-NH₃ emissions from anaerobic digesters was subtracted from the percentage of nitrogen left after emissions during housing and storage, reducing the amount of nitrogen used at the spreading. The amount of nitrogen used at the spreading also includes the digestate.

For estimating of N₂O emissions due to nitrogen leaching and run-off the IPCC Tier 2 approach was followed (Equation 10.28 of the 2006 IPCC Guidelines, Volume 4, Chapter 10). The following parameters are used: total N excreted by livestock (kg head⁻¹yr⁻¹), the fraction of total annual nitrogen excretion for each livestock category managed in each manure management systems, Frac_{leachMS} emission factor, which is the percent of managed manure nitrogen losses due to leaching and runoff during solid and liquid storage of manure (see Table 5.27) and emission factor 0.0075 kg N₂O-N per kg N leaching/runoff (IPCC, 2006).

The national legislation (as well as the regional ones) requires that the storage of liquid manure is in containers with waterproof bottom. The solid storage should have the concrete or similar materials on the bottom and the leachate collection system. Nevertheless, manure heaps near the field are permitted for limited time after storage aimed at spreading (CRPA, 2016[b]). Leaching of N during manure management is thus restricted to these manure heaps after storage. On the basis of this information, FracleachMS emission factor is assumed equal to 1% (the lower bound of the typical range, reported in 2006 IPCC Guidelines) and FracleachMS is applied on the amount of N after the N volatilized from manure management is subtracted, because most N will already be volatilized before installing the manure heaps near the field.

Year	N excreted (t N)	Frac _{GasMS} (%)	N volatilised as NH₃ and NO _x (t N)	N excreted housing minus N volatilised (t N)	Frac _{LeachMS} (%)	N leached from manure management (t N)
1990	929,130	24.16	224,467	527,957	1.0	5,280
1995	932,041	22.63	210,901	516,731	1.0	5,167
2000	914,838	22.19	203,031	502,776	1.0	5,028
2005	813,248	22.73	184,823	473,605	1.0	4,736
2010	792,069	22.91	181,439	453,484	1.0	4,535
2015	781,253	21.01	164,124	469,472	1.0	4,695
2017	791,411	20.89	165,309	477,238	1.0	4,772
2018	781,936	20.77	162,417	471,502	1.0	4,715
2019	779,621	20.64	160,912	472,361	1.0	4,724
2020	785,163	20.46	160,665	477,385	1.0	4,774
2021	773,596	20.36	157,518	473,556	1.0	4,736

Table 5.27 Parameters used for the estimation of N₂O indirect emissions

5.3.3 Uncertainty and time-series consistency

Uncertainty of CH₄ and N₂O emissions from manure management has been estimated equal to 20.6%, as a combination of 5% and 20% for activity data and emission factors, respectively. Uncertainty of indirect N₂O emissions from manure management has been estimated equal to 50.2%, as a combination of 5% and 50% for activity data and emission factors, respectively.

In 2021, CH₄ emissions from manure management were 11.8% (170.79 Gg CH₄) lower than in 1990 (193.71 Gg CH₄). From 1990 to 2021, dairy and non-dairy cattle livestock population decreased by 33.6% and 12.6%, respectively, while swine increased by 0.7% (in particular, sows decrease by 14.2% and other swine increase by 4.6%).

The reduction of manure management emissions has mainly driven down by the number of cattle. For cattle category until 2011, CH₄ emissions from biogas produced by anaerobic digesters fed with animal manure must be added to the emissions from manure management and not deducted because of the plant biogas losses are greater than avoided emissions due to biogas recovery. Cattle CH₄ emissions contribute for 50.7% (in 1990 for 58.6%) to total CH₄ manure management emissions and swine for 40.2% (35.2% in 1990). For cattle, swine and poultry, the reduction of manure management emissions is also due to the reduction in CH₄ because of biogas recovery.

In Table 5.28, CH₄ emission trends from manure management (including emissions from pasture) are shown. These emissions considered the reduction of CH₄ because of biogas recovery.

Year	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
Dairy cattle	59.56	46.94	46.59	46.55	44.48	46.2	44.12	41.7	40.42	40.29	39.56
Non-dairy cattle	53.88	57.33	54.25	53.52	46.28	44.55	45.65	46.88	47.85	48.02	47.08
Buffalo	1.77	2.72	3.42	4.27	6.76	6.33	6.56	6.53	6.4	6.45	6.49
Sows	14.4	15.12	15.53	15.96	15.98	13	12.57	12.5	12.49	12.75	12.36
Other swine	53.73	50.48	51.51	56.04	57.37	58.62	58.35	57.11	57.23	57.32	56.21
Sheep	2.07	2.52	2.6	1.88	1.9	1.7	1.72	1.71	1.71	1.72	1.64
Goats	0.21	0.23	0.23	0.16	0.17	0.16	0.17	0.16	0.18	0.18	0.18
Horses	0.5	0.55	0.49	0.48	0.65	0.67	0.64	0.64	0.66	0.66	0.66
Mules and asses	0.08	0.03	0.03	0.03	0.04	0.06	0.06	0.06	0.06	0.06	0.06
Poultry	6.1	6.84	6.48	6.61	6.54	6.25	6.06	5.87	5.79	5.75	5.64
Rabbits	1.19	1.37	1.43	1.64	1.44	1.26	1.12	0.97	0.94	0.88	0.88
Fur animals	0.22	0.15	0.16	0.14	0.09	0.12	0.12	0.1	0.09	0.03	0.01
Ostriches	0	0.03	0.22	0.16	0.03	0.02	0.02	0.02	0.02	0.01	0.01
Total	193.71	184.32	182.93	187.43	181.7	178.96	177.16	174.26	173.84	174.12	170.79

In Table 5.29, N₂O emissions from liquid systems, solid storage and 'other' sources are shown.

	Direct emissions			Indirect	Tarak
Year	Liquid system	Solid storage	Other	emissions	Total
			Gg		
1990	2.89	3.02	0.00	3.59	9.50
1995	2.71	3.00	0.00	3.38	9.08
2000	2.53	3.01	0.00	3.25	8.79
2005	2.34	2.79	0.00	2.96	8.09
2010	2.43	2.49	0.00	2.90	7.83
2015	2.18	2.22	0.00	2.63	7.04
2017	2.21	2.25	0.00	2.65	7.11
2018	2.17	2.21	0.00	2.61	6.99
2019	2.15	2.18	0.00	2.58	6.91
2020	2.16	2.18	0.00	2.58	6.93
2021	2.12	2.14	0.00	2.53	6.79

Table 5.29 Trend in N₂O emissions from manure management (Gg)

In 2021, N₂O emissions from manure management were 28.5% (6.79 Gg N₂O) lower than in 1990 (9.50 Gg N₂O). The major contribution of direct emissions is given by the 'solid system' with 50.3% (in 1990 with 51.2%). In 2021, indirect N₂O emissions from manure management account for 37.3% of total N₂O emissions from manure management and were 29.5% (2.53 Gg N₂O) lower than in 1990 (3.59 Gg N₂O).

5.3.4 Source-specific QA/QC and verification

A study carried out by the CRPA in 2018 (CRPA, 2018) mentioned before also includes a survey on the digesters and the outcomes of the survey have been used to update the estimates as described in the paragraph 5.3.2.

A check was carried out on the VS values. An average of the time series of VS values was calculated for cattle. Three weighted mean values were calculated. The first was obtained using Husted values of 142.7 g VS/kg for solid manure and 47.5 g VS/kg for slurry. The second was obtained from the VS kg/head/day values calculated using Equation 10.24 of the 2006 IPCC Guidelines, which uses the data to estimate enteric emissions. The third was calculated as an average of the VS values measured by CRPA. Specifically, a crude average of VS values for manure and slurry was calculated from approximately 400 samples analysed in the period 2001-2019; from the average VS values for manure and slurry, a weighted average was calculated. The values obtained were 98.2, 93.5 and 117.4 g VS/kg manure, respectively. This verification supports the estimates made, based on the Husted factors, but further investigations will be carried out.

For verification purposes, the $Frac_{GasMS}$ parameter have been also estimated as a fraction of nitrogen recovered and stored that is emitted as N_NH₃-NO_x-N₂O-N₂. This value is equal to 0.329, for 1990, and to 0.282 in 2020.

As recommended by the 2019 UNFCCC review, starting from the data on amount of solid and slurry manure produced, used in the estimate of CH₄ emissions from manure management, the amount of straw added to the manure during housing was calculated. The estimated amount of straw for cattle and buffalo bedding was compared with the annual amount of wheat and barley straw used for various purposes. It was found that cattle and buffalo bedding is equal to 83% of the amount of wheat and barley straw.

During 2022, a verification of CH₄ estimates from manure management was conducted using provincial Census agriculture head count data from the years 2000 and 2010 and monthly average temperature data. Head count data were distinguished between animals raised in temperate and cool climate zones. Regarding temperature data, average monthly temperatures of temperate and cool climate zones were

calculated separately. Average monthly temperatures for three 30-year periods (1971-2000, 1981-2010, 1991-2020) were calculated. With these data, the national methodology for estimating cattle and buffalo CH₄ emissions for the years 2000 and 2010 was replicated. For 2000, the emissions estimated with this verification were 11% lower than the methodology used. While for 2010, emissions were almost identical. The 2000 census head count (summing cattle and buffalo), used for the verification performed, is 14% lower than the annual stock figures used in the national methodology (and just under 4% for 2010). This helps in part to explain the differences obtained. As soon as the 2020 census data disaggregated at the municipal level are available, the verification will also be carried out for the year 2020.

5.3.5 Source-specific recalculations

As regards for CH₄ emissions from manure management, since 2011, emissions have changed because data on average monthly temperatures, which is a parameter used in the country-specific methodology, have been updated. These data refer to average temperatures for the 30-year period 1991-2020. In addition, data provided by SNAM, the national pipeline operator, on the amount of biomethane fed into the grid, from 2017, were considered. This data was used to estimate the national biogas produced. Based on this estimate, the amount of livestock manure sent to anaerobic digestion was calculated, which was useful for estimating the methane emissions, from manure management, avoided. Finally, for the entire time series, the formula for estimating biogas produced from biogas used to produce energy and from biogas fed into the pipeline network was corrected. Updated data on the number of fur-bearing animals for the years 2019-2020. Updated data on the number of ostriches for 2020.

As regards for N_2O emissions from manure management, from 2017 to 2020 emissions decrease as data provided by SNAM were considered. Based on this data, the amount of manure sent to anaerobic digestion was recalculated. Against this change, the distribution of manure in the different types of storage was recalculated and consequently the N_2O emissions from manure management were recalculated. The nitrogen coefficient for cattle less than one year since 1990 was recalculated. Updated data on the number of fur-bearing animals for the years 2019-2020. Updated data on the number of ostriches for 2020. Corrected N excreted sows of 2020.

5.3.6 Source-specific planned improvements

In Table 5.30, future improvements in agreement with the QA/QC plan are presented.

Category/sub category	Parameter	Year of submission 2023 2024		Activities
Livestock categories	CH4 EFs	\checkmark		Further assessments will be made on the estimation of methane emissions from storage, considering estimating emissions according to both temperate and cool climate zones, updating temperatures and 2021 Census livestock data

Parameters used for this submission are shown in Table 5.31.

Table 5.31 Parameters used for the different livestock categories (2021)

Livestock category	Average weight (kg)	N excretion (kg N head ⁻¹ yr ⁻¹)
DAIRY CATTLE	602.7	110.89
NON- DAIRY CATTLE	388.2 (**)	52.34 (**)
Less than 1 year (*)	205.2 (**)	25.54 (**)
From 1 year - less than 2 years		

Livestock category		Average weight	N excretion
		(kg)	(kg N head ⁻¹ yr ⁻¹)
Male	for reproduction	557.0	66.8
	for slaughter	557.0	66.8
Female	for breeding	405.0	67.6
	for slaughter	444.0	53.3
From 2 years and more			
Male	for reproduction	700.0	84.0
	for slaughter and work	700.0	84.0
Female	Breeding heifer	540.0	90.2
	Slaughter heifer	540.0	64.8
	Other non dairy cattle (***)	557.0	54.1
BUFFALO		497.3 (**)	59.22 (**)
	Cow buffalo	630.0	71.31
	Other buffaloes	319.5	43.0
OTHER SWINE		87.4 (**)	13.35 (**)
Weight less than 20 kg		10.0	
From 20 kg weight and under 50 kg		35.0	5.3
From 50 kg and more			
-	Boar	200.0	30.5
	For slaughter		
	from 50 to 80 kg	65.0	9.9
	from 80 to 110 kg	95.0	14.5
	from 110 kg and more	135.0	20.6
SOWS		172.1	28.51 (**)
SHEEP	Sheep	51.1	16.2
	Other sheep	20.8	16.2
GOATS	Goats	53.8	16.2
	Other goats	14.9	16.2
EQUINE	Horses	550.0	50.0
	Mules and asses	300.0	50.0
POULTRY	Broilers	1.2	0.36
	Layer hens	1.8	0.66
	Other poultry	4.0	0.68
RABBITS	Female rabbits	4.0	2.5
	Other rabbits	1.3	0.8
FUR ANIMALS		1.0	4.1

(*) Categories included in less than 1 year are: calf, fattening male cattle, fattening heifer and heifer for replacement; (**) values are variable for the time series; (***) Suckling cows and cows in late career.

5.4 Rice cultivation (3C)

5.4.1 Source category description

For the rice cultivation category, only CH₄ emissions are estimated, other GHGs do not occur; N₂O from fertilisation during cultivation was estimated and reported in "Agricultural soils" under direct soil emissions - synthetic fertilizers. Methane emissions from rice cultivation have been identified as a key

source at level assessment with Approach 1. In 2021, CH₄ emissions from rice cultivation were 62.7 Gg, which represent 8.3% of CH₄ emissions for the agriculture sector (8.5% in 1990) and 3.7% for national CH₄ emissions (3.8% in 1990).

In Italy, CH₄ emissions from rice cultivation are estimated only for an irrigated regime, other categories suggested by IPCC (rainfed, deep water and "other") are not present. Methane emissions, reported in the CRF tables, represent two water regimes: single aeration (33.4 Gg) and multiple aeration (29.3 Gg).

A detailed methodology was developed, in consultation with an expert in CH₄ emissions and rice cultivation (Wassmann, 2005) and following outcomes of previous UNFCCC review processes. For this purpose, an expert group on rice cultivation together with the C.R.A. – Experimental Institute of Cereal Research – Rice Research Section of Vercelli was established. Different national experts from the rice cultivation sector were also contacted²⁷.

5.4.2 Methodological issues

For the estimation of CH₄ emissions from rice cultivation a detailed methodology was implemented following the IPCC guidelines (IPCC, 2006, volume 4, chapter 5). Country-specific circumstances have been considered. Parameters such as an adjusted integrated emission factor (kg CH₄ m⁻²day⁻¹), cultivation period of rice (days) and annual harvested area (ha) cultivated under specific conditions are considered. Information of the cultivated surface is collected 100% from rice farmers. Every year, timely data collection is ensured by the National Rice Institute (ENR, several years [b]). Activity data information is shown in Table 5.32.

Parameters	Reference
Cultivated surface with "dry-seeded" technique (%)	ENR, several years [a]
Cultivated surface – national (ha)	ISTAT, several years [a],[b],[j]; ENR, several years [b]
Cultivated surface by rice varieties (ha)	ENR, several years [b]
Cultivation period of rice varieties (days)	ENR, 2011; ENR, 2014 [a],[b]; ENSE, 1999; ENSE, 2004; ENR, 2013
Methane emission factor (kg CH ₄ m-2 d-1)	Leip et al., 2002; Schutz et al., 1989[a], [b]; Meijide et al., 2011
Crop production (t yr-1)	ISTAT, several years [a],[b],[j]
Yield (t ha-1)	Estimations based on cultivated surface and crop production data
Straw incorporation (%)	Expert judgement (Tinarelli, 2005; Lupotto et al., 2005)
Agronomic practices (%)	ISTAT, 2006[b]; Tinarelli, 2005; Lupotto et al., 2005; Zavattaro et. al, 2004; Baldoni & Giardini, 1989; Tinarelli, 1973; 1986
Scaling factors (SFw, SFp, SFo)	IPCC, 2006; Yan et al., 2005

Table 5.32 Parameters used for the calculation of CH₄ emissions from rice cultivation

Rice cultivation practice

In Italy, rice is sown from mid-April to the end of May and harvested from mid-September to the end of October; the only practised system is the controlled flooding system, with variations in water regimes (Regione Emilia Romagna, 2005; Mannini, 2004; Tossato and Regis, 2002). In Table 5.33, water regimes descriptions for the most common agronomic practices in Italy are presented. Water regime trends have been estimated in collaboration with expert judgement expertise (Tinarelli, 2005; Lupotto *et al.*, 2005) and available statistics (ENR, several years [b]). Normally, the aeration periods are very variable in number and time, depending on different circumstances, as for example, the type of herbicide, which is used (Baldoni and Giardini, 1989). Another water regime system, present in southern Italy, is the sprinkler irrigation,

²⁷ Stefano Bocchi, Crop Science Department (University of Milan); Aldo Ferrero, Department of Agronomy, Forestry and Land Management (University of Turin); Antonino Spanu, Department of agronomic science and agriculture genetics (University of Sassari).

which exists only on experimental plots and could contribute to the diffusion of rice cultivation in areas where water availability is a limiting factor (Spanu et al., 2004; Spanu and Pruneddu, 1996).

Type of seeding	April	May	June	July	August	September- October	Description
Wet- seeded "classic"	15-30 April Flooding and <u>wet-</u> <u>seeded (*)</u>	10 may	Herbicide treatment	Fertilizer application (1/3), soil is saturated but not flooded. Panicle formation	Final aeration	Harvest	2 aeration periods during rice cultivation, as minimum, not including the final aeration IPCC classification: Intermittently flooded – <u>multiple aeration</u>
		1ºaeration- AR	2° aeration- AA		3° final aeration		
Wet- seeded "red rice control"	15 April Flooding and <u>wet-</u> <u>seeded (</u> *)	First application of herbicides, the soil is dry. Approximately, on 15 may flooding and after some days seeding	At the end of June, fertilization treatment	Fertilizer application (1/3), soil is saturated but not flooded. Panicle formation	Final aeration	Harvest	2 aeration periods during rice cultivation, as minimum, not including the final aeration. In some cases, between April and May, even 3 aeration periods are practised. IPCC classification: Intermittently flooded – <u>multiple aeration</u>
		1° aeration – AC Approx. after 10 days 2° aeration - AR	3ºaeration - AA		Final aeration		
Dry- seeded with delay flooding	15 April <u>Dry-</u> <u>seeded</u>	Approximately, on 15 may flooding	Herbicide treatment	Fertilizer application (1/3), soil is saturated but not flooded. Panicle formation		Harvest	1 aeration period during rice cultivation, as minimum, not including the final aeration. IPCC classification: Intermittently flooded – single aeration
			1º aeration- AA		2° final aeration		

Table 5.33 Water regimes in Italy and classification according to IPCC guidelines

(*) the first fertilization (2/3) during the initial part of the rice cultivation, generally in July there is a second period for the fertilization (1/3), normally there is no aeration during the second fertilization period. Aeration periods have mostly last between 5-15 days and are classified as follows: AC=aeration to control red rice; AR=drained, aeration to promote rice rooting; AA=drained, tillering aeration.

In general, rice seeds are mechanically broadcasted in flooded fields. However, in Italy for the last 15 years, the seeds are also drilled to dry soil in rows. The rice which has been planted in dry soil is generally managed as a dry crop until it reaches the 3-4 leaf stage. After this period, the rice is flooded and grows in continuous submersion, as in the conventional system (Ferrero and Nguyen, 2004; Russo, 1994). During the cultivation period, water is commonly kept at a depth of 4-8 cm and drained away 2-3 times during the season to improve crop rooting, to reduce algae growth and to allow application of herbicides. Rice fields are drained at the end of August to allow harvesting, once in a year (Ferrero and Nguyen, 2004; Baldoni and Giardini, 1989; Tinarelli, 1973; Tinarelli, 1986).

Nitrogen is generally the most limiting plant nutrient in rice production and is subject to losses because of the reduction processes (denitrification) and leaching. Sufficient nitrogen should be applied pre-plant or pre-flood to assure that rice plant needs no additional nitrogen until panicle initiation or panicle differentiation stage. When additional nitrogen is required, it should be top-dressed at either of these plant stages or whenever nitrogen deficiency symptoms appear. The above-mentioned applications are usually used in two or three periods; the first period is always before sowing, that is on dry soil, while the others occur during the growing season (Russo, 2001; Russo, 1993; Russo *et al.*, 1990; Baldoni and Giardini, 1989).

In Italy, another type of fertilization practise is the incorporation of straw. The incorporation period can vary according to weather conditions, but probably mainly incorporated approximately one month before flooding (Russo, 1988; Russo 1976). Rice straw is often burned in the field, otherwise incorporated into the soil or buried. For other agronomic practice, a national publication has been considered for understanding fertilizer and crop residues management (Zavattaro *et al.*, 2004).

Methane emission factor

An analysis on recent and past literature, for the CH₄ daily EF (kg CH₄ m⁻² d⁻¹) was done. Different scientific publications related to the CH₄ daily EF measurements in Italian rice fields were revised (Marik *et al.*, 2002; Leip *et al.*, 2002; Dan *et al.*, 2001; Butterbach-Bahl *et al.*, 1997; Schutz et al., 1989[a], [b]; Holzapfel-Pschorn & Seiler, 1986). Other publications indirectly related with CH₄ production were also considered (Kruger *et al.*, 2005; Weber *et al.*, 2001; Dannenberg & Conrad, 1999; Roy *et al.*, 1997). Butterbach-Bahl *et al.* have presented interesting results associated to the difference in EFs of two cultivation periods (1990 and 1991). In these consecutive years, fields planted with rice cultivar Lido showed a level of CH₄ emissions 24-31% lower than fields planted with cultivar Roma. Marik *et al.* have published detailed information on agronomic practices (fertilized fields) related to measurements of CH₄ emission factor for years 1998 and 1999; values are similar to those presented in previous publications (Schutz et al., 1989[a], [b]; Holzapfel-Pschorn & Seiler, 1986). Leip *et al.* have published specific CH₄ EF for the so called dry-seeded with delay flooding, as shown in Table 5.34. The dry-seeded technique could bring interesting benefits in emission reduction, since lower emission rates compared with normal agronomic practices, were determined experimentally.

The estimation of CH₄ emissions for the rice cultivation category considers an irrigated regime, which includes intermittently flooded with single aeration and multiple aeration regimes. The CH₄ emission factor is adjusted with the following parameters: a daily integrated emission factor for continuously flooded fields without organic fertilizers, a scaling factor to account for the differences in water regime in the rice growing season (*SFw*), a scaling factor to account for the differences in water regime in the preseason status (*SFp*) and a scaling factor which varies for both types and amount of amendment applied (*SFo*). Scaling factor parameters have been updated according to literature (Yan *et al.*, 2005) and the IPCC 2006 Guidelines (IPCC, 2006, volume 4, chapter 5).

In 2014, the cultivation period (days) for some rice varieties (ENR, 2014 [a], [b]; ENSE, 1999; ENSE, 2004; ENR, 2013) has been revised. Despite the upload of the vegetation period of some varieties, the estimate of the average value for water regime does not change the previous values. The Joint Research Centre Institute for Environment and Sustainability - Climate Change Unit, in charge of measuring rice paddy fields in Italy, has been contacted to obtain data related to measurements carried out in the latest years. Based on the documentation received, the daily emission factor for continuously flooded fields without organic amendments from 2009 (Meijide et al., 2011) has been assessed. The emission factor is based on experimental measurements carried out in 2009 in an area in the Po Valley, in Northern Italy, where rice cultivation is most widespread. The value is slightly lower than the previous one. Assumptions of agronomic practices and parameters used for CH₄ emission estimations are shown in Table 5.33 and Table 5.34, respectively. Total CH₄ emissions for rice cultivation in 2021 were 62.71 Gg.

Rice cultivation water regimes: Intermittently flooded	Single aeration	Multiple aeration	Multiple aeration
Type of seeding	Dry-seeded	Wet-seeded (classic)	Wet-seeded (red rice control)
Surface (ha)	136,119	40,914	50,006
Daily EF (g CH4 m ⁻² d ⁻¹)	0.20	0.27	0.27

Rice cultivation water regimes: Intermittently flooded	Single aeration	Multiple aeration	Multiple aeration
SF _w	0.60	0.52	0.52
SF _p	0.68	0.68	0.68
SF₀	2.1	2.1	2.1
Adjusted daily EF (g CH ₄ m ⁻² d ⁻¹)	0.18	0.21	0.21
Days of cultivation (days)	140	157	157
Seasonal EF (g CH4 m ⁻² yr ⁻¹)	24.54	32.23	32.23
Methane emissions (Gg)	33.40	13.19	16.12

5.4.3 Uncertainty and time-series consistency

Uncertainty of emissions from rice cultivation has been estimated equal to 11.2% as a combination of 5% and 10% for activity data and emissions factor, respectively. Lack of experimental data and knowledge about the occurrence and duration of drainage periods in Italy is the major cause of uncertainty. Moreover, it is not easy to quantify the surface where the traditional or the different number of aerations is practiced, which depends on the degree and the type of infestation, and the positive or negative results of the herbicide treatment application (Spanu, 2006).

In 2021, CH₄ emissions from rice cultivation were 16.5% (62.71 Gg CH₄) lower than in 1990 (75.06 Gg CH₄). In Italy, the driving force of CH₄ emissions from rice cultivation is the harvest area and the percentage of single aerated surface (lower CH₄ emission factor). From 1990-2021, the harvest area has increased by 5.4%, from 215,442 ha year⁻¹ (1990) to 227,038 ha year⁻¹ (2021). The percentage of single aerated surface has increased from 1.0% (1990) to 60.0% (2021). The dry seeded sowing (single aeration) has been widespread since the beginning of the 1990s owing to the simplification of cultivation operations and water management. Moreover, dry seeded sowing allows better production performance than sowing in water in areas with very loose soils. Data on rice cultivation including harvest area with single aeration are provided by the National Rice Institute. In Table 5.35, CH₄ emissions from rice cultivation and harvested area are shown.

Year	Harvested area (10 ⁹ m ² yr ⁻¹)	CH₄ emissions (Gg)			
1990	2.15	75.06			
1995	2.39	79.56			
2000	2.20	66.26			
2005	2.24	70.09			
2010	2.48	72.89			
2015	2.27	66.73			
2017	2.30	65.83			
2018	2.17	64.05			
2019	2.20	63.42			
2020	2.27	63.85			
2021	2.27	62.71			

Table 5.35 Harvest area and CH₄ emissions from the rice cultivation sector

5.4.4 Source-specific QA/QC and verification

Systematic quality control activities have been carried out to ensure completeness and consistency in time series and correctness in the sum of sub-categories. Data entries have been checked several times during the compilation of the inventory. Several QA activities are carried out in the different phases of the inventory process. The quality of the Italian rice emission inventory was verified with the Denitrification

Decomposition model (DNDC). Initial results have found a high correspondence between the EFs used for the Italian inventory and those simulated with DNDC model (Leip and Bocchi, 2007).

In particular, the applied methodology has been presented and discussed during several national workshop and expert meeting, collecting findings and comments to be incorporated in the estimation process. All the agriculture categories have been embedded in the overall QA/QC-system of the Italian GHG inventory. In November 2014, the CH₄ emission factors used for the rice cultivation category in the Italian emissions inventory were presented at the 9th Expert Meeting on Data for the IPCC Emission Factor Database (EFDB) and the values were entered into the database.

5.4.5 Source-specific recalculations

Data on the average days of the sowing-ripening vegetative cycle duration of traditional and dry sowing were corrected for the years 2019 and 2020.

5.4.6 Source-specific planned improvements

Provincial estimations based on the relation between emissions and temperature would result in further possible improvements, even if enhancement would be limited since the largest Italian rice production is in the Po valley, where monthly temperatures of the rice paddies are similar. In 1990, *Piemonte* and *Lombardia* regions represented 95% of the national surface area of rice cultivation, while in 2016 they represented 93% (ENR, several years [b]; Confalonieri and Bocchi, 2005).

Experts from Enterisi and the University of Turin were contacted during 2022 to verify the values of the parameters used in estimating emissions. During 2023, based on the verifications, the estimates may change.

5.5 Agriculture soils (3D)

5.5.1 Source category description

In 2021, N₂O emissions from managed soils were 34.8 Gg, representing 83.7% of N₂O emissions for the agriculture sector (79.9% in 1990) and 53.7% for national N₂O emissions (41.4% in 1990). N₂O emissions from this source consist of direct emissions from managed soils (27.24 Gg) and indirect emissions from managed soils (7.58 Gg).

Direct and indirect N_2O emissions from managed soils are key sources at level assessment, both with Approach 1 and Approach 2. Direct N_2O emissions from managed soils are also key sources at trend assessment, with Approach 1 and Approach 2.

For direct emissions from managed soils the following sources are estimated: inorganic nitrogen fertilizers; organic nitrogen fertilizers, which include animal manure applied to soils, sewage sludge applied to soils, other organic fertilizers applied to soils (as compost and other organic amendments used as fertiliser); urine and dung deposited by grazing animals; crop residues; cultivation of organic soils (i.e. histosols). Mineralised nitrogen resulting from loss of soil organic C stocks in mineral soils through land-use change or management practices (F_{SOM}) has been assumed as not applicable; agricultural practices result in no losses of carbon in cropland remaining cropland and therefore these do not generate N₂O emissions, as reported in the 2006 IPCC Guidelines.

For indirect emissions from managed soils, atmospheric deposition and nitrogen leaching and run-off are estimated. Nitrous oxide emissions from grazing animals are calculated together with the manure

management category based on nitrogen excretion and reported in agricultural soils under "Urine and dung deposited by grazing animals" (see Table 5.36).

CH₄ emissions from managed soils have not been estimated as in the IPCC Guidelines the methodology is not available.

	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
Direct N₂O emissions from managed soils	29.26	32.39	31.78	30.13	25.13	25.39	25.69	25.72	25.62	28.42	27.24
Inorganic N fertilizers	11.63	12.23	11.99	11.94	7.95	7.82	7.90	7.48	7.03	8.76	8.15
Organic N fertilizers	8.56	8.44	8.33	7.83	7.83	8.30	8.87	8.51	8.77	9.43	9.17
a. Animal manure applied to soils	8.22	8.03	7.81	7.34	7.03	7.25	7.38	7.29	7.31	7.39	7.32
b. Sewage sludge applied to soils	0.08	0.13	0.17	0.14	0.16	0.13	0.11	0.11	0.12	0.12	0.12
c. Other organic fertilizers applied to soils	0.26	0.28	0.35	0.35	0.65	0.92	1.38	1.11	1.34	1.93	1.73
Urine and dung deposited by grazing animals	3.09	3.50	3.60	2.71	2.71	2.57	2.59	2.58	2.55	2.56	2.49
Crop residues	5.67	7.90	7.55	7.34	6.33	6.39	6.03	6.84	6.96	7.37	7.12
Cultivation of organic soils	0.31	0.31	0.31	0.31	0.31	0.31	0.31	0.31	0.31	0.31	0.31
Indirect N ₂ O emissions from managed soils	8.51	9.11	8.89	8.38	7.02	7.09	7.21	7.14	7.15	7.94	7.58
Atmospheric deposition	2.57	2.54	2.45	2.25	1.91	1.96	2.02	1.93	1.95	2.16	2.05
Nitrogen leaching and run- off	5.94	6.57	6.45	6.13	5.11	5.13	5.20	5.22	5.20	5.77	5.53

Table 5.36 N₂O emissions from managed soils (Gg)

ISPRA is in charge of collecting, elaborating and reporting the UNFCCC/CLRTAP agriculture national emission inventory, thus, consistency among methodologies and parameters is ensured. The nitrogen balance, from the CLRTAP emission inventory, feeds the UNFCCC inventory, specifically for the estimation of: Frac_{GasMS} parameter, used for calculating managed manure nitrogen available for application to managed soils (Equation 10.34 of 2006 IPCC Guidelines, volume 4, chapter 10) and to assess FAM; Frac_{GASM} and Frac_{GASF} parameters, used for calculating indirect N₂O emissions from atmospheric deposition of nitrogen volatilised from managed soils (Equation 11.9 of 2006 IPCC Guidelines). Direct and indirect N₂O emissions from the use of sewage sludge in agricultural soils have been estimated and reported.

5.5.2 Methodological issues

Methodologies used for estimating N₂O emissions from "Agricultural soils" follow the IPCC approach (Tier1). IPCC emission factors (IPCC, 2006, volume 4, chapter 11) and assessed by the Research Centre on Animal Production (CRPA, 2000; CRPA, 1997[b]) are used. Activity data used for estimations are shown in Table 5.37.

Table 5.37 Data used for estimating agricultural soil emissions

Data	Reference
Fertilizer distributed (t/yr)	ISTAT, several years [a], [b], [i]
Nitrogen content (t)	ISTAT, several years [a], [b], [i]
N excretion rates (kg head ⁻¹ yr ⁻¹)	CRPA, 2006[a]; GU, 2006; Xiccato <i>et al.</i> , 2005
Livestock data	ISTAT, several years [a], [b], [g]
Cultivated surface (ha yr ⁻¹)	ISTAT, several years [a], [b], [j]
Annual crop production (t yr ⁻¹)	ISTAT, several years [a], [b], [j]
Residue/crop product ratio by crop type	CESTAAT, 1988; ENEA, 1994

Data	Reference
Crop residue production (t dry matter ha ⁻¹ yr ⁻¹)	CRPA/CNR, 1992; ENEA, 1994
Dry matter of the residue and product by crop type	CESTAAT, 1988; CRPA/CNR, 1992; EPIC, 2015; IPCC, 2006
Protein content in dry matter by crop type	CESTAAT, 1988

The estimation of direct N₂O emissions from managed soils has been carried out in line with the IPCC guidelines (IPCC, 2006), taking into account country-specific peculiarities; N₂O-N emissions are estimated from the amount of: inorganic nitrogen fertilizers (F_{SN}); organic nitrogen fertilizers (F_{ON}), which include animal manure applied to soils (F_{AM}), sewage sludge applied to soils (F_{SEW}), other organic fertilizers applied to soils (as compost and other organic amendments used as fertiliser, F_{COMP} and F_{OOA} respectively); urine and dung deposited by grazing animals (F_{PRP}); crop residues (F_{CR}); cultivation of histosols (F_{OS}). Then default IPCC emission factors (IPCC, 2006, volume 4, chapter 11) are applied. Afterwards, N₂O-N emissions are converted to N₂O emissions, multiplying by the ratio of molecular weights (44/28). Urine and dung deposited by grazing animals emissions are estimated according to the methodology described in section 5.3.2 for manure management.

Direct N₂O emissions from N inputs to managed soils include also emissions related to the application of fertilizers to the short rotation forest crops, according the 2006 IPCC Guidelines (IPCC, 2006, par. 11.2.1.3, vol. 4, chapter 11) and consistently with the KP Supplement (IPCC, 2014, par. 2.4.4.2). Indirect emissions are estimated as suggested by the IPCC (IPCC, 2006).

Direct N₂O emissions from managed soils

Applied synthetic fertilizers (Fsn)

The total use of synthetic fertilizers (expressed in t N year⁻¹) is estimated for each type of fertilizer (see Table 5.38). Data on synthetic fertilizers are from ISTAT as reported in paragraph 5.1.3, 5.1.4 and 5.5.2. N-N₂O emissions from synthetic fertilizers are obtained multiplying F_{SN} by the emission factor, 0.01 kg N-N₂O/kg N (IPCC, 2006). The subcategory "Other nitrogenous fertilizers" was introduced since 1998, because activity data is available from that year (ENEA, 2006).

The amount of nitrogen from synthetic fertilizers applied to areas planted with rice was also estimated. The figure used for the estimate of 127 kg N/hectare (Zavattaro *et al.*, 2004) was confirmed by the experts of the National Rice Institute (ENR). This value was multiplied by the area cultivated with rice and the result was subtracted from the quantity of N reported by ISTAT. The emission factor of 0.003 kg N-N₂O/kg N (IPCC, 2006) was used to estimate N₂O due to rice fertilization. The time series of nitrogen content of fertilizers is shown in Table 5.45. In 2021, the total use of synthetic fertilizers was 538,893 t N (see Table 5.38).

Table 5.38 Total use of synthetic fertilizer in 2021 (t N yr⁻¹)

Type of fertilizers	Fertilizers distributed (t yr ⁻¹)	Nitrogen content (%)	Nitrogen content of synthetic fertilizers (t N yr ⁻¹)
Ammonium sulphate	110,241	20.8%	22,963
Calcium cyanamide	14,401	19.8%	2,845
Nitrates (*)	134,166	17.7%	23,786
CAN	211,607	27.0%	57,134
Urea	563,865	42.7%	240,692
Other nitric nitrogen	158,729 (**)	34.4%	1,012
Other ammoniacal nitrogen			10,480
Other amidic nitrogen			43,075
Phosphate nitrogen	257,124	16.9%	43,410

Type of fertilizers	Fertilizers distributed (t yr ⁻¹)	Nitrogen content (%)	Nitrogen content of synthetic fertilizers (t N yr ⁻¹)
Potassium nitrogen	60,162	18.6%	11,169
NPK nitrogen	400,590	13.3%	53,190
Organic mineral	301,844	9.7%	29,137
Total	2,212,728		538,893

(*) includes ammonium nitrate < 27% and ammonium nitrate > 27% and calcium nitrate; (**) this amount refers to the total of other nitrogenous fertilizers, which includes other nitric, ammoniacal and amidic N fertilizers distributed. Total amount of N in these fertilizers is 54,567 t N/year, which is the sum of values reported in the column Nitrogen content of synthetic fertilizers for these three fertilizers considered. The nitrogen content (%) is calculated by dividing the total amount of N contained to the total amount of other nitrogenous fertilisers distributed.

The information on amount fertilizers distributed (tonnes/year) and nitrogen contained in the fertilizers (tonnes N/year) are collected by the ISTAT based on annual questionnaires sent to Italian companies that distribute fertilizers to wholesale and/or retail commercial structures, to farmers, cooperatives, etc. Data on nitrogen content (%) reported in table 5.38 are calculated values based on two above-mentioned amounts and are not directly used in the estimations of N₂O emissions from inorganic fertilizers applied to soils. The methodology for estimating the amount of CAN used and the nitrogen content is given in section 5.9.2.

The time series of applied synthetic fertilisers is shown in Table 5.39. A strong decrease is observed in the year from 2009 to 2011 as result from the official statistics provided by the National Institute of Statistics (ISTAT), due to the economic crisis in particular for urea applied to soils. In 2012, a recovery from the sharp decline was recorded.

Table 5.39 Trend of annual amount of synthetic fertiliser N applied to soils (t N yr⁻¹)

Year	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
F _{SN} (t N)	759,510	799,614	782,701	779,846	528,029	517,854	522,840	495,005	466,842	577,451	538,893

Applied organic N fertilisers (FON)

The amount of organic N inputs applied to soils other than by grazing animals is calculated using Equation 11.3 of the 2006 IPCC Guidelines. This includes applied animal manure (F_{AM}), sewage sludge applied to soil (F_{SEW}) and other organic amendments (F_{OOA}), which also includes compost applied to soils (F_{COMP}).

Year	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
FAM (t N)	523,353	511,130	496,727	466,855	447,383	461,411	469,429	464,157	465,149	469,998	465,933
F _{SEW} (t N)	5,071	8,137	10,954	8,874	10,040	8,303	7,116	7,247	7,697	7,418	7,590
FOOA (t N)	16,518	18,116	22,571	22,308	41,125	58,488	87,706	70,450	85,554	122,688	110,087

Table 5.40 Trend of applied organic N fertilisers (t N yr⁻¹)

Animal manure N applied to soil (F_{AM})

The annual amount of animal manure N applied to soils is calculated using Equation 11.4 of the 2006 IPCC Guidelines (IPCC 2006, vol. 4, chapter 11). The amount of managed manure nitrogen available for soil application is calculated using Equation 10.34 (IPCC 2006, vol. 4, chapter 10). The amount of managed manure nitrogen in manure management systems is estimated as reported in paragraph 5.3.2 "Direct N₂O emissions from manure management" and country-specific nitrogen excretion rates (CRPA, 2006[a]; GU, 2006; Xiccato *et al.*, 2005) are used. Frac_{LossMS} parameter of the Equation 10.34 is equal to:

• the managed manure nitrogen that volatilises as NH₃ and NO_x in the manure management systems (i.e. the Frac_{GasMS} emission factor);

- the nitrogen losses from leaching and run-off at housing and storage sistems;
- the losses of N₂, that are considered in response to the 2018 ESD review process²⁸;
- the nitrogen lost through N-NH₃ emissions from digesters biogas facilities (during storage of feedstock on the premises of the biogas facility; during open storage of the digestate);
- the losses of N-N₂O in the manure management systems.

A description of the country specific FracGasMS parameter and the nitrogen leaching and run-off is reported in paragraph 5.3.2 "Indirect N_2O emissions from manure management". On the basis of the data on the quantity of straw per day (per tonnes of live weight, per type of housing, for cattle and buffalo), contained in the Ministerial Decree of 25 February 2016 on the use of zootechnical effluents, combined with the manure production coefficients used in the estimation of methane emissions from storage, the quantity of straw used as bedding that ends up on agricultural land during the spreading of manure was estimated, as recommended by the 2019 UNFCCC review. The nitrogen content was considered and was added to the nitrogen input from manure applied to soils for N_2O emissions estimate. Data for cattle were updated, while data for buffalo, previously missing, were included. Data have been updated since 1990. Further information and data can be found in the Annex 7.3. The description of the agricultural residues used for bedding material considered in the animal manure applied to soils (3Da2a) category, which also involves the crop residues (3Da4) and field burning of agricultural residues (3F) categories, is reported in the Annex 7.3. As recommended during the 2019 UNFCCC review, to enhance transparency on the total amount of crop residues generated and shares of the crop residue amounts used for different purposes (such as bedding material (3.D.a.2.a), left on fields (3.D.a.4), burnt on-site (3.F) and off-site (1.A, 5.C.2)), a flow-chart is reported in Annex 7, in Figure A.7.1.

FracFEED, FracFUEL and FracCNST parameters of the Equation 11.4 are assumed equal to zero.

The F_{AM} (t N yr⁻¹) value is estimated by summing the F_{AM} for each livestock category; then emissions are calculated with emission factor 0.01 kg N-N₂O/kg N (IPCC, 2006). In 2021, F_{AM} parameter was 465,933 t N.

Sewage sludge applied to soils (FSEW)

Direct and indirect N₂O emissions from the application of sewage sludge to agricultural soils were calculated using the Tier 1 methodology described in the IPCC (IPCC, 2006). Direct emissions were estimated by applying the relevant default IPCC equations, EFs and parameters (see Annex A7.3). From 1995 activity data (amount of sewage sludge) and parameters (N content) were collected from the Ministry for the Environment, Land and Sea, which is in charge of collecting and reporting data under the EU Sewage Sludge Directive 86/278/EEC (MATTM, 2014). From 1990 to 1994 AD and parameters were reconstructed, description is available in the Waste Chapter. The amount of sewage N applied was calculated using the amount of sewage sludge (expressed in t dry matter) and the N content of sludge. Emission factor used was 0.01 kg N-N₂O/kg N (IPCC, 2006).

Other organic amendments applied to soils (FOOA) (including compost N applied to soils (FCOMP))

For the other organic fertilizers applied to soil category, the used amount, including compost and organic amendments, and N content are provided by ISTAT (as reported in the paragraph 5.1.3, 5.1.4 and 5.5.2). Data are available from 1998; for the previous years, data were reconstructed based on the trend of the available data.

²⁸ The 2018 annual review of the GHG emission inventory of Italy, pursuant to Article 19(2) of Regulation (EU) No 525/2013, with a view to monitoring Italy's achievement of its greenhouse gas emission reduction or limitation target pursuant to Article 3 of Decision No 406/2009/EC (the 'Effort Sharing Decision', ESD).

Urine and dung from grazing animals (FPRP)

The annual amount of N deposited on pasture is calculated using Equation 11.5 (IPCC 2006, vol. 4, chapter 11). As mentioned in section 5.3.2, when estimating N₂O emissions from manure management, the amount related to manure excreted while grazing is subtracted and reported in "Agricultural soils" under urine and dung from grazing animals. In Table 5.25, nitrogen excretion rates (kg head⁻¹ yr⁻¹) used for estimations are shown. N₂O emissions are estimated with the total nitrogen excreted from grazing (include all livestock categories), number of animals, an EF for cattle (dairy, non-dairy and buffalo) of 0.02 kg N₂O-N/kg N excreted and an EF for sheep and other animals (goats, horses and mules and asses) of 0.01 kg N₂O-N/kg N excreted (IPCC, 2006). As recommended during the 2021 UNFCCC review, N₂O direct emissions for ostriches are estimated and reported in the IPCC category urine and dung deposited by grazing animals because the common rearing system for ostriches is free-range outdoor housing. Activity data are provided by ISTAT for some years and for the other years the number of animals has been estimated. The default value for nitrogen excretion rate for broilers (Table 10.19 of chapter 10, volume 4 of the 2006 IPCC Guidelines) has been used. The 2006 IPCC N₂O EF for direct emissions has been used (Table 11.1 of chapter 11, volume 4 of the 2006 IPCC Guidelines).

Table 5.41 Trend of annual amount of urine and dung N deposited by grazing animals on pastu	re (t N yr⁻¹)
---	---------------

Year	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
FPRP (t N)	176,718	204,710	211,343	156,521	157,462	147,895	149,054	148,206	146,538	147,251	142,660

Crop residue N, including N-fixing crops and forage, returned to soils (FcR)

For the estimation of nitrogen input from crop residues, the IPCC methodology is used with country specific data on aboveground residue/crop product ratio, percentage of the residue fixed and dry matter content. The total amount of crop aboveground residues is estimated (t dry matter yr⁻¹) by using the following parameters: annual crop production (t yr⁻¹), aboveground residue/crop product ratio, percentage of the residue fixed and dry matter content of residue by type of crop (%), while, when cultivated surface (ha) is the available activity data, only the crop residue production (t dry matter ha⁻¹ yr⁻¹) parameter is used to assess total amount of crop aboveground residues (CESTAAT, 1988; CRPA/CNR, 1992; ENEA, 1994). Data on annual crop production and cultivated surface are from ISTAT as reported in paragraph 5.1.3, 5.1.4 and 5.5.2. The description of the agricultural residues used for bedding material considered in animal manure applied to soils (3Da2a), which also involves the categories crop residues (3Da4) and field burning of agricultural residues (3F), is reported in the Annex 7.3. The description of the type of agricultural residues is also included. As recommended during the 2019 UNFCCC review, to enhance transparency on the total amount of crop residues generated and shares of the crop residue amounts used for different purposes (such as bedding material (3.D.a.2.a), left on fields (3.D.a.4), burnt on-site (3.F) and off-site (1.A, 5.C.2)), a flow-chart is reported in Annex 7, in Figure A.7.1.

The nitrogen content of crop aboveground residues from cereals, legumes, tubers and roots, legumes forages and other forages (t N yr⁻¹) is estimated by multiplying the total amount of crop aboveground residue as dry matter with the reincorporated fraction (1- Frac_{BURN}, where Frac_{BURN} is the fraction of crop residue that is burned rather than left on field equal to 0.1 kg N/kg crop-N (IPCC, 1997; CRPA, 1997[b])), and the nitrogen content for each crop type, in line with the Equation 11.6 (IPCC 2006, vol. 4, chapter 11). The nitrogen content is obtained converting protein content in dry matter (CESTAAT, 1988; Borgioli, 1981), dividing by factor 6.25 (100 g of protein/16 g of nitrogen). The contribution of the below-ground nitrogen to the total input of nitrogen from crop residues has been considered and calculated by using the Equation 11.7A (IPCC 2006, vol. 4, chapter 11) and the IPCC default values of ratio of belowground residues to above-ground biomass and N content of below-ground residues. The amount of nitrogen of crop residues from perennial grasses is calculated by using the Equation 11.7A (IPCC 2006, vol. 4, chapter 11). The values related to N content of aboveground residues, ratio of belowground residues to above-ground biomass and N content of aboveground residues used for other temporary forages are

weighted averages of the IPCC values in Table 11.2, weighted with the productions of the various crops included in the category other temporary forages. The values used for the Frac_{renew} parameter for other temporary forages (not renewed annually) are derived from Baldoni and Giardini (Baldoni and Giardini, 2002) and the value for perennial grasses is from ISTAT (ISTAT, 2010).

The F_{CR} parameter is obtained by adding the nitrogen content of cultivars crop residues. In 2021, F_{CR} parameter was 453,082 t N (see Table 5.42). Emissions are calculated with emission factor 0.01 kg N-N₂O/kg N (IPCC, 2006).

Detailed information related to the cultivated surfaces, crops production, residues production and parameters used for emissions estimates, for each type of crop, are shown in the Annex 7 (Tables A.7.17-22).

Year	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
Fcr (t N)	360,563	502,989	480,180	467,066	402,618	406,452	383,590	435,217	443,092	468,742	453,082

Area of drained/managed organic soils (Fos)

In Italy, the area of organic soils cultivated annually (histosols) is estimated to be 24,285 hectares for the year 2019, a substantially constant value for the whole time series (FAOSTAT database²⁹). This value is multiplied by 8 kg N-N₂O ha⁻¹ yr⁻¹, following IPCC 2006 Guidelines (IPCC, 2006).

The data are consistent with figures used for estimation in the LULUCF sector. Additional information may be found in paragraph *6.3.4 Methodological issues* of the LULUCF sector.

Indirect N₂O emissions from managed soils

For indirect emissions from agricultural soils the following parameters are estimated:

- Atmospheric deposition
- Nitrogen leaching and run-off

For estimating of N₂O emissions due to atmospheric deposition of NH₃ and NO_x the IPCC tier 1 approach was followed (Equation 11.9 of the 2006 IPCC Guidelines). Parameters used are: total use of synthetic fertilizer F_{SN} (t N yr⁻¹), Frac_{GASF} emission factor, total amount of organic N inputs applied to soils F_{ON} (t N yr⁻¹), total amount of urine and dung N deposited by grazing animals F_{PRP} (t N yr⁻¹), Frac_{GASM} emission factor and the emission factor 0.01 kg N₂O-N per kg NH₃-N and NO_x-N emitted (IPCC, 2006).

Frac_{GASF} parameter is estimated for the whole time series, following the IPCC definition, where the total N-NH₃ and N-NO_x emissions from fertilizers are divided by the total nitrogen content of fertilizers (see table 5.43). NH₃ EFs from the use of synthetic fertilizers for temperate climate and normal pH factors (reported in the EMEP/EEA Guidebook (EMEP/EEA, 2019)) according to the IPCC climate zones classification and the definition available in the 2002 EMEP/CORINAIR Guidebook for which Italy is defined with large areas of acidic soils (soil pH below 7.0) and with some calcareous soils (or managed with soil pH above 7.0), have been updated. NO_x emission factor for synthetic N-fertilizer (reported in the EMEP/EEA, 2019)) was also updated. Frac_{GASM} is the fraction of applied organic N fertiliser materials (F_{ON}) and of urine and dung N deposited by grazing animals (F_{PRP}) that volatilises as NH₃ and NO_x.

FracGASM is then composed of the following fractions:

²⁹ http://www.fao.org/faostat/en/#data/GV

- Fraction of livestock N excretion that volatilizes as NH₃ and NO_x during spreading and grazing animals Frac_{GASM} indirect (as reported in the CRF). This fraction is equal to the ratio between the amount of NH₃-N and NO_x-N emissions and the total nitrogen excreted (see table 5.43);
- Fraction of N from other organic N fertilizers applied (sewage sludge, other organic amendments applied to soils including compost) that volatilizes as NH₃ and NO_x. The volatilization factor for N-NH₃ and NO_x-N emissions is 7.8% for other organic N fertilizers and 11.9% for sewage sludge applied, as reported in table 5.43.

For Frac_{GASM} indirect, the ammonia emission factors from land spreading for cattle, swine, laying hens and broilers categories have been assessed, on the basis of ISTAT statistics on spreading systems (i.e. 2010 Agricultural Census, 2013 and 2016 Farm Structure Survey). NO_x emission factors (during spreading) were also assessed based on the nitrogen mass-flow approach (Tier 2 method of the EMEP/EEA Guidebook (EMEP/EEA, 2019)). NH₃ and NO_x emission factors from other organic N fertilizers applied (sewage sludge, other organic amendments applied to soils including compost) were also updated based on the EMEP/EEA, 2019).

The estimation of N₂O emissions due to nitrogen leaching and run-off has followed the IPCC Tier 1 approach (Equation 11.10 of the 2006 IPCC Guidelines). Parameters used are: total use of synthetic fertilizer F_{SN} (t N yr⁻¹), total amount of organic N inputs applied to soils F_{ON} (t N yr⁻¹), total amount of urine and dung N deposited by grazing animals F_{PRP} (t N yr⁻¹), total amount of N in crop residues (above- and below-ground), including N-fixing crops and from forage F_{CR} (t N yr⁻¹), $Frac_{LEACH-(H)}$ emission factor 0.27 kg N/kg nitrogen of fertilizer or manure (see table 5.43) and the emission factor 0.0075 kg N₂O-N per kg nitrogen leaching/run-off (IPCC, 2006). As mentioned before, the $Frac_{LEACH-(H)}$ IPCC default value was compared with the country-specific $Frac_{LEACH-(H)}$ parameter (ADBPO, 2001; ADBPO, 1994).

The estimate of N lost through leaching and run-off includes the losses of N due to leaching from managed soils. As regards the FracLEACH-(H), according to the 2006 IPCC Guidelines, the leached nitrogen has to be estimated only in those areas where there is a water surplus or where irrigation is employed. For the agricultural areas affected by the water surplus, the FracLEACH-(H) is assumed equal to 0.3 kg N/kg N applied to soils or deposited by grazing animals, while a value equal to zero is assumed for the agricultural areas affected by the water deficit. To calculate the agricultural area affected by hydrological surplus, the following procedure was followed. The methodology involves estimating the annual hydrologic surplus of areas below 1,000 meters, which are assumed to be agricultural areas. Monthly surplus values are derived from the Bia Bang model elaborated bv ISPRA (https://groupware.sinanet.isprambiente.it/bigbang-data/library/bigbang40/grids), whose data are in Ascii format and the coordinate system is ETRS 1989 LAEA (Braca G. et al, 2021). The calculation is made in Qgis environment with the help of the raster of the altimetry and land use categories (Corine Land Cover). The surplus in each cell (which has a size of 1 km x 1 km) was calculated by summing the values of only the rainy months (October November and December) of each year (the range of values obtained varies from 0.0001 to over 1500 millimeters) from 1990 to 2020. The sum of the three months of each year was then multiplied by a boolean raster of the elevations (values 0 if above 1000 meters, 1 if below). In this way, areas above 1000 meters were excluded from the calculation. The agricultural land is identified thanks to the Corine Land Cover, the selected categories are: 211, 212, 213, 221, 222, 223, 231, 241, 242, 243, 244, 321, 333 corresponding to the categories "grassland" and "cropland" defined according to the IPCC. Again, a boolean raster was created (values 0 for unselected categories, 1 for selected categories). Finally, cells where a surplus occurs were considered and the total area of these cells was calculated for each year. The result was related to the total area of land below 1000 meters of altitude. The weighted average value of FracLEACH-(H) relative to the entire national agricultural area will be equal 27.3% of nitrogen applied to soils or deposited by grazing animals.

		N leaching	and run-off				
Year	Frac _{GASF} ⁽¹⁾ (%)	Frac _{GASM} indirect ⁽²⁾ (%)	Fraction of N from other organic N fertilizers applied (%)	Fraction of N from from sewage sludge applied (%) ⁽⁴⁾	N volatilised from managed soils (t N)	Frac _{leach-(H)} ⁽⁵⁾ (kg N/kg N)	N lost through leaching and run-off (t N)
1990	8.76	10.24	7.8	11.9	163,619	0.27	504,192
1995	8.69	9.62	7.8	11.9	161,517	0.27	557,401
2000	8.83	9.09	7.8	11.9	155,762	0.27	546,961
2005	8.68	8.93	7.8	11.9	143,449	0.27	520,069
2010	8.75	8.95	7.8	11.9	121,516	0.27	433,776
2015	9.69	8.82	7.8	11.9	124,730	0.27	435,370
2017	9.74	8.79	7.8	11.9	128,240	0.27	440,982
2018	9.53	8.82	7.8	11.9	122,551	0.27	442,606
2019	10.11	8.85	7.8	11.9	123,812	0.27	441,164
2020	9.95	8.88	7.8	11.9	137,610	0.27	489,833
2021	9.69	8.91	7.8	11.9	130,680	0.27	469,267

Table 5.43 Parameters used for the estimation of indirect N₂O emissions from managed soils

Note: (1) the fraction is multiplied by F_{SN} (see Table 5.39); (2) the fraction is multiplied by total N excreted (see Table 5.27); (3) the fraction is multiplied by F_{OOA} (see Table 5.40); (4) the fraction is multiplied by F_{SEW} (see Table 5.40); (5) the fraction is multiplied by F_{SN} , F_{SEW} , F_{OOA} , F_{AM} and by F_{CR} (see Table 5.42).

As recommended during the 2021 UNFCCC review, N₂O indirect emissions for ostriches are estimated and reported in indirect N₂O emissions from managed soils, in atmospheric deposition and nitrogen leaching and run-off. Further details on the estimate are given in 5.5.2 *Methodological issues* paragraph, in Direct N₂O emissions from managed soils, in *Urine and dung from grazing animals* (F_{PRP}). The 2006 IPCC N₂O EFs, Frac_{GASM} and Frac_{LEACH-(H)} for indirect emissions have been used (Table 11.3 of chapter 11, volume 4 of the 2006 IPCC Guidelines).

5.5.3 Uncertainty and time-series consistency

Uncertainty for N₂O direct and indirect emissions from managed soils has been estimated to be 53.9%, as combination of 20% and 50% for activity data and emission factor, respectively.

In Table 5.44, time series of N₂O emissions from managed soils are reported.

Year	Direct emissions from managed soils	Indirect emissions from managed soils	Total
		Gg	
1990	29.26	8.51	37.78
1995	32.39	9.11	41.50
2000	31.78	8.89	40.68
2005	30.13	8.38	38.51
2010	25.13	7.02	32.16
2015	25.39	7.09	32.48
2017	25.69	7.21	32.91
2018	25.72	7.14	32.86
2019	25.62	7.15	32.77
2020	28.42	7.94	36.36
2021	27.24	7.58	34.82

In 2021, N₂O emissions from managed soils were 7.8% (34.82 Gg N₂O) lower than in 1990 (37.78 Gg N₂O). Major contributions were given by direct emissions (27.24 Gg), that come mainly (56.8%) from inorganic N fertilizers (8.15 Gg) and animal manure applied to soils (7.32 Gg) (see Table 5.36). Indirect emissions (7.58 Gg) are mainly (42.6%) due to N₂O emissions from nitrogen leaching and run-off from inorganic N fertilizers (1.73 Gg) and animal manure applied to soils (1.50 Gg) (see Table 5.36). N₂O emissions from leaching and run-off are related to the nitrogen content in fertilizers and animal wastes, therefore, emissions are mainly linked to the use of N fertilizers and the animal number trends. Between 1996 and 1997 there was a high increase in the use of nitrogen fertilizers in Italy, thus, emissions could be identified as outlier. Between 2007/2008 (-14%) and 2008/2009 (-21%) N fertiliser distribution has decreased. In 2010 the same trend was observed. According to the Italian Fertilizer Association (AIF) the use of fertilisers is determined by their cost and particularly by the price of agricultural products. In the last years, prices have decreased and, as a result, farmers need to save costs, consequently, less fertilisers is being used (Perelli, 2007; De Corso 2008). The 12% reduction in urea used in 2021 compared to 2020 is mainly due to the increase in the cost of raw materials (natural gas), which led the main domestic producer to suspend production for some time during the year. In addition, production was suspended due to a plant shutdown for maintenance.

5.5.4 Source-specific QA/QC and verification

Synthetic fertilizers and nitrogen content are compared with the international FAO agriculture database statistics (FAO, several years). In Table 5.45, national and FAO time series of total nitrogen applied are reported. Differences between national data and FAO database are related to the difference in data elaboration (ISTAT, 2004) and could be attributed to different factors. First, national data are more disaggregated by substance than FAO data and the national nitrogen content is considered for each substance, while FAO utilizes default values. Besides, differences could also derive from different products classification. In Table 5.45 the two databases are presented.

Year	National data (t N)	FAO database (Nitrous fertilizer consumption, t N) (*)
1990	759,510	878,960
1995	799,614	875,000
2000	782,701	828,000
2005	779,846	800,697
2010	528,029	498,605
2015	517,854	605,236
2017	522,840	599,242
2018	495,005	594,767
2019	466,842	598,544
2020	577,451	574,530
2021	538,893	data not available

Table 5.45 Total annual N content in fertilizer applied from 1990 to 2021

(*) Unofficial/official figures or from international organizations

In 2021, a technical report (CREA, 2021) produced by CREA (Council for Agricultural Research and Economics), in collaboration with ISPRA, on the assessment of emissions related to the use of nitrogen fertilizers was published, which contains several analyses of nitrogen fertilizer consumption data from different data sources: IFASTAT/Fertilizer Europe, FAO, EUROSTAT, Assofertilizzanti, National Integrated Production Specifications, Farm Accountancy Data Network (FADN). These analyses suggest further investigation to better understand the differences found between these data sources and the ISTAT data used for the estimates.

Data on national sales of synthetic nitrogen fertilizers (by type of fertilizers) as provided by *Assofertilizzanti* – *Federchimica*³⁰ for the period 2012-2016 have been compared to official statistics provided by ISTAT. Differences were mainly found for the amount of simple mineral nitrogen fertilizers, where data from *Assofertilizzanti* are higher by 20%, on average, for the years 2013-2016. This could be due to a possible double counting of some product which could be considered as a single product and as a compound with other fertilizers. Further investigations will be conducted.

In 2015, data on crop residues and, in particular, on the relationship between crop residues and product were compared with studies and research provided by the Agricultural Research Council (CRA)³¹. However, these studies were conducted in different countries from Italy, so despite the differences, the values used in the inventory, based on national studies, have not been changed.

Following the suggestion of the CRA experts, in the estimation of N₂O emissions from crop residues, the total amount of residues has been considered, without deducting the fraction removed for purposes such as feed, bedding and construction. Therefore, the data were revised using the fixed residues/removable residues ratio for each crop considered (ENEA, 1994), also used to estimate the emissions from category 3F (see paragraph 5.6.2).

Concerning compost data, from waste sector only data on compost production are available. Official statistics provided by ISTAT on compost used in agriculture sector (considered as the green and mixed amendments) are compared to data on compost from waste sector. For the year 2015, the amount of compost used is 58.1% of the compost production only from plants that treat a selected waste.

As regards FracLEACH-(H), Italy verified that the IPCC default is similar to the country-specific reference value reported from the main regional basin authority - Po Valley (ADBPO, 2001; ADBPO, 1994).

At the end of 2016, in response to the UNFCCC review process, experts on land use and wheater climate were contacted to investigate on the FracLEACH-(H) fulfilment to criteria set out in the 2006 IPCC Guidelines.

As recommended during the 2019 UNFCCC review, the investigation of the driving forces for the significant inter-annual changes has been done. As regards the other organic fertilizers, ISTAT was asked to verify the quantities of amendments for 2011, which determine the anomalous trend between 2010 and 2011: the anomalous figure is for the amount of compost, which accounts for about 60% of the amendments. The figure has been corrected by ISTAT and forwarded to ISPRA.

As regards the sewage sludge applied, the values used are official data provided by the Ministry of the Environment which collects them at the Italian Regions under the EU Sewage Sludge Directive. The annual variations depend on the fact that some Regions prohibit the practice of spreading in certain years, on the basis of weather-climatic, soil and water conditions, and also over the years other types of sludge treatment, such as the anaerobic digestion, have been implemented, to the detriment of the spreading.

In 2020 a working group was set up with *Assofertilizzanti* and ISTAT to compare the statistics produced by these two bodies. Initial results have led to a revision of the data on nitrate consumption in the period 2009-2011 and the estimation of CAN fertiliser consumption.

5.5.5 Source-specific recalculations

As regards for N₂O emissions from agricultural soils, the changes were: update of FAO data on organic soils since 1990; correction of crop residue nitrogen estimate for rice since 1996, by adding to Fcr the portion of nitrogen contained in the unburned fraction of the burned residue; update of sewage sludge application data for the years 2019 and 2020; correction of ISTAT data on nitrogen in soil improvers for

³⁰ Federchimica is the National Association of the Chemical Industry and Assofertilizzanti represents the production companies of the fertilizer industry. ³¹ CRA is a national research organization which operates under the supervision of the Ministry of Agriculture, with general scientific competence within the fields of agriculture, agro-industry, food, fishery and forestry.

2011; updated 2020 estimate of Fracleach. Updated data on the number of fur-bearing animals for the years 2019-2020. Updated data on the number of ostriches for 2020. Corrected N excreted sows of 2020.

5.5.6 Source-specific planned improvements

In the coming years, the Permanent census of agriculture will provide valuable information on animal and agronomic production methods. The focus of the Permanent census is to provide a comprehensive information framework on the structure of the agricultural system and the livestock at national, regional and local level by integrating archive data and carrying out statistical support surveys. Statistical registers will be created with the aim of increasing the quantity and quality of information in order to reduce the response burden and the overall production cost of official statistics³².

5.6 Field burning of agriculture residues (3F)

5.6.1 Source category description

Methane and nitrous oxide emissions from field burning agriculture residues have not been identified as a key source. In 2021, CH₄ emissions from this source were 0.58 Gg, representing 0.08% of emissions for the agriculture sector. N₂O emissions were 0.013 Gg, representing 0.03% of emissions for the agriculture sector.

5.6.2 Methodological issues

The estimation of emissions from field burning of agriculture residues has been carried out on the basis of the IPCC methodology, using different parameters, such as the amount of residues produced, the amount of dry residues, the total biomass burned, and the total carbon and nitrogen released as reported in Table 5.46.

Data	Reference
Annual crop production	ISTAT, several years [a], [b], [j]
Removable residues/product ratio	CESTAAT, 1988
Fixed residues/removable residues ratio	ENEA, 1994
Fraction of dry matter in residues	IPCC, 1997; CRPA/CNR, 1992; CESTAAT, 1988; Borgioli, 1981
Fraction of the field where "fixed" residues are burned	IPCC, 1997; CRPA, 1997[b]; ANPA-ONR, 2001; CESTAAT, 1988
Fraction of residues oxidized during burning	IPCC, 2006
Fraction of carbon of dry matter of residues	IPCC, 2006; IPCC, 2019
Raw protein in residues (dry matter fraction)	CESTAAT, 1988; Borgioli, 1981
IPCC default emission rates (CH ₄ , N ₂ O)	IPCC, 1997

Table 5.46 Data used for estimating field burning of agriculture residues emission

Activity data (annual crop production of cereals) used for estimating burning of agriculture residues are reported in the Table 5.47.

The same methodology is used to estimate emissions from open burning of agriculture residues (burnt off-site). Emissions from fixed residues (stubble), burnt on open fields, are reported in this category (3F) while emissions from removable residues burnt off-site, are reported under the waste sector (open

³² https://www.istat.it/en/permanent-censuses/agriculture

burning of waste - 5C2 category). In response to the 2018 UNFCCC review process, the description of the agricultural residues used for bedding material considered in animal manure applied to soils (3Da2a), which also involves the categories crop residues (3Da4) and field burning of agricultural residues (3F), is reported in the Annex 7.3. The description of the type of agricultural residues is also included in the Annex 7.3. As recommended during the 2019 UNFCCC review, to enhance transparency on the total amount of crop residues generated and shares of the crop residue amounts used for different purposes (such as bedding material (3.D.a.2.a), left on fields (3.D.a.4), burnt on-site (3.F) and off-site (1.A, 5.C.2)), a flow-chart is reported in Annex 7, in Figure A.7.1.

Year	Wheat	Barley	Maize	Oats	Rye	Rice	Sorghum	
			Agricultu	ural productio	on (tons)			
1990	8,108,500	1,702,500	5,863,900	298,400	20,800	1,290,700	114,200	
1995	7,946,081	1,387,069	8,454,164	301,322	19,780	1,320,851	214,802	
2000	7,427,660	1,261,560	10,139,639	317,926	10,292	1,245,555	215,200	
2005	7,717,129	1,214,054	10,427,930	429,153	7,876	1,444,818	184,915	
2010	6,849,858	944,257	8,495,946	288,880	13,926	1,574,320	275,572	
2015	7,394,495	955,131	7,073,897	261,366	13,183	1,505,804	294,218	
2017	6,966,465	984,281	6,048,499	229,041	11,097	1,516,033	240,694	
2018	6,932,943	1,010,328	6,179,035	243,366	10,639	1,480,887	293,865	
2019	6,576,584	1,072,447	6,258,747	238,107	12,509	1,498,133	312,384	
2020	6,553,861	1,090,630	6,771,089	242,709	11,475	1,513,057	361,694	
2021	7,118,272	1,059,803	6,060,232	233,452	10,886	1,464,700	223,459	

Table 5.47 Time series of activity data (tons) used for 3F estimations

The methodology for estimating emissions refers to fixed residues burnt. The same steps are followed to calculate emissions from removable residues burnt off-site reported in 5C. Parameters taken into consideration are the following:

- a) Amount of "fixed" residues (t), estimated with annual crop production, removable residues/product ratio, and "fixed" residue/removable residues ratio. This last value is equal to 0.25 for all type of cereals and represents the part of the fixed residue (compared to the removable residue) that remains on the ground.
- b) Amount of dry residues in "fixed" residue (t dry matter), calculated with amount of fixed residues and fraction of dry matter.
- c) Amount of "fixed" dry residues oxidized (t dry matter), assessed with amount of dry residues in the "fixed" residues, fraction of the field where "fixed" residues are burned, and fraction of residues oxidized during burning.
- d) Amount of carbon from stubble burning release in air (t C), calculated with the amount of "fixed" dry residue oxidized and the fraction of carbon from the dry matter of residues.
- e) C-CH₄ from stubble burning (t C-CH₄), calculated with the amount of carbon from stubble burning release in air and default emissions rate for C-CH₄, equal to 0.005 (IPCC, 1997).

Data related to the removable residues/product ratio, the "fixed" residue/removable residues ratio, the fraction of dry matter, the fraction of carbon of dry matter of residues are available for each type of cereals.

Fraction of the field where "fixed" residues is burned is 10% (IPCC, 1997; CRPA, 1997[b]) for all crops except for rice, for which the fraction varies as a function of the change in annual percentage of the reincorporated rice straw into the soil (see *straw incorporation* in the methodological issues in rice cultivation (3C) paragraph). CH₄ emissions from on field burning of agriculture residues (0.58 Gg CH₄ in 2021) have been estimated multiplying the C-CH₄ value (0.432 Gg C-CH₄) by the ratio of molecular

weights (16/12). In Table 5.48, parameters used for estimating of CH₄ emissions from on field burning of agriculture residues are shown.

Crops	Annual crop harvest production (t 1000)	Amount of "fixed" burnable residues (t 1000)	Amount of dry residue in the "fixed" residues (t 1000 dry matter)	Amount of "fixed" dry residues burnt (t 1000 dry matter)	Amount of carbon from stubble burning (t 1000 C)	C-CH₄ from stubble burning (t C-CH₄)
Wheat	7,118	1,228	1,047	102	39	193
Rye	11	2	2	0	0	0
Barley	1,060	212	182	18	7	34
Oats	233	41	35	4	1	7
Rice	1,465	245	184	110	37	185
Maize	6,060	606	253	0	0	0
Sorghum	223	78	65	6	2	12
Total	16,171	2,412	1,767	241	86	432

Table 5.48 Parameters used for the estimation of CH₄ emissions from agriculture residues in 2021

For estimating N₂O emissions, the same amount of "fixed" dry residue oxidized described above were used; further parameters are:

- a) Amount of nitrogen from stubble burning release in air (t N), calculated with the amount of "fixed" dry residue oxidized and the fraction of nitrogen from the dry matter of residues. The fraction of nitrogen has been calculated considering raw protein content from residues (dry matter fraction) divided by 6.25.
- b) N-N₂O from stubble burning (t N-N₂O), calculated with the amount of nitrogen from stubble burning release in air and the default emissions rate for N- N₂O, equal to 0.007 (IPCC, 1997).

Data related to the raw protein content from residues (dry matter fraction) is available for each type of cereals. N₂O emissions from on field burning of agriculture residues (0.013 Gg N₂O in 2021) are estimated by multiplying the N-N₂O value (0.008 Gg N) by the ratio of molecular weights (44/28).

In Table 5.49 the parameters for the estimation of N_2O emissions from field burning of agriculture residues are shown.

Table 5.49 Parameters used for the estimation of N₂O emissions from agriculture residues in 2021

Crops	Amount of "fixed" dry residues burnt (t 1000 dry matter)	dry residues burnt residues dry matter of		Amount of nitrogen from stubble burning (t 1000 N)	N-N2O from stubble burning (t N-N₂O)	
Wheat	102	0.030	0.005	0.005 0.440		
Rye	0	0.036	0.006	0.001	0.01	
Barley	18	0.037	0.006	0.097	0.68	
Oats	4	0.040	0.006	0.020	0.14	
Rice	110	0.041	0.007	0.579	4.06	
Maize	0	0.000	0.007	0.000	0.00	
Sorghum	6	0.037	0.006	0.035	0.24	
Total	241			1.172	8.20	

5.6.3 Uncertainty and time-series consistency

Uncertainties for CH₄ and N₂O emissions from field burning of agriculture residues are estimated to be 58.3% as a result of 30% and 50% for activity data and emission factor, respectively.

In 2021, emissions from field burning of agriculture residues were 0.58 Gg CH₄ emissions and 0.013 Gg N₂O emissions (see Table 5.50). Variation in emissions trend is related to cereal production trends. In particular, in the period 1998-2003, the biomass available from wheat and barley decreases compared to the first half of the ninety years due to the sharp drop in production as a consequence of unfavorable weather conditions.

Year	CH₄ (Gg)	N ₂ O (Gg)
1990	0.568	0.012
1995	0.560	0.012
2000	0.561	0.012
2005	0.605	0.013
2010	0.585	0.013
2015	0.594	0.013
2017	0.575	0.013
2018	0.575	0.013
2019	0.569	0.013
2020	0.575	0.013
2021	0.576	0.013

5.6.4 Source-specific QA/QC and verification

Activity data of this category were calculated based on various parameters, and in particular the fraction of carbon and nitrogen of dry matter of residues, whose values are differentiated by crops. IPCC emission factors used (IPCC, 1997) are the ratios for carbon compounds (i.e. C-CH₄), that are mass of carbon compound released (in units of C) relative to mass of total carbon released from burning (in units of C); those for the nitrogen compounds (i.e. N-N₂O) are expressed as the ratios of mass of nitrogen compounds relative to the total mass of nitrogen released from the fuel (IPCC, 1997). The comparison with the 2006 IPCC emission factors has been done; the implied emission factors are consistent with those of the 2006 IPCC Guidelines.

In response to the 2007 review process (UNFCCC, several years) and in order to verify the national assumption, which considered that 10% of the cultivated surface (cereals) is burned in Italy, a specific elaboration of data has been carried out by ISTAT, in the framework of FSS in 2003. The information, provided by ISTAT, related to the regional practices of field burning (cereals) has confirmed the abovementioned assumption (ISTAT, 2007[c]).

5.6.5 Source-specific recalculations

As regards CH₄ emissions, carbon content data in crop residues were corrected for the entire historical series.

5.6.6 Source-specific planned improvements

No specific improvements are planned.

5.7 Liming (3G)

5.7.1 Source category description

CO₂ emissions from application of carbonate containing lime and dolomite to agricultural soils have been estimated. In 2017 submission, in response to the UNFCCC review process, CO₂ emissions from application of carbonate containing lime and dolomite are estimated separately. In 2021, CO₂ emissions from liming were 25.6 Gg, which represents 5.5% of CO₂ emissions of the agriculture sector (0.3% in 1990) and 0.0076% of national CO₂ emissions (0.0003% in 1990). CO₂ emissions from liming have not been identified as a key source.

5.7.2 Methodological issues

Tier 1 approach, assuming that the total amount of carbonate containing lime and dolomite is applied annually to soil, has been followed. The 2006 IPCC Guidelines equation 11.12 has been used to estimate CO₂ emissions. National statistics report an aggregate annual amount of lime and dolomite, without disaggregation between calcic limestone and dolomite (ISTAT, several years [i]; ISTAT, several years [f]). Data on the disaggregation between limestone and dolomite used in agriculture are provided by the largest lime producer in the country (UNICALCE, 2016). These values are equal to 55% and 45%, respectively. Therefore, the average emission factor weighed is equal to 0.1245 t C/t limestone-dolomite (=0.12*0.55+0.13*0.45).

Data on agricultural lime application have been estimated for the period 1990-1997, since these data have not been made available for that period. Data were estimated on the basis of the ratio of the amount of limestone or dolomite applied for the year 1998 and the area planted to crops, woody and permanent forage.

5.7.3 Uncertainty and time-series consistency

Uncertainty for CO₂ emissions from additions of carbonate limes to soils has been estimated to be 22.4%, as combination of 10% and 20% for activity data and emission factor, respectively.

In 2021, CO₂ emissions from liming (25.6 Gg CO₂) were almost twenty times the figure of 1990 (1.36 Gg CO₂). An increasing trend is observed from 2002, both for limestone and dolomite application, as resulting from the official statistics published by the National Institute of Statistics (ISTAT).

In Table 5.51 activity data, emission factor and CO₂ emission trend from liming are shown.

Year	Amount of limestone and dolomite (Mg)	EF (t C (t limestone and dolomite) ⁻¹)	C emissions (Gg)	CO ₂ emissions (Gg)
1990	2,969	0.1245	0.3696	1.36
1995	3,045	0.1245	0.3791	1.39
2000	4,050	0.1245	0.5042	1.85
2005	31,451	0.1245	3.9156	14.36
2010	40,115	0.1245	4.9943	18.31
2015	29,583	0.1245	3.6831	13.50
2017	38,280	0.1245	4.7659	17.47
2018	33,851	0.1245	4.2144	15.45
2019	35,584	0.1245	4.4302	16.24
2020	21,860	0.1245	2.7216	9.98
2021	56,067	0.1245	6.9803	25.59

Table 5.51 CO₂ emissions from lime application

5.7.4 Source-specific QA/QC and verification

Systematic quality control activities have been carried out in order to ensure completeness and consistency in time series and correctness in the estimation of emissions.

5.7.5 Source-specific recalculations

No specific recalculations are observed.

5.7.6 Source-specific planned improvements

No specific improvements are planned.

5.8 Urea application (3H)

5.8.1 Source category description

 CO_2 emissions from application of urea to agricultural soils have been estimated. In 2021, CO_2 emissions from urea application were 413.5 Gg, which represents 89.6% of CO_2 emissions of the agriculture sector (91.2% in 1990) and 0.12% of national CO_2 emissions (0.11% in 1990). CO_2 emissions from urea application have not been identified as a key source.

5.8.2 Methodological issues

Tier 1 approach, assuming that the total amount of urea is applied annually to soil, has been followed; an overall emission factor of 0.20 t C (t urea)⁻¹ has been used to estimate CO₂ emissions. The 2006 IPCC Guidelines equation 11.13 has been used to estimate CO₂ emissions. The source of the activity data are national statistics (ISTAT, several years [i]).

5.8.3 Uncertainty and time-series consistency

Uncertainty for CO_2 emissions from urea application to soils has been estimated to be 22.4%, as combination of 10% and 20% for activity data and emission factor, respectively.

In 2021, CO₂ emissions from urea application were 11.4% (413.5 Gg CO₂) lower than in 1990 (464.8 Gg CO₂).

In Table 5.52 activity data, emission factor and CO₂ emission trend from urea application are shown. A strong decrease is observed in the years from 2009 to 2011 due to the economic crisis in particular for urea applied to soils. In 2012, a recovery from the sharp decline was recorded as result from the official statistics provided by the National Institute of Statistics (ISTAT).

Year	Amount of urea (Mg)	EF (t C (tonnes of urea) ⁻¹)	C emissions (Gg)	CO ₂ emissions (Gg)
1990	633,873	0.20	126.8	464.8
1995	698,251	0.20	139.7	512.1
2000	716,412	0.20	143.3	525.4
2005	691,255	0.20	138.3	506.9
2010	456,951	0.20	91.4	335.1
2015	579,444	0.20	115.9	424.9
2017	570,608	0.20	114.1	418.4
2018	552,621	0.20	110.5	405.3

Table 5.52 CO2 emissions from urea application

Year	Amount of urea (Mg)	EF (t C (tonnes of urea) ⁻¹)	C emissions (Gg)	CO ₂ emissions (Gg)
2019	540,618	0.20	108.1	396.5
2020	643,562	0.20	128.7	471.9
2021	563,865	0.20	112.8	413.5

5.8.4 Source-specific QA/QC and verification

Systematic quality control activities have been carried out to ensure completeness and consistency in time series and correctness in the estimation of emissions. Activity data are the same used in the agriculture soils (3D) category.

5.8.5 Source-specific recalculations

No specific recalculations are observed.

5.8.6 Source-specific planned improvements

No specific improvements are planned.

5.9 Other carbon-containing fertilizers (3I)

5.9.1 Source category description

 CO_2 emissions from application of Calcium Ammonium Nitrate (CAN) to agricultural soils have been estimated. In 2021, CO_2 emissions from CAN application were 22.2 Gg, which represents 4.8% of CO_2 emissions of the agriculture sector (8.6% in 1990) and 0.007% of national CO_2 emissions (0.010% in 1990). CO_2 emissions from CAN application have not been identified as a key source.

5.9.2 Methodological issues

Tier 1 approach, assuming that the total amount of CAN is applied annually to soil, has been followed. Based on the data provided by *Assofertilizzanti* (personal communication) concerning the annual estimates of ammonium nitrate and CAN distributed over the country from 2011 to 2019, an annual ratio of CAN to nitrate was calculated. An overall average of these ratios was calculated for the period 2011-2019. This value was multiplied by the total amount of ammonium nitrate (<28% and >28%) distributed annually and provided by ISTAT since 1990. The carbonate content was estimated by multiplying the previously estimated series by the value 23%, which represents the average carbonate content in CAN (77% is the share of ammonium nitrate). An overall emission factor of 0.125 t C (t carbonates)⁻¹ has been used to estimate CO₂ emissions. The 2006 IPCC Guidelines equation 11.12 has been used to estimate CO₂ emissions. The source of the activity data are national statistics (ISTAT, several years [i]).

5.9.3 Uncertainty and time-series consistency

Uncertainty for CO₂ emissions from CAN application to soils has been estimated to be 22.4%, as combination of 10% and 20% for activity data and emission factor, respectively. In 2021, CO₂ emissions from CAN application were 49.2% (22.2 Gg CO₂) lower than in 1990 (43.7 Gg CO₂). In Table 5.53 activity data, emission factor and CO₂ emission trend from CAN application are shown.

Table 5.53 CO2 emissions from CAN application

Year	Amount of CAN (t)	Amount of carbonates content (t)	EF (t C (tonnes of carbonates) ⁻¹)	C emissions (Gg)	CO ₂ emissions (Gg)
1990	416,907	95,293	0.125	11.9	43.7
1995	515,751	117,886	0.125	14.7	54.0
2000	416,818	95,273	0.125	11.9	43.7
2005	405,351	92,652	0.125	11.6	42.5
2010	263,930	60,327	0.125	7.5	27.6
2015	189,628	43,344	0.125	5.4	19.9
2017	192,028	43,892	0.125	5.5	20.1
2018	206,681	47,241	0.125	5.9	21.7
2019	161,164	36,838	0.125	4.6	16.9
2020	204,958	46,847	0.125	5.9	21.5
2021	211,607	48,367	0.125	6.0	22.2

5.9.4 Source-specific QA/QC and verification

Systematic quality control activities have been carried out in order to ensure completeness and consistency in time series and correctness in the estimation of emissions. Activity data are the same used in the agriculture soils (3D) category. As recommended during the 2020 ESD review, CO₂ emissions from CAN application to soils has been estimated and reported in the category 3I Other carbon-containing fertilizers.

5.9.5 Source-specific recalculations

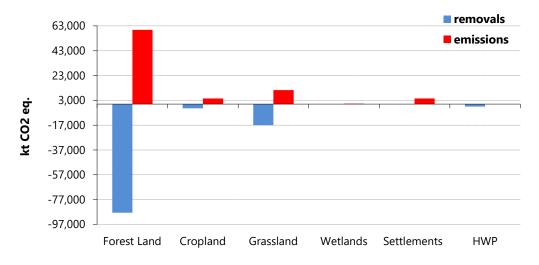
No specific recalculations are observed.

5.9.6 Source-specific planned improvements

No specific improvements are planned.

6 LAND USE, LAND USE CHANGE AND FORESTRY [CRF sector 4]

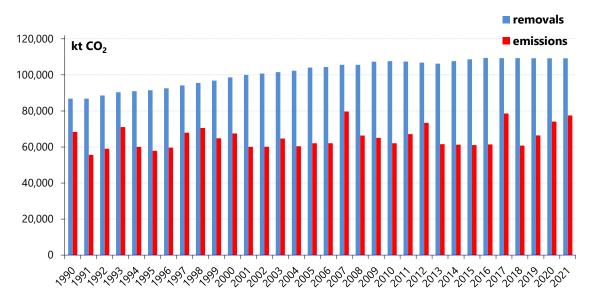
6.1 Sector overview


 CO_2 emissions and removals occur as a result of changes in land use and management activities as well as because of forestry activities and disturbances. The sector is responsible for 27.5 Mt of CO_2 eq. net removal from the atmosphere in 2021.

Methods applied to estimate the GHG emissions and removals from the sector are derived from the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (2006 IPCC Guidelines) and from 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (2019 Refinement) for HWP estimation; similarly, all factors for which national data are not available have been taken from the 2006 IPCC Guidelines and from 2019 Refinement. For category 4A (Forest Land) estimates were supplied by a growth model, applied to national forest inventory (NFI) data, consistently with the TACCC principles implemented by IPCC methods, and with mostly country specific factors and parameters.

 CO_2 emissions from forest fires are included in the net carbon stock changes reported in CRF Table 4A, instead of in CRF Table 4(V).

Greenhouse gas removals and emissions in the main categories of the LULUCF sector in 2021 are shown in Figure 6.1.



In Table 6.1 emissions and removals time series is reported.

GHG Source and Sink Categories	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
CO2	-5,690	-25,039	-22,972	-36,453	-42,459	-44,551	-25,485	-45,741	-42,473	-33,381	-28,924
A. Forest Land	-17,852	-31,122	-26,549	-35,049	-36,507	-40,417	-24,258	-40,734	-35,487	-30,042	-28,398
B. Cropland	1,722	659	-500	-1,846	-821	661	-987	-559	-542	1,047	1,018
C. Grassland	4,187	-2,147	-1,969	-6,355	-9,521	-9,464	-4,491	-8,904	-8,205	-7,394	-4,001
D. Wetlands	NE,NO	5	8	8	130	130	32	32	32	32	NO,NE
E. Settlements	6,640	8,272	6,492	7,292	4,402	4,451	5,193	5,202	5,210	5,216	4,492
F. Other Land	NO										
G. HWP	-388	-706	-454	-503	-142	89	-974	-778	-3,481	-2,240	-2,035
H. Other	NO										
CH ₄	51.44	12.11	28.57	11.97	14.01	10.57	60.44	6.11	7.24	13.25	34.94
A. Forest Land	23.77	4.82	12.38	4.99	4.42	6.54	45.41	4.90	4.47	9.36	22.48
B. Cropland	0.22	0.06	0.13	0.06	0.05	0.10	0.32	0.04	0.07	0.08	0.23
C. Grassland	27.45	7.22	16.07	6.93	9.54	3.94	14.71	1.17	2.70	3.82	12.22
D. Wetlands	NO										
E. Settlements	NO,NE										
F. Other Land	NO										
G. HWP	-	-	-	-	-	-	-	-	-	-	-
H. Other	NO										
N₂O	2.87	2.95	2.33	2.12	1.44	1.10	1.87	1.51	1.64	1.76	1.78
A. Forest Land	0.01	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.01
B. Cropland	0.25	0.39	0.14	0.14	0.14	0.00	0.14	0.20	0.27	0.34	0.34
C. Grassland	0.86	0.23	0.50	0.22	0.30	0.12	0.46	0.04	0.08	0.12	0.38
D. Wetlands	NO										
E. Settlements	1.70	2.25	1.65	1.72	0.97	0.97	1.22	1.22	1.22	1.22	0.97
F. Other Land	NO										
G. HWP	-	-	-	-	-	-	-	-	-	-	-
H. Other	NO										
LULUCF (kt CO2 equivalent)	-3,548	-23,859	-21,563	-35,523	-41,679	-43,959	-23,417	-45,139	-41,805	-32,527	-27,519

Table 6.1 Trend in greenhouse gas net emissions/removals (kt GHG) from the LULUCF sector in the period 1990-2021

CO₂ emissions and removals in LULUCF sector, in the period 1990-2021, are shown in Figure 6.2.

The outcomes of the key category analysis for 2021, for both level and/or trend assessment with IPCC Approach 1 and Approach 2, are listed in table 6.2.

	gas	Categories	2021
4.A.1	CO ₂	Forest land remaining forest land	key (L, T)
4.A.2	CO ₂	Land converted to forest land	key (L, T)
4.B.1	CO ₂	Cropland remaining cropland	key (T)
4.B.2	CO ₂	Land converted to Cropland	key (L2, T2)
4.C.1	CO ₂	Grassland remaining Grassland	key (T)
4.C.2	CO ₂	Land converted to Grassland	key (L, T)
4.E.2	CO ₂	Land converted to Settlements	key (L, T2)
4.G	CO ₂	Harvest Wood Products	key (L, T)

* L = key category in level assessment under both Approach 1 and 2

T = key category in trend assessment under both Approach 1 and 2

L2 = key category in level assessment under Approach 2 only

T2 = key category in trend assessment under Approach 2 only

Background data for the land representation originates from the NFIs³³ (1985, 2005, 2015) and from the National Land-Use Inventory IUTI³⁴ referring to years 1990, 2000 and 2008. Additional data on non-forest categories were collected for the year 2018, through all the phases in the framework of the III NFI that was carried out on an IUTI's subgrid (i.e., 301,300 points, across the entire country territory).

Due to the technical characteristics of the IUTI assessment (i.e., classification of orthophotos), it was not possible to clearly distinguish among some subcategories included in *cropland* and *grassland* categories (e.g., annual pastures vs grazing land), and between them (e.g., annual crops and grazing land). Therefore, although the total aggregated area of the 2 categories *cropland* and *grassland* together is derived from the IUTI data, the area of each of their subcategories is disaggregated using as proxies the national statistics (ISTAT, [b], [c]) on annual crops, perennial woody crops, grazing land, and grassland. The data

³³ National Forest Service, Ministry of Agricultural, Food and Forestry Policies (MIPAAF), Forest Monitoring and Planning Research Unit (CRA-MPF)

³⁴ Detailed information on IUTI is reported in Annex 10 of the 2022 submission of National Inventory Report

from the NFI have a higher hierarchical order than that of IUTI, so that differences among the two datasets have been reconciled by adjusting³⁵ the grassland category (subcategory natural grassland). National statistics (ISTAT) have been used to assess the timeseries for the period 1971-1989, in relation to different land-use categories (i.e., annual statistics on forest land, annual crops and perennial woody crops, grazing lands, forage crops, permanent pastures, natural grassland and lands once used for agriculture purposes (set-aside) since 1970). National statistics do not include data for settlements and wetlands areas; for these land use categories, time series for the period 1971-1989 have been extrapolated, based on the IUTI 1990 assessment, and following the classification hierarchy³⁶.

Annual figures for areas in transition between different land uses have been derived applying a rule-based method, informed by expert judgement, based on known patterns of land-use changes in Italy, while ensuring that the total national area remains constant.

Rules applied are the following:

- when the forest land area increases, an equivalent area is transferred from grassland;
- when the cropland area increases, an equivalent area is transferred from grassland;
- when the grassland area increases, an equivalent area is transferred from cropland;
- when the forest land decreases, an equivalent area is transferred to settlements; indeed, in Italy landuse changes from forest to other uses are allowed in very limited circumstances (railways, highways constructions or other public utility projects) and only upon formal authorization, as stated in art. 4.2 of the Law Decree n. 227 of 2001. Further, land-use changes of burnt forest areas are forbidden by national legislation (Law Decree 21 November 2000, n. 353, art.10.1);
- when the settlements area increases more than the deforested area, an equivalent area is transferred from grassland, and if the grassland decreases are not larger enough, the remaining portion is transferred from cropland and, where needed, from other land (see tables 6.42, 6.43).

Based on the land use and land-use change data derived from NFIs and IUTIs classifications after the application of the rule-based approach for land representation, a time series of land-use matrices, one for each year of the period 1990–2021, have been compiled. Furthermore, land-use changes have been derived, by the way of land-use change matrices, smoothing their area over a 5-year period, harmonizing the whole time series (i.e., the 2015–2010 difference in area for each subdivision is divided by five, and the resulting value is added, year by year, to the previous year area to deduce the current area). The smoothing period affects the assessment of the area, depending on the amount of the difference between the two reference years (i.e., 2015–2010), as well as on the number of years included in the smoothing period. The smoothing process also affects the annual land-use change data.

In addition, it has to be noted that the smoothing process is implemented at the most disaggregated level (i.e., for annual and woody crops in cropland category, grazing land and shrublands in grassland category), and that it has been implemented starting from 1970 to the last reported year (i.e., 2021).

In tables 6.3a and 6.3b land use data with and without the smoothing are provided.

³⁵ Where the NFI area of forest land was larger than that of IUTI an equivalent portion of grassland area, as classified by IUTI, was reclassified as forest land while if the NFI area was smaller an equivalent area of forest land in IUTI was reclassified as grassland. Such adjustments were implemented at regional level.
³⁶ The classification hierarchy is described in Annex 10 of the 2022 submission of National Inventory Report

Table 6.3a Land use areas before smoothing

Table 6.3b Land use areas after smoothing

							-								
kha	FL	CL	GL	WL	SL	OL	Total	kha	FL	CL	GL	WL	SL	OL	Total
1990	7,590	10,841	8,891	510	1,644	658	30,134	1990	7,590	10,841	8,891	510	1,644	658	30,134
1991	7,668	10,857	8,768	511	1,672	658	30,134	1991	7,668	10,857	8,768	511	1,672	658	30,134
1992	7,746	10,874	8,646	511	1,699	658	30,134	1992	7,746	10,874	8,646	511	1,699	658	30,134
1993	7,824	10,891	8,523	511	1,727	658	30,134	1993	7,824	10,891	8,523	511	1,727	658	30,134
1994	7,902	10,908	8,400	512	1,754	658	30,134	1994	7,902	10,908	8,400	512	1,754	658	30,134
1995	7,980	10,924	8,278	512	1,782	657	30,134	1995	7,980	10,924	8,278	512	1,782	657	30,134
1996	8,058	10,929	8,167	513	1,810	657	30,134	1996	8,058	10,837	8,259	513	1,810	657	30,134
1997	8,136	10,919	8,071	513	1,837	657	30,134	1997	8,136	10,749	8,241	513	1,837	657	30,134
1998	8,213	10,805	8,079	514	1,865	657	30,134	1998	8,213	10,662	8,223	514	1,865	657	30,134
1999	8,291	10,697	8,082	514	1,892	657	30,134	1999	8,291	10,574	8,204	514	1,892	657	30,134
2000	8,369	10,487	8,186	515	1,920	656	30,134	2000	8,369	10,487	8,186	515	1,920	656	30,134
2001	8,447	10,351	8,216	515	1,948	656	30,134	2001	8,447	10,365	8,202	515	1,948	656	30,134
2002	8,525	10,293	8,168	516	1,975	656	30,134	2002	8,525	10,244	8,218	516	1,975	656	30,134
2003	8,603	10,031	8,324	516	2,003	656	30,134	2003	8,603	10,122	8,233	516	2,003	656	30,134
2004	8,681	10,059	8,191	517	2,030	656	30,134	2004	8,681	10,000	8,249	517	2,030	656	30,134
2005	8,759	9,879	8,265	517	2,058	656	30,134	2005	8,759	9,879	8,265	517	2,058	656	30,134
2006	8,805	9,534	8,536	518	2,086	655	30,134	2006	8,805	9,769	8,301	518	2,086	655	30,134
2007	8,850	9,593	8,404	518	2,113	655	30,134	2007	8,850	9,660	8,337	518	2,113	655	30,134
2008	8,896	9,551	8,372	519	2,141	655	30,134	2008	8,896	9,551	8,372	519	2,141	655	30,134
2009	8,941	9,069	8,787	526	2,156	655	30,134	2009	8,941	9,355	8,501	526	2,156	655	30,134
2010	8,986	9,159	8,630	534	2,170	655	30,134	2010	8,986	9,159	8,630	534	2,170	655	30,134
2011	9,032	8,947	8,773	541	2,185	655	30,134	2011	9,032	9,096	8,625	541	2,185	655	30,134
2012	9,077	8,641	9,012	549	2,200	655	30,134	2012	9,077	9,033	8,620	549	2,200	655	30,134
2013	9,123	8,977	8,609	556	2,214	655	30,134	2013	9,123	8,971	8,615	556	2,214	655	30,134
2014	9,168	8,952	8,566	564	2,229	655	30,134	2014	9,168	8,908	8,610	564	2,229	655	30,134
2015	9,214	8,845	8,605	571	2,244	655	30,134	2015	9,214	8,845	8,605	571	2,244	655	30,134
2016	9,259	8,929	8,453	579	2,258	655	30,134	2016	9,259	8,884	8,503	574	2,258	655	30,134
2017	9,304	8,889	8,426	586	2,273	655	30,134	2017	9,304	8,923	8,401	577	2,273	655	30,134
2018	9,350	8,990	8,265	586	2,288	655	30,134	2018	9,350	8,962	8,299	580	2,288	655	30,134
2019	9,395	9,001	8,194	586	2,302	655	30,134	2019	9,395	9,001	8,197	583	2,302	655	30,134
2020	9,441	9,040	8,095	586	2,317	655	30,134	2020	9,441	9,040	8,095	586	2,317	655	30,134
2021	9,486	9,028	8,046	586	2,332	655	30,134	2021	9,486	9,028	8,046	586	2,332	655	30,134

Italy uses the IPCC default land use transition period of 20 years for each land-use change category. Consequently, to determine the area of lands converted to other land use categories for the inventory years 1990-2020, land-use change matrices have also been prepared for the period 1971-1989.

The relevant equations of 2006 IPCC Guidelines (vol. 4, chapter 2, eq. 2.15, 2.16, 2.24, 2.25) have been applied; once a land has converted to a land use category, the annual changes in carbon stocks in mineral soils have been reported for 20 years subsequent the conversion.

In the following table 6.4, the land use matrices are reported in two columns, for some of the reporting years. The annual matrices starting from the 1989-1990 period to 2020-2021 in the left column, while the 20-year matrices starting from the 1971-1990 period to the 2002-2021 are in the right column. Annual matrices for the years 1990-2021 are reported in CRF Tables 4.1.

Table 6.4 Land use change matrices for the years 1990-1995-2000-2010-2020-2021 [kha]

					1990					20 years matrix				1990			total 1971
		Forest	Grassland	Cropland	Wetlands	Settlements	Other Land	total 1989	20 years matrix		Forest	Grassland	Cropland	Wetlands	Settlements	Other Land	10101 19771
	Forest	7,511				0.72		7,512		Forest	6,901				14.4		6,916
	Grassland	78.68	8,891	0.00	0.00	1.73	-	8,971		Grassland	689	8,566	136	0.00	33	0	9,423
8	Cropland		0	10,841	0.00	25	-	10,866	1971	Cropland		325	10,704	0.00	174	0	11,203
1989	Wetland				510			510	16	Wetland				510			510
	Settlements					1,616		1,616		Settlements					1,423		1,423
	Other Land					0.00	658	658		Other Land					0.00	658	658
	total 1990	7,590	8,891	10,841	510	1,644	658	30,134		Total 1990	7,589.8	8,890.9	10,840.5	510.1	1,644.0	658.3	30,134
	Land converted to:	78.7	0.0	0.0	0.0	27.6	0.0			Land converted to:	688.5	325.0	136.1	0.0	220.8	0.0	
			1995					-									
					1995	·		total 1004		20				1995			4-4-1 1076
		Forest	Grassland	Cropland	1995 Wetlands	Settlements	Other Land	total 1994		20 years matrix	Forest	Grassland	Cropland	1995 Wetlands	Settlements	Other Land	total 1976
	Forest	Forest 7,901	Grassland	Cropland		Settlements 0.72	Other Land	total 1994	:	20 years matrix Forest	Forest 7,056	Grassland			Settlements 14.4	Other Land	total 1976
	Forest Grassland		Grassland 8,278	Cropland 16.77			Other Land		:	-		Grassland 7,985				Other Land	
94		7,901			Wetlands	0.72		7,902		Forest Grassland	7,056		Cropland	Wetlands	14.4		7,071
1994	Grassland	7,901	8,278	16.77	Wetlands 0.47	0.72 26.70	-	7,902 8,400	1976	Forest Grassland Cropland	7,056	7,985	Cropland 220	Wetlands 2.37	14.4 166	0	7,071 9,297
1994	Grassland Cropland	7,901	8,278	16.77	Wetlands 0.47 0.00	0.72 26.70	-	7,902 8,400 10,908	76	Forest Grassland Cropland	7,056	7,985	Cropland 220	Wetlands 2.37 0.00	14.4 166	0	7,071 9,297 11,147
1994	Grassland Cropland Wetland	7,901	8,278	16.77	Wetlands 0.47 0.00	0.72 26.70 0	-	7,902 8,400 10,908 512	76	Forest Grassland Cropland Wetland	7,056	7,985	Cropland 220	Wetlands 2.37 0.00	14.4 166 150	0	7,071 9,297 11,147 510
1994	Grassland Cropland Wetland Settlements	7,901	8,278	16.77	Wetlands 0.47 0.00	0.72 26.70 0 1,754	-	7,902 8,400 10,908 512 1,754	76	Forest Grassland Cropland Wetland Settlements	7,056	7,985	Cropland 220	Wetlands 2.37 0.00	14.4 166 150 1,451	0	7,071 9,297 11,147 510 1,451

									_								
					2000			total 1999		20 years matrix				2000			total 1981
		Forest	Grassland	Cropland	Wetlands	Settlements	Other Land				Forest	Grassland	Cropland	Wetlands	Settlements	Other Land	
	Forest	8,291				0.72		8,291]	Forest	7,117				14.4		7,131
	Grassland	78.68	8,126	0	0.00	0.00	-	8,204]	Grassland	1,252	7,592	84	2.37	142	0	9,073
1999	Cropland		60.32	10,487	0.47	26.70	-	10,574	1981	Cropland		594	10,403	2.37	283	0	11,283
5	Wetland				514			514	i i ži	Wetland				510			510
	Settlements					1,892		1,892	Į I	Settlements					1,478		1,478
	Other Land					0.18	656	657		Other Land					1.80	656	658
	total 2000	8,369	8,186	10,487	515	1,920	656	30,134		Total 2000	8,369	8,186	10,487	515	1,920	656	30,134
	Land converted to:	78.7	60.3	0.0	0.5	27.6	0.0			Land converted to:	1,252	594	84	5	442	0	
					2005									2005			
		Forest	Grassland	Cropland	Wetlands	Settlements	Other Land	total 2004		20 years matrix	Forest	Grassland	i Cropland		Settlements	Other Land	total 1986
			Grassland	Cropiand	wettands		Other Land	0.004		ln (OI assiant	г сторланс	i weualius		5 Ouler Land	7.200
	Forest	8,678	0.4.60			3.69		8,681		Forest	7,183	= 100			17.4		7,200
	Grassland	81.65	8,168	-	-	-	-	8,249		Grassland	1,577	7,488	84	2.37	142	0	9,293
2004	Cropland		97.46	9,879	0.47	23.73	-	10,000	990	Cropland		777	9,795	4.74	390	0	10,966
2	Wetland				517			517		Wetland				510			510
	Settlements					2,030		2,030		Settlements					1,506		1,506
	Other Land					0.18	656	656		Other Land					2.71	656	658
	total 2005	8,759	8,265	9,879	517	2,058	656	30,134		Total 2005	8,759	8,265	9,879	517	2,058	656	30,134
	Land converted to:	81.7	97.5	0.0	0.5	27.6	0.0			Land converted to:	1,577	777	84	7	552	0	
					2010				Ē					2010			
		Forest	Grassland	Cropland	Wetlands	Settlements	Other Land	total 2009		20 years matrix	Forest	Grassland	I Cropland		Settlements	Other Land	total 1991
	Forest	8,937	Orassianu	Cropianu	wettands	3.69	Other Land	8.941		Forest	7,558	Orassiand	горлан	i wettante	32.3	Other Land	7.590
	Grassland	49.13	8,452			3.09		8,501		Grassland	1,429	7,242	84	2.37	134	0	8,891
6	Cropland	49.15	177.88	9,159	7.52	10.98		9,355			1,429	1,387	9,075	2.57	357	0	10,841
	Wetland		177.00	3,133	526	10.98	-	526	1001	Wetland		1,367	9,075	510	337	0	510
~	Settlements				320	2,156		2,156	1 1	Settlements				510	1,644		1,644
	Other Land					0.00	655	655	1	Other Land			-	-	3.25	655	658
	total 2010	8,986	8,630	9,159	534	2,170	655	30,134		Total 2010	8,986	8,630	9,159	534	2,170	655	30,134
	Land converted to:	49.1	177.9	0.0	7.5	14.7	0.0	50,154		Land converted to:	1,429	1.387	9,139	24	526	0	30,134
_	Land Converted to.	49.1	177.9	0.0	1.5	14.7	0.0			Land Converted to.	1,429	1,367	04		520	0	
					2015			12014		20				2015			4-4-1 1006
-		Forest	Grassland	Cropland	2015 Wetlands	Settlements	Other Land	total 2014		20 years matrix	Forest	Grassland	l Cropland		Settlements	Other Land	total 1996
	Forest	Forest	Grassland	Cropland		Settlements 3.69	Other Land	total 2014 9,168	┥┝	20 years matrix Forest	Forest	Grassland	l Cropland		Settlements	Other Land	total 1996
		9,164		Cropland			Other Land	9,168			7,932		l Cropland			Other Land	7,980
14	Forest Grassland Cropland		Grassland 8,561 44	Cropland				9,168 8,610	╕┝	Forest Grassland		Grassland 6,997 1,608		l Wetlands	47.1		
2014	Grassland	9,164	8,561	-	Wetlands	3.69	-	9,168 8,610	1006	Forest Grassland	7,932	6,997	0	1 Wetlands	47.1 0	0	7,980 8,278
2014	Grassland Cropland	9,164	8,561	-	Wetlands	3.69	-	9,168 8,610 8,908	╕┝	Forest Grassland Cropland	7,932	6,997	0	1 Wetlands 0.00 58.79	47.1 0	0	7,980 8,278 10,924
2014	Grassland Cropland Wetland	9,164	8,561	-	Wetlands	3.69	-	9,168 8,610 8,908 564	╕┝	Forest Grassland Cropland Wetland	7,932	6,997	0	1 Wetlands 0.00 58.79	47.1 0 412	0	7,980 8,278 10,924 512
2014	Grassland Cropland Wetland Settlements	9,164	8,561	-	Wetlands	3.69 - 10.98 - 2,229	0.00	9,168 8,610 8,908 564 2,229	╕┝	Forest Grassland Cropland Wetland Settlements	7,932	6,997	0	1 Wetlands 0.00 58.79	47.1 0 412 1,782	0	7,980 8,278 10,924 512 1,782
2014	Grassland Cropland Wetland Settlements Other Land	9,164 49.13	8,561 44	8,845	Wetlands	3.69 - 10.98 - 2,229 - 0.00	0.00 655	9,168 8,610 8,908 564 2,229 655	╕┝	Forest Grassland Cropland Wetland Settlements Other Land	7,932 1,281	6,997 1,608	0 8,845	1 Wetlands 0.00 58.79 512	47.1 0 412 1,782 2.35	0 0 655	7,980 8,278 10,924 512 1,782 657
2014	Grassland Cropland Wetland Settlements Other Land total 2015	9,164 49.13 9,214	8,561 44 8,605	8,845 8,845	Wetlands 7.52 564 571 7.5	3.69 10.98 2,229 0.00 2,244	 0.00 655 655	9,168 8,610 8,908 564 2,229 655 30,134	1005	Forest Grassland Cropland Wetland Settlements Other Land Total 2015	7,932 1,281	6,997 1,608 8,605	0 8,845 8,845	Wetlands 0.00 58.79 512 - 571 59	47.1 0 412 1,782 2.35 2,244	0 0 655 655	7,980 8,278 10,924 512 1,782 657 30,134
2014	Grassland Cropland Wetland Settlements Other Land total 2015	9,164 49.13 9,214	8,561 44 8,605 44.1	8,845 8,845	Wetlands 7.52 564 571	3.69 10.98 2,229 0.00 2,244	 0.00 655 655	9,168 8,610 8,908 564 2,229 655	1005	Forest Grassland Cropland Wetland Settlements Other Land Total 2015 Land converted to:	7,932 1,281	6,997 1,608 8,605 1,608	0 8,845 8,845	Wetlands 0.00 58.79 512	47.1 0 412 1,782 2.35 2,244	0 0 655 655	7,980 8,278 10,924 512 1,782 657
2014	Grassland Cropland Wetland Settlements Other Land total 2015	9,164 49.13 9,214	8,561 44 8,605	8,845 8,845	Wetlands 7.52 564 571 7.5	3.69 10.98 2,229 0.00 2,244	 0.00 655 655	9,168 8,610 8,908 564 2,229 655 30,134	1005	Forest Grassland Cropland Wetland Settlements Other Land Total 2015	7,932 1,281	6,997 1,608 8,605	0 8,845 8,845	Wetlands 0.00 58.79 512 - 571 59	47.1 0 412 1,782 2.35 2,244	0 0 655 655	7,980 8,278 10,924 512 1,782 657 30,134
2014	Grassland Cropland Wetland Settlements Other Land total 2015 Land converted to: Forest	9,164 49.13 9,214 49.1 Forest 9,392	8,561 44 8,605 44.1 Grassland	8,845 8,845 0.0 Cropland	Wetlands 7.52 564 571 7.5 2020 Wetlands	3.69 10.98 2,229 0.00 2,244 14.7 Settlements 3.69	655 655 0.0	9,168 8,610 8,908 564 2,229 655 30,134 total 2019 9,395	1005	Forest Grassland Coropland Wetland Settlements Other Land Total 2015 Land converted to: 20 years matrix Forest	7,932 1,281 9,214 1,281 Forest 8,307	6,997 1,608 8,605 1,608 Grassland	0 8,845 8,845 0 Cropland	Wetlands 0.00 58.79 512 571 59 2020 Wetlands	47.1 0 412 1.782 2.35 2.244 462 Settlements 62.0	0 0 655 655 0 Other Land	7,980 8,278 10,924 512 1,782 657 30,134 total 2001 8,369
	Grassland Cropland Wetland Settlements Other Land total 2015 Land converted to: Forest Grassland	9,164 49.13 9,214 49.1 Forest	8,561 44 8,605 44.1 Grassland 8,095	8,845 8,845 0.0 Cropland 38.89	Wetlands 7.52 564 571 7.5 2020	3.69 10.98 2,229 0.00 2,244 14.7 Settlements	655 655 0.0	9,168 8,610 8,908 564 2,229 655 30,134 total 2019 9,395 8,197		Forest Grassland Cropland Wetland Settlements Other Land Total 2015 Land converted to: 20 years matrix Forest Grassland	7,932 1,281 9,214 1,281 Forest	6,997 1,608 8,605 1,608 Grassland 6,788	0 8,845 8,845 0 Cropland	Wetlands 0.00 58.79 512 - 571 59 2020 Wetlands 15.04	47.1 0 412 2.35 2.244 462 Settlements 62.0 55	0 0 655 655 0 Other Land 0	7,980 8,278 10,924 512 1,782 657 30,134 total 2001 8,369 8,186
	Grassland Cropland Wetland Settlements Other Land <i>total 2015</i> Land converted to: Forest Grassland Cropland	9,164 49.13 9,214 49.1 Forest 9,392	8,561 44 8,605 44.1 Grassland	8,845 8,845 0.0 Cropland	Wetlands 7.52 564 571 7.5 2020 Wetlands 3.01	3.69 10.98 2,229 0.00 2,244 14.7 Settlements 3.69	0.00 655 655 0.0 Other Land	9,168 8,610 8,908 564 2,229 655 30,134 total 2019 9,395 8,197 9,001		Forest Grassland Cropland Settlements Other Land Total 2015 Land converted to: 20 years matrix Forest Grassland Cropland	7,932 1,281 9,214 1,281 Forest 8,307	6,997 1,608 8,605 1,608 Grassland	0 8,845 8,845 0 Cropland	Wetlands 0.00 58.79 512 - 571 59 2020 Wetlands 15.04 56.42	47.1 0 412 1.782 2.35 2.244 462 Settlements 62.0	0 0 655 655 0 Other Land	7,980 8,278 10,924 512 1,782 657 30,134 total 2001 8,369 8,186 10,487
2019 2014	Grassland Cropland Wetland Settlements Other Land Intal 2015 Land converted to: Forest Grassland Cropland Wetland	9,164 49.13 9,214 49.1 Forest 9,392	8,561 44 8,605 44.1 Grassland 8,095	8,845 8,845 0.0 Cropland 38.89	Wetlands 7.52 564 571 7.5 2020 Wetlands	3.69 10.98 2,229 0.00 2,244 14.7 Settlements 3.69 10.98	0.00 655 655 0.0 Other Land	9,168 8,610 8,908 564 2,229 655 30,134 total 2019 9,395 8,197 9,001 583	1005	Forest Grassland Cropland Wetland Settlements Other Land Total 2015 Land converted to: 20 years matrix Forest Grassland Cropland Wetland	7,932 1,281 9,214 1,281 Forest 8,307	6,997 1,608 8,605 1,608 Grassland 6,788	0 8,845 8,845 0 Cropland	Wetlands 0.00 58.79 512 - 571 59 2020 Wetlands 15.04	47.1 0 412 2.35 2.244 462 Settlements 62.0 55 279	0 0 655 655 0 Other Land 0	7,980 8,278 10,924 512 1,782 657 30,134 total 2001 8,369 8,186 10,487 515
	Grassland Crojfand Wetland Settlements Other Land total 2015 Land converted to: Forest Grassland Crojfand Wetland Settlements	9,164 49.13 9,214 49.1 Forest 9,392	8,561 44 8,605 44.1 Grassland 8,095	8,845 8,845 0.0 Cropland 38.89	Wetlands 7.52 564 571 7.5 2020 Wetlands 3.01	3.69 10.98 2,229 0.00 2,244 14.7 Settlements 3.69 10.98 - 2,302	- 0.00 655 655 0.0 Other Land	9,168 8,610 8,908 564 2,229 655 655 30,134 total 2019 9,395 8,197 9,001 5,83 2,302		Forest Grassland Cropland Settlements Other Land Total 2015 Land converted to: 20 years matrix Forest Grassland Cropland Wetland Settlements	7,932 1,281 9,214 1,281 Forest 8,307	6,997 1,608 8,605 1,608 Grassland 6,788	0 8,845 8,845 0 Cropland	Wetlands 0.00 58.79 512 - 571 59 2020 Wetlands 15.04 56.42	47.1 0 412 2.35 2.244 462 Settlements 62.0 55 279 1,920	0 0 655 655 0 0 0 0 0 0 0 0	7,980 8,278 10,924 512 1,782 657 30,134 total 2001 8,369 8,186 10,487 515 1,920
2019	Grassland Cropland Wetland Settlements Other Land itali 2015 Land converted to: Forest Grassland Cropland Wetland Settlements Other Land	9,164 49.13 9,214 49.1 Forest 9,392 49.13	8,561 44 8,605 44.1 Grassland 8,095 0	8,845 8,845 0.0 Cropland 38,89 9,001	Wetlands 7,52 564 7,52 2020 Wetlands 3,01 583	3.69 10.98 2,229 0.00 2,244 14.7 Settlements 3.69 10.98 - - - - - - - - - - - - -	0.00 655 655 0.0 Other Land	9,168 8,610 8,908 564 2,229 655 30,134 total 2019 9,395 8,197 9,001 583 2,302 655	2001	Forest Grassland Cropland Settlements Other Land Total 2015 Land converted to: 20 years matrix Forest Grassland Cropland Wetland Settlements Other Land	7,932 1,281 9,214 1,281 Forest 8,307 1,133	6,997 1,608 8,605 1,608 Grassland 6,788 1,306	0 8,845 8,845 0 Cropland 194 8,845	Wetlands 0.00 58.79 58.79 59 2020 Wetlands 15.04 56.42 515 515	47.1 0 412 2.35 2.244 462 Settlements 62.0 55 279 1.920 1.44	0 0 655 655 0 Other Land 0 0 0 655	7,980 8,278 10,924 512 1,782 657 30,134 total 2001 8,369 8,186 10,487 515 1,920 656
2019	Grassland Crojfand Wetland Settlements Other Land total 2015 Land converted to: Forest Grassland Crojfand Wetland Settlements	9,164 49.13 9,214 49.1 Forest 9,392	8,561 44 8,605 44.1 Grassland 8,095	8,845 8,845 0.0 Cropland 38.89	Wetlands 7,52 564 571 7,5 2020 Wetlands 3,01 - 583 586	3.69 10.98 2,229 0.00 2,244 14.7 Settlements 3.69 10.98 - 2,302		9,168 8,610 8,908 564 2,229 655 655 30,134 total 2019 9,395 8,197 9,001 5,83 2,302	2001	Forest Grassland Cropland Settlements Other Land Total 2015 Land converted to: 20 years matrix Forest Grassland Cropland Wetland Settlements	7,932 1,281 9,214 1,281 Forest 8,307	6,997 1,608 8,605 1,608 Grassland 6,788	0 8,845 8,845 0 Cropland	Wetlands 0.00 58.79 512 - 571 59 2020 Wetlands 15.04 56.42	47.1 0 412 2.35 2.244 462 Settlements 62.0 55 279 1,920	0 0 655 655 0 0 0 0 0 0 0 0	7,980 8,278 10,924 512 1,782 657 30,134 total 2001 8,369 8,186 10,487 515 1,920
2019	Grassland Cropland Wetland Settlements Other Land itali 2015 Land converted to: Forest Grassland Cropland Wetland Settlements Other Land	9,164 49.13 9,214 49.1 Forest 9,392 49.13	8,561 44 8,605 44.1 Grassland 8,095 0	8,845 8,845 0.0 Cropland 38,89 9,001	Wetlands 7,52 564 7,52 2020 Wetlands 3,01 583	3.69 10.98 2,229 0.00 2,244 14.7 Settlements 3.69 10.98 - - - - - - - - - - - - -	0.00 655 655 0.0 Other Land	9,168 8,610 8,908 564 2,229 655 30,134 total 2019 9,395 8,197 9,001 583 2,302 655	2001	Forest Grassland Cropland Settlements Other Land Total 2015 Land converted to: 20 years matrix Forest Grassland Cropland Wetland Settlements Other Land	7,932 1,281 9,214 1,281 Forest 8,307 1,133	6,997 1,608 8,605 1,608 Grassland 6,788 1,306	0 8,845 8,845 0 Cropland 194 8,845	Wetlands 0.00 58.79 58.79 59 2020 Wetlands 15.04 56.42 515 515	47.1 0 412 2.35 2.244 462 Settlements 62.0 55 279 1.920 1.44	0 0 655 655 0 Other Land 0 0 0 655	7,980 8,278 10,924 512 1,782 657 30,134 total 2001 8,369 8,186 10,487 515 1,920 656
2019	Grassland Cropland Wetland Settlements Other Land mail 2015 Land converted to: Forest Grassland Cropland Wetland Settlements Other Land	9,164 49.13 9,214 49.1 Forest 9,392 49.13 9,392 9,441	8,561 44 8,605 44.1 Grassland 8,095 0 8,095	8,845 8,845 0.0 Cropland 38,89 9,001 9,040	Wetlands 7,52 564 571 7,55 2020 Wetlands 3.01 583 586 3.0	3.69 10.98 2,229 0.00 2,244 14.7 Settlements 3.69 10.98 - - - - - - - - - - - - -		9,168 8,610 8,908 564 2,229 655 30,134 101al 2019 9,395 8,197 9,001 5,83 2,302 655 30,134	1007 7001	Forest Grassland Other Land Settlements Other Land Total 2015 Land converted to: 20 years matrix Forest Grassland Cropland Wetland Settlements Other Land al 2020 Land converted to:	7,932 1,281 9,214 1,281 Forest 8,307 1,133 9,441	6,997 1,608 8,605 1,608 6,788 1,306 8,095	0 8,845 8,845 0 Cropland 194 8,845 9,040	Wetlands 0.00 58.79 512 - 571 59 2020 Wetlands 15.04 56.42 515 - 586 71	47.1 0 412 1,782 2,35 2,244 462 Settlements 62.0 55 279 1,920 1,44 2,317	0 0 655 655 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7.980 8.278 10.924 5.77 30,134 total 2001 8.369 8.186 10.487 5.15 1.920 6.56 30,134
2019	Grassland Cropland Wetland Settlements Other Land mail 2015 Land converted to: Forest Grassland Cropland Wetland Settlements Other Land	9,164 49.13 9,214 49.1 Forest 9,392 49.13 9,392 9,441	8,561 44 8,605 44.1 Grassland 8,095 0 8,095	8,845 8,845 0.0 Cropland 38,89 9,001 9,040	Wetlands 7,52 564 571 7,5 2020 Wetlands 3,01 - 583 586	3.69 10.98 2,229 0.00 2,244 14.7 Settlements 3.69 10.98 - - - - - - - - - - - - -		9,168 8,610 8,908 564 2,229 655 30,134 total 2019 9,395 8,197 9,001 583 2,302 655	1007 7001	Forest Grassland Cropland Wetland Settlements Other Land Total 2015 Land converted to: 20 years matrix Forest Grassland Cropland Wetland Settlements Other Land	7,932 1,281 9,214 1,281 1,281 1,133 9,441 1,133	6,997 1,608 8,605 1,608 6,788 1,306 8,095 1,306	0 8,845 8,845 0 Cropland 194 8,845 9,040 194	Wetlands 0.00 58.79 512 59 2020 Wetlands 15.04 56.42 515 515 5886 71 2021 2021	47,1 0 1,782 2,35 2,244 462 Settlements 62,0 55 279 1,920 1,44 2,317 397	0 0 655 055 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7,980 8,278 10,924 512 1,782 657 30,134 total 2001 8,369 8,186 10,487 515 1,920 656
2019	Grassland Cropland Wetland Settlements Other Land mail 2015 Land converted to: Forest Grassland Cropland Wetland Settlements Other Land	9,164 49,13 9,214 49,1 Forest 9,392 49,13 9,441 49,1	8,561 44 8,605 44.1 Grassland 8,095 0 8,095	8,845 8,845 0.0 Cropland 38,89 9,001 9,040	Wetlands 7,52 564 571 7,55 2020 Wetlands 3,01 583 586 3,0	3.69 10.98 2,229 0.00 2,244 14.7 Settlements 3.69 10.98 - - - - - - - - - - - - -		9,168 8,610 8,908 564 2,229 655 30,134 101al 2019 9,395 8,197 9,001 5,83 2,302 655 30,134	1007 7001	Forest Grassland Cropland Wetland Settlements Other Land Total 2015 Land converted to: 20 years matrix Forest Grassland Cropland Wetland Settlements Other Land al 2020 Land converted to: 20 years matrix	7,932 1,281 9,214 1,281 1,281 8,307 1,133 9,441 1,133 Forest	6,997 1,608 8,605 1,608 6,788 1,306 8,095	0 8,845 8,845 0 Cropland 194 8,845 9,040 194	Wetlands 0.00 58.79 512 59 2020 Wetlands 15.04 56.42 515 515 5886 71 2021 2021	47.1 0 412 2.35 2.244 462 Settlements 62.0 55 279 1.920 1.44 2.317 397 Settlements	0 0 655 055 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7.980 8,278 10.924 512 1.782 657 30.134 total 2001 8,369 8,186 10.487 515 1.920 656 30.134 total 2002
2019	Grassland Cropland Wetland Settlements Other Land mail 2015 Land converted to: Forest Grassland Cropland Wetland Settlements Other Land	9,164 49.13 9,214 49.1 Forest 9,392 49.13 9,392 9,441	8,561 44 8,605 44.1 Grassland 8,095 0 8,095 0.0	8,845 8,845 0.0 Cropland 38,89 9,001 9,040 38,9	Wetlands 7.52 564 571 7.5 2020 Wetlands 3.01 583 586 3.0 2021	3.69 10.98 2,229 0.00 2,244 14.7 Settlements 3.69 10.98 - - 2,302 0.00 2,317 14.7	0.00 655 655 0.0 Other Land 655 655 655 0.0	9,168 8,610 8,908 564 2,229 655 30,134 101al 2019 9,395 8,197 9,001 5,83 2,302 655 30,134	1007 7001	Forest Grassland Cropland Wetland Settlements Other Land Total 2015 Land converted to: 20 years matrix Forest Grassland Cropland Wetland Settlements Other Land al 2020 Land converted to: 20 years matrix Forest	7,932 1,281 9,214 1,281 Forest 8,307 1,133 9,441 1,133 Forest 8,382	6,997 1,608 8,605 1,608 Grassland 6,788 1,306 8,095 1,306 Grassland	0 8,845 8,845 0 Cropland 9,040 194 9 Cropland	Wetlands 0.00 58.79 512 512 571 59 2020 Wetlands 15.04 56.42 515 586 71 2021 Wetlands 586	47,1 0 1,782 2,35 2,244 462 Settlements 62.0 55 279 1,920 1,44 2,317 397 Settlements 65.0	0 0 655 655 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7.980 8.278 10.924 5.77 30.134 total 2001 8.369 8.186 10.487 5.15 1.920 6.56 30.134 total 2002 8.447
2019	Grassland Crofland Wetland Settlements Other Land total 2015 Land converted to: Forest Grassland Crofland Wetland Settlements Other Land 2020 Land converted to:	9,164 49.13 9,214 49.1 Forest 9,392 49.13 9,441 49.1 Forest	8,561 44 8,605 44.1 Grassland 8,095 0 8,095 0.0	8,845 8,845 0.0 Cropland 38,89 9,001 9,040 38,9	Wetlands 7.52 564 571 7.5 2020 Wetlands 3.01 583 586 3.0 2021	3.69 10.98 2,229 0.00 2,244 14.7 Settlements 3.69 10.98 - - 2,302 0.00 0.00 2,317 14.7 Settlements	0.00 655 655 0.0 Other Land 655 655 655 0.0	9,168 8,610 8,908 564 2,229 655 30,134 total 2019 9,395 8,197 9,001 583 2,302 655 30,134	2001	Forest Grassland Cropland Wetland Settlements Other Land Total 2015 Land converted to: 20 years matrix Forest Grassland Wetland Settlements Other Land al 2020 20 years matrix 20 years matrix Forest Grassland	7,932 1,281 9,214 1,281 1,281 8,307 1,133 9,441 1,133 Forest	6,997 1,608 8,605 1,608 Grassland 6,788 1,306 8,095 1,306 8,095 1,306 6,834	0 8,845 8,845 0 Cropland 194 8,845 9,040 194 194 194	Wetlands 0.00 58.79 512 59 59 59 2020 Wetlands 15.04 56.42 515 586 71 2021 Wetlands 15.04	47.1 0 1.782 2.35 2.244 462 Settlements 62.0 55 279 1.920 1.44 2.317 397 Settlements 65.0 55	0 0 655 055 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7.980 8,278 10,924 512 1,782 657 30,134 total 2001 8,369 8,186 10,487 515 515 30,134 total 2002 total 2002 total 2002 8,8447 8,202
3019	Grassland Crojland Wetland Settlements Other Land ional 2015 Land converted to: Forest Grassland Cropland Wetland Settlements Other Land C2020 Land converted to: Forest	9,164 49,13 9,214 49,1 Forest 9,392 49,13 9,392 49,13 9,441 49,1 9,441 49,1	8,561 44 8,605 44,1 Grassland 8,095 0 0 6 Grassland	8,845 8,845 0.0 Cropland 9,040 38.9 Cropland	Wetlands 7.52 564 571 7.5 2020 Wetlands 3.01 583 586 3.0 2021 Wetlands	3.69 10.98 2,229 0.00 2,244 14.7 Settlements 3.69 Settlements 3.69	0.00 655 655 655 0.0 Other Land 655 655 655 0.0	9,168 8,610 8,908 564 2,229 655 30,134 total 2019 9,395 8,197 9,001 583 2,302 655 30,134 total 2020 9,441	2001	Forest Grassland Cropland Wetland Settlements Other Land Total 2015 Land converted to: 20 years matrix Forest Grassland Wetland Settlements Other Land al 2020 20 years matrix 20 years matrix Forest Grassland	7,932 1,281 9,214 1,281 Forest 8,307 1,133 9,441 1,133 Forest 8,382	6,997 1,608 8,605 1,608 Grassland 6,788 1,306 8,095 1,306 Grassland	0 8,845 8,845 0 Cropland 9,040 194 9 Cropland	Wetlands 0.00 58.79 512 571 59 2020 Wetlands 56.42 515 586 71 2021 Wetlands 15.04	47,1 0 1,782 2,35 2,244 462 Settlements 62.0 55 279 1,920 1,44 2,317 397 Settlements 65.0	0 0 655 655 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7.980 8.278 10.924 512 1.782 657 30,134 total 2001 8.369 8.186 10.487 515 1.920 656 30,134 total 2002 8.447 8.202
2019	Grassland Cropland Wetland Settlements Other Land itali 2015 Land converted to: Forest Grassland Cropland Wetland Settlements Other Land (2020) Land converted to: Forest Grassland	9,164 49,13 9,214 49,1 Forest 9,392 49,13 9,392 49,13 9,441 49,1 9,441 49,1	8,561 44 8,605 44.1 Grassland 8,095 0 8,095 0.0 Grassland 8,045	8,845 8,845 0.0 Cropland 38,89 9,001 9,040 38,9 Cropland Cropland	Wetlands 7.52 564 571 7.5 2020 Wetlands 3.01 583 586 3.0 2021 Wetlands	3.69 10.98 2,229 0.00 2,244 14.7 Settlements 3.69 10.98 10.98 2,302 0.00 2,317 14.7 Settlements 3.69 0.00 2,317 14.7	0.00 655 655 655 0.0 Other Land 655 655 655 0.0	9,168 8,610 8,908 564 2,229 655 30,134 total 2019 9,395 8,197 9,001 583 2,302 655 30,134 total 2019 0,455 30,134	1007 7001	Forest Grassland Cropland Settlements Other Land Total 2015 Land converted to: 20 years matrix Grassland Cropland Wetland Settlements Other Land at 2020 Land converted to: 20 years matrix Forest Grassland Cropland Wetland Settlements Other Land dt 2020 Land converted to: 20 years matrix Forest Grassland Cropland Wetland Settlements Other Land dt 2020	7,932 1,281 9,214 1,281 Forest 8,307 1,133 9,441 1,133 Forest 8,382	6,997 1,608 8,605 1,608 Grassland 6,788 1,306 8,095 1,306 8,095 1,306 6,834	0 8,845 8,845 0 Cropland 194 8,845 9,040 194 194 194	Wetlands 0.00 58.79 512 59 59 59 2020 Wetlands 15.04 56.42 515 586 71 2021 Wetlands 15.04	47,1 0 1,782 2,35 2,244 462 Settlements 62,0 55 279 1,920 1,44 2,317 397 Settlements 65,0 55 263	0 0 655 055 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7.980 8,278 10,924 512 1,782 657 30,134 total 2001 8,369 8,186 10,487 515 1,920 656 30,134 total 2002 total 2002 total 2002 515
3019	Grassland Crojland Wetland Settlements Other Land ioid 2015 Land converted to: Forest Grassland Crojland Wetland Settlements Other Land Crojland Forest Grassland Crojland Forest Grassland Crojland	9,164 49,13 9,214 49,1 Forest 9,392 49,13 9,392 49,13 9,441 49,1 9,441 49,1	8,561 44 8,605 44.1 Grassland 8,095 0 8,095 0.0 Grassland 8,045	8,845 8,845 0.0 Cropland 38,89 9,001 9,040 38,9 Cropland Cropland	Wetlands 7,52 564 571 7,5 2020 Wetlands 3,01 588 586 3,0 2021 Wetlands 0,00 .	3.69 10.98 2,229 0.00 2,244 14.7 Settlements 3.69 10.98 10.98 2,302 0.00 2,317 14.7 Settlements 3.69 0.00 2,317 14.7	0.00 655 655 655 0.0 Other Land 655 655 655 0.0	9,168 8,610 8,908 564 2,229 655 30,134 total 2019 9,395 8,197 9,001 583 2,302 655 30,134 total 2019 total 2019 total 2019 9,441 8,095	2001	Forest Grassland Cropland Settlements Other Land Total 2015 Land converted to: 20 years matrix Forest Grassland Cropland Wetland Settlements Other Land 20 years matrix 20 years matrix 20 years matrix Forest Grassland Cropland Settlements Cropland Settlements Settlements Settlements Settlements Settlements	7,932 1,281 9,214 1,281 Forest 8,307 1,133 9,441 1,133 Forest 8,382	6,997 1,608 8,605 1,608 Grassland 6,788 1,306 8,095 1,306 8,095 1,306 6,834	0 8,845 8,845 0 Cropland 194 8,845 9,040 194 194 194	Wetlands 0.00 58.79 512 571 59 2020 Wetlands 56.42 515 586 71 2021 Wetlands 15.04	47,1 0 1,782 2,35 2,244 462 Settlements 62.0 55 279 1,920 1.44 2,317 397 Settlements 65.0 55 2,317 397	0 0 655 655 0 0 0 0 0 655 655 0 0 0 0 0	7.980 8,278 10,924 512 1,782 657 30,134 total 2001 8,369 8,369 8,365 10,487 515 515 30,134 total 2002 total 2002 total 2002 total 2002 total 2002 total 2002 total 2002
5016 1017	Grassland Crojland Wetland Settlements Other Land ional 2015 Land converted to: Forest Grassland Crojland Wetland Settlements Other Land 2020 Land converted to: Forest Grassland Crojland Wetland	9,164 49,13 9,214 49,1 Forest 9,392 49,13 9,392 49,13 9,441 49,1 9,441 49,1	8,561 44 8,605 44.1 Grassland 8,095 0 8,095 0.0 Grassland 8,045	8,845 8,845 0.0 Cropland 38,89 9,001 9,040 38,9 Cropland Cropland	Wetlands 7,52 564 571 7,5 2020 Wetlands 3,01 588 586 3,0 2021 Wetlands 0,00 .	3.69 10.98 2,229 0.00 2,244 14.7 Settlements 3.69 0.00 2,317 14.7 Settlements 3.69 0.00 2,369 0.00 2,317 14.7	0.00 655 655 655 0.0 Other Land 655 655 655 0.0	9,168 8,610 8,908 564 2,229 655 30,134 total 2019 9,395 8,197 9,001 583 2,302 655 30,134 total 2020 9,441 8,095 9,040 586	2001 1005 1005 1005 1005 1005 1005 1005	Forest Grassland Other Land Settlements Other Land Total 2015 Land converted to: 20 years matrix Forest Grassland Cropland Wetland Settlements Other Land 20 years matrix Forest Cropland Cropland Settlements Other Land Settlements Other Land Settlements Other Land Settlements Other Land Settlements Other Land	7,932 1,281 9,214 1,281 Forest 8,307 1,133 9,441 1,133 Forest 8,382 1,104	6,997 1,608 8,605 1,608 Crassland 6,788 1,306 8,095 1,306 Crassland 6,834 1,212 1,212	0 8,845 8,845 0 Cropland 194 8,845 9,040 194 194 8,834 194 8,834	Wetlands 0.00 58.79 512 571 59 2020 Wetlands 56.42 515 586 71 71 2020 Wetlands 55.42 515 2021 Wetlands 15.04 55.95 515 515	47.1 0 1,782 2,35 2,244 462 Settlements 62.0 55 279 1,920 1,44 2,317 397 Settlements 65.0 55 263 1,948 1,26	0 0 655 655 0 0 0 0 0 655 655 0 0 0 0 0	7.980 8.278 10.924 512 1.782 657 30,134 total 2001 8.369 8.186 10.487 515 1.920 656 30,134 total 2002 8.447 8.202 8.447 8.202 8.447 8.025 515 515 515 515
2020 2019	Grassland Crofland Wetland Settlements Other Land ioial 2015 Land converted to: Forest Grassland Crofland Wetland Settlements Other Land '2020 Land converted to: Forest Grassland Crofland Settlements Settlements Settlements	9,164 49,13 9,214 49,1 Forest 9,392 49,13 9,392 49,13 9,441 49,1 9,441 49,1	8,561 44 8,605 44.1 Grassland 8,095 0 8,095 0.0 Grassland 8,045	8,845 8,845 0.0 Cropland 38,89 9,001 9,040 38,9 Cropland Cropland	Wetlands 7,52 564 571 7,5 2020 Wetlands 3,01 588 586 3,0 2021 Wetlands 0,00 .	3.69 10.98 2,229 0.00 2,244 14.7 Settlements 3.69 10.98 2,302 0.00 2,317 14.7 Settlements 3.69 0.00 2,317 14.7		9,168 8,610 8,908 564 2,229 655 30,134 total 2019 9,395 8,197 9,001 583 2,302 655 30,134 total 2020 0,441 8,095 9,040 586	2001 1005 1005 1005 1005 1005 1005 1005	Forest Grassland Cropland Wetland Settlements Other Land Cropland 20 years matrix Forest Grassland Cropland Wetland Settlements Other Land at 2020 Land converted to: 20 years matrix Forest Grassland Cropland Settlements Other Land Settlements Other Land Settlements Other Land Settlements Other Land Settlements Other Land	7,932 1,281 9,214 1,281 9,214 1,281 9,214 1,281 9,441 1,133 9,441 1,133 9,441 1,133	6,997 1,608 8,605 1,608 6,788 1,306 6,788 1,306 6,788 1,306 6,788 1,306 6,834 1,212 6,834 1,212 8,046	0 8,845 8,845 0 Cropland 194 8,845 9,040 194 9,040 194 8,845 Cropland	Wetlands 0.00 58.79 512 571 59 2020 Wetlands 515 515 586 71 2021 Wetlands 55.95 586 515	47,1 0 1,782 2,35 2,244 462 Settlements 62,0 55 279 1,920 1,24 2,317 397 Settlements 65,0 55 2,337 1,26 6,2,32	0 0 655 655 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7.980 8,278 10,924 512 1,782 657 30,134 total 2001 8,369 8,369 8,365 10,487 515 515 30,134 total 2002 total 2002 total 2002 total 2002 total 2002 total 2002 total 2002
2020	Grassland Crojland Wetland Settlements Other Land ioid 2015 Land converted to: Forest Grassland Crojland Wetland Settlements Other Land (2020 Forest Grassland Crojland Wetland Settlements Other Land Crojland Crojland Settlements Other Land	9,164 49,13 9,214 49,1 Forest 9,392 49,13 9,441 49,1 Forest 9,437 49,13	8,561 44 6 6 7 8,605 44,1 6 7 8,005 0 0 8,095 0 0 8,095 0.0 7 8,045 0.51	8,845 8,845 0.0 Cropland 38,89 9,061 9,040 38,9 9,040 38,9 0.00 9,028	Wetlands 7,52 564 7,5 2020 Wetlands 3,01 588 30 2021 Wetlands 0,0 586	3.69 10.98 2,229 0.00 2,244 14.7 Settlements 3.69 10.98 2,302 0.00 2,317 14.7 Settlements 3.69 0.00 2,317 14.7		9,168 8,610 8,908 564 2,229 655 30,134 total 2019 9,395 8,197 9,001 583 2,302 655 30,134 total 2020 9,441 8,095 9,940 586 2,2317 8,55	2001 1005 1005 1005 1005 1005 1005 1005	Forest Grassland Other Land Settlements Other Land Total 2015 Land converted to: 20 years matrix Forest Grassland Cropland Wetland Settlements Other Land 20 years matrix Forest Cropland Cropland Settlements Other Land Settlements Other Land Settlements Other Land Settlements Other Land Settlements Other Land	7,932 1,281 9,214 1,281 Forest 8,307 1,133 9,441 1,133 Forest 8,382 1,104	6,997 1,608 8,605 1,608 Crassland 6,788 1,306 8,095 1,306 Crassland 6,834 1,212 1,212	0 8,845 8,845 0 Cropland 194 8,845 9,040 194 194 8,834 194 8,834	Wetlands 0.00 58.79 512 571 59 2020 Wetlands 56.42 515 586 71 71 2020 Wetlands 55.42 515 2021 Wetlands 15.04 55.95 515 515	47.1 0 1,782 2,35 2,244 462 Settlements 62.0 55 279 1,920 1,44 2,317 397 Settlements 65.0 55 263 1,948 1,26	0 0 655 655 0 0 0 0 0 655 655 0 0 0 0 0	

6.2 Forest Land (4A)

6.2.1 Description

Under this category, CO₂ emissions and removals from living biomass and dead organic matter, in forest land remaining forest land and from living biomass, dead organic matter (DOM) and soil organic matter (SOM) in land converted to forest land have been reported.

Forest land removals share, in 2021, 70.7% of total CO₂ eq. LULUCF net removals. CO₂ removals are mainly due to the living biomass, i.e., 94.4%, while DOM and SOM contribute only to 2.3% and 3.4%.

 CO_2 emissions and removals from forest land remaining forest land and CO_2 removals from land converted to forest land have been identified as key categories in level and in trend assessment either with Approach 1 and Approach 2.

Management practices in the Italian forests are guided by the Legislative Decree n. 227 of 18 May 2001, although the design and implementation of specific guidelines has been carried out at regional level since, according to the Italian Constitutional Law, the forest management is a regional competence. The Legislative Decree n. 227/2001 provides general guidance on forest management:

- \rightarrow protect forest ecosystem functions, genetic resources, water basins and landscape;
- \rightarrow avoid conversion of forest land to other land uses, and where occurring apply compensative reforestations with endemic species;
- $\rightarrow~$ avoid conversion from forest stands to coppices;
- \rightarrow avoid clear-cut;
- \rightarrow conserve biodiversity, including true conservation of old trees and dead wood.

6.2.2 Information on approaches used for representing land areas and on land-use databases used for the inventory preparation

The forest definition adopted under the Convention is the same used for the NFIs³⁷. The forest definition includes areas where trees 1) fulfil the required threshold or 2) "have the potential to reach *in situ*" such required thresholds. For instance, *abandoned land with regenerating forest* is classified forest in consideration of the potential that vegetation has to reach the forest thresholds while that are not expected to evolve in forests do not and will never meet the forest definition; for this reason, this kind of shrublands is included in the *grassland* category and are defined as other wooded land. The assessment of vegetation potential to meet thresholds is carried out in the field (phase 2 of the NFI), and it is mainly based on the time needed to reach the forest thresholds, which should not exceed the 20 years. This means that also shrublands that are expected to evolve to forest vegetation within such time frame are classified as forests.

Forest land area is that of the NFIs. For any forest area growth, it is assumed that new forest land area can only come from grassland.

The Italian Ministry of Agriculture and Forests (MAF) and the Experimental Institute for Forest Management (ISAFA) carried out the National Forest Inventories. The first NFI was based on a regular sampling grid of 3 km by 3 km, (MAF/ISAFA, 1988), the second NFI (INFC2005) used a grid of 1 km by 1 km, so as the third NFI (NFI2015). The NFI2015 has completed its second phase, delivering on-field measurements on the plots of the sampling grid; 2015 area data of "Forest" and of "Other Wooded Land" have been therefore modified accordingly, resulting in a consequent recalculation of the 2005-2015 period (annual areas have been interpolated) and 2015-2020 period (annual areas have been extrapolated). Complete NFI2015 results have been released in late 2022, supplying data related to current increment and stocks.

6.2.3 Land-use definitions and the classification systems used and their correspondence to the LULUCF categories

The forest definition adopted by Italy in the framework of the Kyoto Protocol has been used. This definition is in line with the definition of the Food and Agriculture Organization of the United Nations, therefore the following threshold values for tree crown cover, land area and tree height have been applied:

- a. a minimum area of land of 0.5 hectares;
- b. a minimum tree crown cover of 10 per cent;
- c. minimum tree height of 5 meters.

6.2.4 Methodological issues

Forest Land remaining Forest Land

³⁷ The detailed definition is reported on the website of the NFIs <u>http://www.sian.it/inventarioforestale/jsp/q features.jsp</u> (forest definition: <u>http://www.sian.it/inventarioforestale/jsp/linkmetodo/definizionilink1.jsp</u>)

To model C stock changes in forest land Italy uses the *For-est* model together with NFIs data, which include C pools as defined in table 6.5.

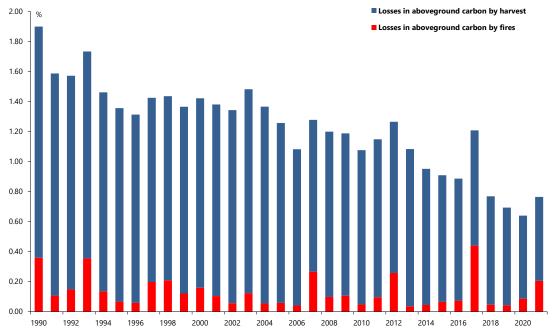

Forest carbon pools	Ordinary survey	Supplementary survey (Third phase)	Thresholds		
Aboveground biomass	Biomass of trees with DBH≥4.5 cm (trees-AGB) Number or subjects of regeneration and shrubs	Ratio dry matter to wet & allometric Ratio dry matter to wet	All woody AGB included		
Belowground biomass		Ratio root to shoot	a > 2 mm		
	Volume of coarse woody debris (CWD)	Basic densities	s≥ 9.5 cm		
	Volume of stumps	Basic densities	s≥ 9.5 cm		
Deadwood	Volume of standing dead trees (STD)	Basic densities	As for living trees		
	Fine woody debris: not measured (FWD)	Wet weight per unit area; dry matter to wet ratio	$2.5 \le 0.5 \text{ cm}$		
1:4		Wet weight per unit area; dry matter to wet	Fine woody debris $\infty \le 2.5$ cm, plus		
Litter	not measured	ratio	all other non-living biomass $\infty \leq 2 \text{ mm}$		
Soil	not measured	Organic carbon per unit area	all organic carbon for an increment of 30 cm, plus all other biomass and dead mass $\infty < 2$ mm		

Table 6.5 Carbon pools, ecosystem components in the NFI surveys³⁸

The model applies the IPCC classification and definitions for C pools: living biomass, both aboveground and belowground; dead organic matter, including dead wood and litter; and soil organic matter. Information on the model is reported in Annex 13; additional information on methodological aspects can be found in Federici et al. (2008).

As described in step 3.b of Annex 13, biomass in burnt areas is assumed to have been completely lost, although not all the biomass stock is oxidized during the fire event (see also Annex 14 for the methodology used for forest fire emission estimates). In figure 6.3, aboveground biomass losses due to harvest and forest fires, expressed as percentage on total aboveground carbon stock in forest land, are shown.

CO₂ emissions due to wildfires in forest land remaining forest land are included in CRF Table 4.A.1, carbon stocks change in living biomass - losses. Non-CO₂ gases are estimated separately from the aboveground biomass loss calculated by the *For-est* model; from the aboveground biomass loss the amount of C oxidized during the fire event is estimated using oxidation factors specific of the for each fire event. CH₄

³⁸ Specific documentation and information on the definitions of the NFI pools (e.g. the diameter threshold for deadwood and how this pool is differentiated from litter, which soil horizons are included in the soil pool and which pool contains the humus layer) are available at the NFI website: <u>https://www.inventarioforestale.org/it/node/72</u> (i.e.,

https://www.inventarioforestale.org/sites/default/files/datiinventario/manuale_fase3%2B_v4_definitiva_REGp.pdf;

https://www.inventarioforestale.org/sites/default/files/datiinventario/pubb/INFC2015 Guida per i rilievi in campo 2016-12.pdf)

and N₂O emissions are inferred (see also paragraph 6.12.2 and Annex 14). Non-CO₂ emissions from fires have been estimated and reported in CRF Table 4(V).

Organic soils in forest land remaining forest land do not occur (NO).

CO₂ emissions due to wildfires in land converted to forest land are included in CRF Table 4.A.2, carbon stocks change in living biomass - losses.

Italy has decided not to account for the SOC changes in mineral soils from Forest land remaining Forest land, providing transparent and verifiable information to demonstrate that SOM in mineral soils is not a source.

Carbon stock changes in minerals soils, for Forest land remaining Forest land have been inferred from stock changes estimated in the aboveground biomass through linear regression i.e., $SOC = f(C_{Aboveground})$; consequently, the carbon stock changes in mineral soils are calculated as:

 $\Delta SOC = f(C_{Abovegound})_{time2} - f(C_{Abovegound})_{time1}$

per forestry use –stands (conifers, broadleaves, mixed stands) and coppices. These equations have been calculated on data collected within the European project BioSoil³⁹, for SOM, and a Life+ project FutMon⁴⁰ (Further Development and Implementation of an EU-level Forest Monitoring System), for the aboveground biomass. SOC stock values in mineral soils were assessed down to 40 cm, standardized at 30 cm, with layer-based sampling (0-10, 10-20, 20-40 cm) on 227 forest plots on a 15x18 km grid. SOC stock values have been estimated in each layer using layer depths, soil carbon concentrations (704 values), bulk densities (543 measured data, 163 estimated data in the field or by means of pedotransfer functions) and volumes of coarse fragment (704 values estimated in the field). BioSoil assessed also OF and OH layers in which organic material is in various states of decomposition (down to humus) and included these in the SOC stock estimations.

In table 6.6 the regressions calculated to infer SOC stocks [t C ha^{-1}] from the aboveground biomass [t C ha^{-1}] are shown.

³⁹ BioSoil project –http://www3.corpoforestale.it/flex/cm/pages/ServeBLOB.php/L/IT/IDPagina/487/UT/systemPrint; http://www.inbo.be/content/page.asp?pid=EN_MON_FSCC_condition_report

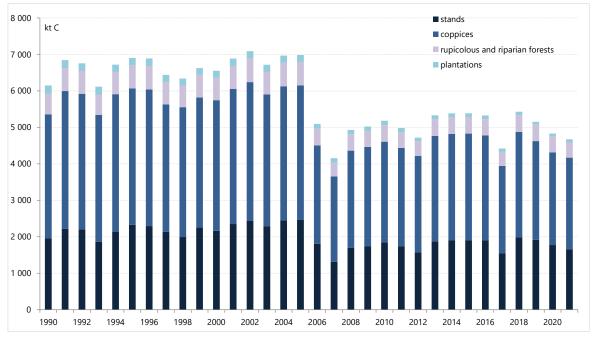
⁴⁰ FutM on: Life+ project for the "Further Development and Implementation of an EU-level Forest Monitoring System"; http://www.futmon.org; http://www3.corpoforestale.it/flex/cm/pages/ServeAttachment.php/L/IT/D/D.e54313ecaf7ae893e249/P/BLOB%3AID%3D397

	Inventory typology	Regressions aboveground biomass – SOC (t C ha-1)	R2	Standard error
	norway spruce	y = 0.2218x + 73.005	0.0713	40.14
	silver fir	y = 0.2218x + 73.005	0.0713	40.14
	larches	y = 0.2218x + 73.005	0.0713	40.14
	mountain pines	y = 0.2218x + 73.005	0.0713	40.14
stands	mediterranean pines	y = 0.2218x + 73.005	0.0713	40.14
sta	other conifers	y = 0.2218x + 73.005	0.0713	40.14
-	european beech	y = 0.2502x + 79.115	0.0925	44.10
	turkey oak	y = 0.2502x + 79.115	0.0925	44.10
	other oaks	y = 0.2502x + 79.115	0.0925	44.10
	other broadleaves	y = 0.2502x + 79.115	0.0925	44.10
	european beech	y = 0.2683x + 70.208	0.073	33.39
	sweet chestnut	y = 0.2683x + 70.208	0.073	33.39
Sa	hornbeams	y = 0.2683x + 70.208	0.073	33.39
coppices	other oaks	y = 0.2683x + 70.208	0.073	33.39
ld o	turkey oak	y = 0.2683x + 70.208	0.073	33.39
0	evergreen oaks	y = 0.2683x + 70.208	0.073	33.39
	other broadleaves	y = 0.2683x + 70.208	0.073	33.39
	conifers	y = 0.2218x + 73.005	0.0713	40.14
15	eucalyptuses coppices	y = 0.2683x + 70.208	0.073	33.39
plantations	other broadleaves coppices	y = 0.2683x + 70.208	0.073	33.39
nta	poplars stands	y = 0.2502x + 79.115	0.0925	44.10
lar	other broadleaves stands	y = 0.2502x + 79.115	0.0925	44.10
<u> </u>	conifers stands	y = 0.2218x + 73.005	0.0713	40.14
protective	rupicolous forest	y = 0.3262x + 68.648	0.1338	38.96
prot	riparian forest	y = 0.3262x + 68.648	0.1338	38.96

Table 6.6 Regressions to estimate the SOC stocks (t C ha⁻¹) in the upper 30 cm as a function of aboveground biomass in the different Italian forest typologies

Different trends in SOC stocks per hectare, for the different forest inventory typologies, have been inferred, as shown in Table 6.7.

Table 6.7 SOC stocks	per hectare in the upper 30 o	m. for the different fores	t inventory typologies


		1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
	Inventory typology	1550	1555	2000	2003		stocks (t (2010	2015	2020	2021
	norway spruce	85.42	84.86	84.33	84.01	83.92	83.87	83.88	83.89	83.89	83.86	83.86
	silver fir	87.17	86.23	85.35	85.11	85.21	85.44	85.53	85.60	85.65	85.67	85.72
	larches	83.77	83.14	82.57	82.41	82.59	82.81	82.90	82.97	83.03	83.05	83.11
	mountain pines	83.81	84.64	85.34	86.39	87.46	88.66	89.09	89.38	89.65	89.89	90.09
stands	mediterranean pines	83.23	84.88	86.27	87.86	89.05	90.43	90.90	91.19	91.47	91.70	91.83
sta	other conifers	80.05	80.79	81.39	82.23	83.16	84.18	84.56	84.76	84.97	85.15	85.32
-	european beech	98.73	98.50	98.41	98.77	99.16	99.91	100.10	100.30	100.48	100.61	100.70
	turkey oak	94.76	95.04	95.30	95.91	96.30	96.96	97.18	97.38	97.57	97.69	97.76
	other oaks	89.21	89.55	89.89	90.63	91.15	91.78	91.93	92.10	92.27	92.37	92.39
	other broadleaves	89.88	89.97	90.00	90.55	91.06	91.74	91.93	92.11	92.28	92.41	92.48
	european beech	83.23	82.80	82.46	82.46	82.84	83.47	83.64	83.79	83.91	84.01	84.09
	sweet chestnut	84.10	87.09	89.55	92.16	94.93	97.99	99.00	99.62	100.16	100.63	101.08
ŝ	hornbeams	76.40	76.08	75.83	75.74	75.83	76.04	76.11	76.16	76.18	76.20	76.22
vice	other oaks	75.53	75.95	76.18	76.41	76.68	77.13	77.29	77.40	77.48	77.51	77.55
coppices	turkey oak	79.18	78.68	78.26	78.03	78.01	78.23	78.31	78.39	78.44	78.45	78.46
6	evergreen oaks	79.62	79.44	79.28	79.29	79.38	79.71	79.81	79.94	80.03	80.07	80.07
	other broadleaves	78.61	80.22	81.52	82.79	84.00	85.17	85.49	85.68	85.82	85.94	86.05
	conifers	80.00	80.43	80.84	81.46	82.24	83.17	83.51	83.70	83.87	84.03	84.19
s	eucalyptuses coppices	83.72	87.06	88.15	88.83	88.99	88.93	88.62	88.85	89.01	88.94	88.45
plantations	other broadleaves coppices	84.15	86.95	88.27	89.17	89.80	90.19	90.19	90.37	90.43	90.41	90.35
tat	poplars stands	87.84	91.09	93.52	95.76	97.42	98.38	98.61	98.69	98.61	98.54	98.60
lan	other broadleaves stands	86.85	86.68	86.87	87.44	88.12	89.00	89.36	89.62	89.81	89.97	90.10
٩	conifers stands	82.30	84.01	86.25	89.32	92.46	96.02	97.34	98.18	98.91	99.60	100.16
protective	rupicolous forest	76.80	77.31	77.81	78.44	79.09	79.75	79.96	80.10	80.25	80.38	80.47
prote	riparian forest	83.66	83.16	82.77	82.54	82.71	82.86	82.88	82.91	82.93	82.96	82.99

From SOC stock values reported in Table 6.7 the SOC stock change values have been calculated for each forest typology group and reported in Table 6.8 and Figure 6.4.

	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
Inventory typology group					SO	C stock (k	t C)				
stands	1954	2327	2161	2460	1849	1907	1551	1979	1 915	1772	1658
coppices	3403	3742	3584	3692	2758	2924	2392	2897	2708	2541	2513
rupicolous and riparian forests	564	641	615	642	452	451	384	454	456	445	415
plantations	227	196	194	191	122	104	94	98	74	73	89
Total	6149	6905	6554	6984	5181	5387	4421	5429	5153	4831	4675

Table 6.8 SOC stock changes in the upper 30 cm of the mineral soils at national level

Figure 6.4 SOC stock changes in mineral soils of Italian forests

A comparison of the model results versus data measured in the framework of the II NFI (INFC2005) has been carried out and results are shown in the following table 6.9.

Table 6.9 Comparison between SOC stock estimates int the upper 30 cm depth for the entire national forest land territory derived from NFI 2005 and the *For-est* model

	NFI 2005	For-est model	differences		
	t C= Mg	t C= Mg	t C= Mg	%	
SOC stock	703,524,894	710,577,508	7,052,614	+1.00	

Land converted to Forest Land

The area of land converted to forest land always comes from grassland not subject to any specific management practice (i.e., under natural conditions). It is assumed that other conversions do not occur, and there is no evidence that those do occur. Accordingly, methods and factors for grassland converted to forest land are applied to estimate C stock changes and associated GHG emissions and removals.

Italy applies a 20-year conversion period and an approach 2 for land representation, so that, in any inventory year, the area reported under this category is the cumulated area of all conversions occurred in that year plus the area converted in the 19 previous years.

As for forest land remaining forest land, carbon stock changes in living biomass are calculated using the same *For-est* model.

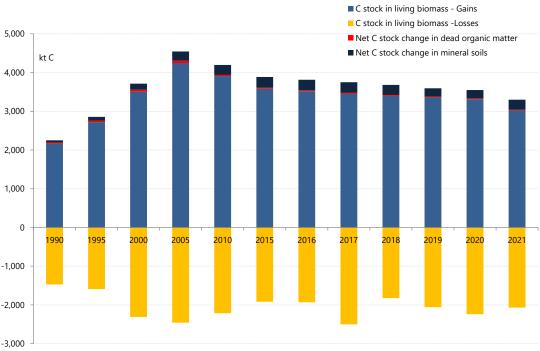
The DOM pools have been estimated using coefficient values for each forest inventory typology and assuming a constant, linear, accumulation rate of both dead wood and litter across the conversion time till the coefficient value is achieved when the land transfers to the category forest land remaining forest land. In practice, in each conversion year, 1/20 of the dead wood mass coefficient and of the litter mass coefficient are reported as net CO₂ removals.

The dead wood dry mass coefficients for each forest inventory typology, see table 6.10, have been estimated using data taken for the Italian national forest inventory, in 2008 and 2009 across the country from the plots of the national forest inventory network (http://www.sian.it/inventarioforestale/jsp/necromassa.jsp). The mass (wet matter) collected on the ground in those plots has been converted in dry matter using basic densities appositely calculated in a specific study (Di Cosmo et al., 2013). The data collected, aggregated at regional level, are accessible at the NFI website: http://www.sian.it/inventarioforestale/jsp/necromassa.jsp).

The definition of the deadwood pool, coherent with the definition adopted by the NFI, is "All non-living woody biomass not contained in the litter, either standing, lying on the ground, or in the soil. Dead wood includes wood lying on the surface, stumps larger than or equal to 10 cm in diameter and standing trees with DBH > 4,5 cm".

	Inventory typology	d.m. t ha ⁻¹
	norway spruce	6.360
	silver fir	7.770
	larches	3.830
	mountain pines	4.385
spu	mediterranean pines	2.670
stands	other conifers	4.290
	european beech	3.350
	turkey oak	1.770
	other oaks	1.690
	other broadleaves	3.990
	european beech	3.350
	sweet chestnut	12.990
S	hornbeams	2.730
coppices	other oaks	1.690
tdo	turkey oak	1.770
0	evergreen oaks	1.370
	other broadleaves	2.690
	Conifers	4.290
10	eucalyptuses coppices	0.670
ion	other broadleaves coppices	0.670
ntat	poplars stands	0.480
plantations	other broadleaves stands	0.670
	conifers stands	3.040
protective	rupicolous forest	2.730
prote	riparian forest	4.790

Table 6.10 Dead-wood coefficients for dry mass (d.m.)


Litter mass coefficients per hectare has been estimated at regional level from data available from the NFI2005 (http://www.sian.it/inventarioforestale/jsp/dati carquant tab.jsp).

To estimate carbon stock changes in mineral soils, the IPCC default method has been applied. A countryspecific SOC stock for natural grassland has been set at 78.9 t C ha⁻¹, based on a review of the literature on soil carbon in mountain meadows, pastures, set-aside lands as well as undisturbed abandoned land, in Italy (Masciandaro and Ceccanti, 1999; Del Gardo *et al.*, 2003; Benedetti *et al.*, 2004; Viaroli and Gardi, 2004; La Mantia *et al.*, 2007; Xiloyannis, 2007; IPLA, 2007; ERSAF, 2008; CRPA, 2009). For forest soils, the time series of SOC stocks is reported in table 6.11 according to the previously described methodology (forest land remining forest land).

1985-199479.8091995-199980.174	
2000-2004 80.586	
2005-2009 81.121	
2010-2014 81.682	
2015-2020 82.430	
2021 82.801	

Table 6.11 Soil Orga	nic Carbon (SOC) sto	ocks for <i>forest land re</i>	mainina forest land
Table of the boll of ga			induning for cot taina

In Figure 6.5, the C stock changes in land converted to forest land are shown.

Land converted to forest land do not occur (NO) on organic soils.

CO₂ emissions due to wildfires in land converted to forest land are included in CRF Table 4.A.2, carbon stocks change in living biomass - losses.

Non-CO₂ emissions from fires have been estimated and reported in CRF Table 4(V); details on the methodology used to estimate emissions are reported in paragraph 6.12.2.

6.2.5 Uncertainty and time series consistency

To assess the overall uncertainty of the time series 1990–2021, Approach 1 of 2006 IPCC Guidelines (IPCC, 2006) has been applied. Input uncertainties for activity data and emission factors are derived from the country specific information and from the defaults provided in the 2006 IPCC Guidelines (IPCC, 2006).

In Table 6.12, the values of carbon stock of each pool, for the year 1985, and the associated uncertainties are reported for the entire forest land area.

cks	Aboveground biomass	V_{AG}	139.92
Carbon stocks t CO2 eq. ha ⁻¹	Belowground biomass	V_{BG}	31.6
rbon 002 e	Dead wood	V_{D}	3.3
^c Ca	Litter	VL	2.7
	Growing stock	ENFI	3.2%
	Current increment (Richards) ⁴¹	ENFI	51.6%
	Harvest	Ен	30%
	Fires	E _F	30%
ţ	Drain and grazing	ED	30%
Uncertainty	Mortality	Ем	30%
ncer	BEF	E _{BEF1}	30%
5	R	ER	30%
	Deadwood	E_{DEF}	4.6%
	Litter	ΕL	10%
	Wood Basic Density (WDB)	EBD	30%
	C Conversion Factor	ECF	2%

Table 6.12 Carbon stocks and uncertainties for year 1985 and current increment related uncertainty

The uncertainties of each carbon pool and the overall uncertainty for 1985 has been computed and shown in table 6.13.

Table 6.13 C stock uncertainties	for t	the year	1985
----------------------------------	-------	----------	------

Overall uncertainty	E ₁₉₈₅	34.85%
Litter	EL	43.75%
Dead wood	ED	42.84%
Belowground biomass	E _{BG}	52.10%
Aboveground biomass	E _{AG}	42.59%

The overall uncertainty related to 1985 (the year of the first National Forest Inventory) has been propagated through the years, till 2021, following Approach 1.

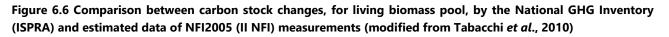
The uncertainties related to the carbon pools and the overall uncertainty for 2021 are shown in table 6.14.

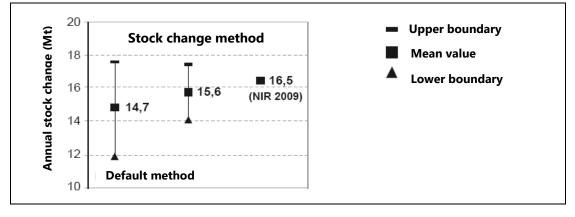
Table 6.14 Uncertainties for the year 2021

Overall uncertainty	Е	35.42%
Litter	ΕL	43.80%
Dead wood	E_D	42.89%
Belowground biomass	E_{BG}	52.14%
Aboveground biomass	E_{AG}	42.64%

⁴¹ The current increment is estimated by the Richards function (first derivative); uncertainty has been assessed considering the standard error of the linear regression between the estimated values and the corresponding current increment values reported in the National Forest Inventory

Following Approach 1 and the abovementioned methodology, the overall uncertainty in the estimates produced by the described model has been quantified; in table 6.15 the uncertainties of the 1985-2021 period are reported.


Table 6.15 Overall uncertainties	s 1985 – 2021 (%)
----------------------------------	-------------------


1985	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
34.9	35.0	35.1	35.2	35.2	35.3	35.4	35.4	35.4	35.4	35.4	35.4

The overall uncertainty in the model estimates between 1990 and 2021 has been assessed subtracting uncertainties with Approach 1 (IPCC 2006, Vol.1, Ch. 3, Equation 3.2), resulting in overall uncertainty equal to 25.1%.

6.2.6 Category-specific QA/QC and verification

Systematic quality control activities have been carried out to ensure completeness and consistency in time series and correctness in the sum of sub-categories; where possible, activity data comparison among different sources (FAO database⁴², ISTAT data⁴³) has been made. Data entries have been checked several times during the compilation of the inventory; attention has been focused on the categories showing significant changes between two years in succession. Land use matrices have been accurately checked and cross-checked to ensure that data were properly reported. An independent verification of the living biomass net change with data from the second NFI, for the year 2005 (Tabacchi et al., 2010) was performed. In figure 6.6 outcome of the comparison is shown.

The nomenclature used in the NFI2005 and NFI2015 is different from that elaborated for the first national forest inventory. A confusion matrix, between forest typologies of the NFI2005-NFI2015 and those of the first forest inventory classification systems is under finalization. In the meanwhile, a comparison among NFI2005-NFI2015 current increment data and *For-est* model current increment data is possible only for a not exhaustive number of inventory typologies. In the following figure 6.7 the comparison has been reported both for NFI2005 and for NFI2015. The comparisons refer to the year 2005 and 2018, which is the mean years for the field survey of the second and third forest inventories, respectively.

⁴² FAO, 2015. FAOSTAT, http://faostat3.fao.org/home/E

⁴³ ISTAT, several years [a], [b], [c]

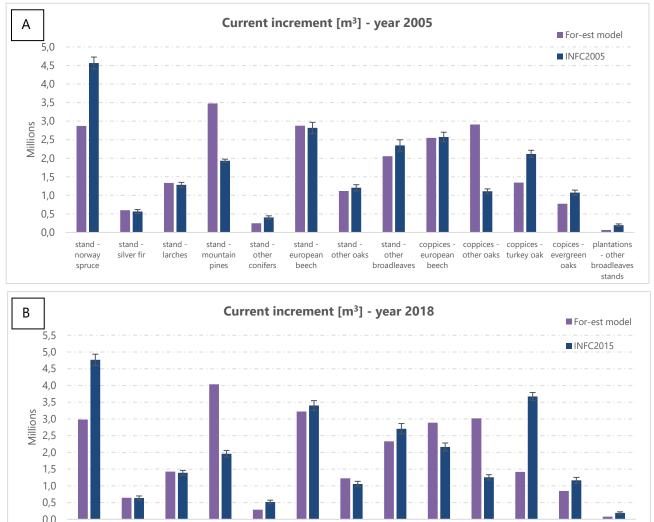


Figure 6.7 Average national current increment: comparison among NFIs (INFC) data and For-est model estimates for the year 2005 (panel A – NFI2005) and for the 2018 (panel B – NFI2015)

Generally, the current increment estimated with the For-est model is quite in a good agreement with the INFC measured current increments. The main differences noticeable from the comparisons refer to the different nomenclature used by the INFC and the For-est model, resulting in an assignment of some forest areas to more or less pure forest typologies by the For-est model with respect to the field data of the forest inventories. Some examples: *stand norway spuce* (with a remarkable overestimate of INFC current increment compared to For-est) while, for the *stand mountain pines*, the current increment estimated by the For-est is higher than the INFC one; similar situation with the categories *coppice other oaks – coppices turkey oak – coppices evergreen oaks*, where the mismatch may be explained with a different allocation (i.e., area) of the abovementioned categories.

An additional verification activity has been carried out, comparing the implied carbon stock change per area (IEF), related to the living biomass, with the IEFs reported by other Parties. The 2022 submission⁴⁴ has been considered to deduce the different IEFs; in figure 6.8 the comparison is showed, considering the

stand -

norway

spruce

stand -

silver fir

stand -

larches

stand

mountain

pines

stand -

other

conifers

stand

european

beech

stand

other oaks

stand -

other

broadleaves

coppices - coppices -

european

beech

coppices -

other oaks turkey oak

copices -

everareen

oaks

plantations

- other

broadleaves

stands

⁴⁴ GHG Review Tools (unfccc.int)

IEFs for both the forest land remaining forest land (FL-FL) and land converting to forest land (L-FL) subcategories, for the living biomass.

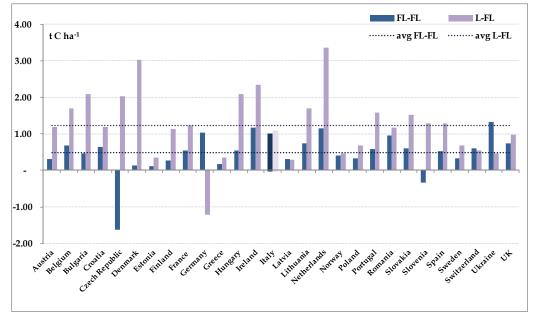


Figure 6.8 Implied carbon stock change per area for the living biomass

6.2.7 Category-specific recalculations

The recalculation, as shown in tables 6.16 and 6.17, occurs in the 2023 submission, comparing to the 2022 submission, for the forest land remaining forest land (-0.7% for the 2020 reporting year) and land converted to forest land (-8.8% for the 2020 reporting year). The recalculation is due to the update of the activity data as resulting from the complete NFI results (NFI2015) released in late 2022. In particular, the NFI set of data includes a survey on the harvesting, carried out in 2018. This "ground truth" data triggered a revision of harvest data, in the latest reporting years, affecting mainly the 2018 reporting year (+21.5% for the forest land category). Further revision of the harvest data is due to the incorporation of updated data collected from some relevant administrative regions (i.e., Lombardia⁴⁵, Piemonte⁴⁶, Veneto⁴⁷, Friuli Venezia Giulia⁴⁸).

⁴⁵ https://www.ersaf.lombardia.it/it/b/2248/rapportosullostatodelleforesteinlombardia-3

⁴⁶ https://servizi.regione.piemonte.it/catalogo/sistema-informativo-forestale-regionale-sifor;

http://www.sistemapiemonte.it/ambiente/cruscottoForeste/index.shtml

⁴⁷ https://www.regione.veneto.it/web/agricoltura-e-foreste/pubblicazioni-on-line

⁴⁸ <u>https://www.regione.fvg.it/rafvg/export/sites/default/RAFVG/economia-imprese/agricoltura-foreste/FOGLIA202/allegati/UtilizzazioniForestaliFVGOtt22.pdf</u>

	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020
2023 submission					CO ₂ e	q kt				
Forest land	-17,852	-31,122	-26,549	-35,049	-36,507	-40,417	-24,281	-40,734	-35,487	-30,042
- living biomass	-16,444	-29,579	-24,786	-32,983	-34,928	-38,759	-22,647	-39,147	-34,048	-28,617
- dom	-1,191	-1,191	-1,191	-1,191	-639	-639	-639	-639	-639	-639
- soils	-217	-353	-573	-876	-941	-1,019	-995	-948	-799	-786
2022 submission					CO ₂ e	q kt				
Forest land	-17,852	-31,122	-26,004	-34,667	-36,257	-39,385	-21,549	-31,980	-36,367	-30,261
- living biomass	-16,444	-29,579	-24,243	-32,607	-34,658	-37,846	-20,014	-30,458	-34,851	-28,796
- dom	-1,191	-1,191	-1,191	-1,191	-639	-639	-639	-639	-639	-639
- soils	-217	-352	-570	-869	-960	-901	-895	-883	-877	-826
recalculation					9	4				
Forest land	_	0.0	2.1	1.1	0.7	2.6	11.3	21.5	-2.5	-0.7
	-									
- living biomass	-	-	2.2	1.1	0.8	2.4	11.6	22.2	-2.4	-0.6
- dom	-	-	-	-	-	-	-	-	-	-
- soils	-	0.1	0.4	0.7	-2.1	11.6	10.1	6.9	-9.8	-5.1

Table 6.16 Recalculation in forest land category, for carbon pool

Table 6.17 Recalculation in forest land category, for subcategories FL-FL e L-FL

	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020
2023 submission					CO2 e	q kt				
Forest land	-17,852	-31,122	-26,549	-35,049	-36,507	-40,417	-24,258	-40,734	-35,487	-30,042
FL-FL	-15,002	-26,485	-21,420	-27,403	-29,250	-33,204	-19,681	-33,934	-29,853	-25,243
L-FL	-2,849	-4,637	-5,130	-7,646	-7,258	-7,213	-4,576	-6,800	-5,634	-4,799
2022 submission					CO2 e	q kt				
Forest land	-17,852	-31,122	-26,004	-34,667	-36,257	-39,385	-21,543	-31,980	-36,367	-30,261
FL-FL	-15,002	-26,485	-20,983	-27,099	-29,016	-32,379	-17,442	-26,476	-30,374	-25,040
L-FL	-2,849	-4,636	-5,022	-7,567	-7,241	-7,007	-4,101	-5,504	-5,993	-5,221
recalculation					9	6				
Forest land	-	0.00	2.1	1.1	0.7	2.6	11.2	21.5	-2.5	-0.7
FL-FL	-	-	2.0	1.1	0.8	2.5	11.4	22.0	-1.7	0.8
L-FL	-	0.01	2.1	1.0	0.2	2.9	10.4	19.1	-6.4	-8.8

6.2.8 Category-specific planned improvements

Italy is currently implementing a change in land classification system, by the use of the Oper-Foris Collect Earth tool. The new classification system is expected to supply land use and land use data for a time series, starting from 2010; the results of the abovementioned land classification will be evaluated, by comparing them against the used data and ancillary available statistics and information. The land classification system will hopefully be adopted for the reporting starting with the 2024 submission.

The complete set of third NFI (NFI2015) data, released in late 2022, will allow calibrating the increment curve and completing the verification the *For-est* estimates through a comparison with estimates prepared with the stock-difference method.

6.3 Cropland (4B)

6.3.1 Description

Under this category, CO₂ emissions from living biomass, and soils have been reported, for cropland remaining cropland and for land converted to cropland.

Cropland net emissions share 2.5% of total 2021 LULUCF CO₂ net emissions; in particular, the soil pools represent 25.9% of the whole cropland emissions and removals while the remaining 74.1% originates from living biomass pool.

CO₂ emissions and removals from cropland remaining cropland and land converted to cropland have been identified as key category in trend assessment with Approach 1 and 2 (cropland remaining cropland) and with Approach 2 only (land converted to cropland).

6.3.2 Information on approaches used for representing land areas and on land-use databases used for the inventory preparation

Information on the land representation is reported in section 6.1. For the cropland category, as already discussed, it is assumed that the only conversion occurring is from grassland to cropland. The IPCC default land use transition period of 20 years has been applied.

6.3.3 Land-use definitions and the classification systems used and their correspondence to the LULUCF categories

Cropland includes all annual and perennial crops.

Due to the technical characteristics of the IUTI assessment (i.e., classification of orthophotos), it was not possible clearly distinguish among some subcategories in *cropland* and non-woody *grassland* categories (e.g., grazing lands and unmanaged/natural grasslands). Therefore, although the total aggregated area of the 2 categories *cropland* and *grassland* together is derived from the IUTI data, the area of each of their subcategories is disaggregated using as proxies the national statistics (ISTAT, [b], [c]) on annual crops and perennial woody crops.

6.3.4 Methodological issues

Activity data for cropland remaining cropland have been subdivided into annual and perennial crops. Changes in the biomass C stock has been estimated for perennial crops in both cropland remaining cropland and land converted to cropland, while for annual crops in land converted to cropland only.

Soil carbon stock changes have been estimated and reported for annual and perennial crops in both cropland remaining cropland and land converted to cropland subcategories.

Living biomass – perennial crops

For perennial crops, biomass carbon stock changes have been estimated on the basis of the annual rates of biomass gain and loss (IPCC 2006, Vol. 4, Chapter 2, Equation 2.7).

The annual carbon stock in living biomass and the woody crops area annually undergoing to a woody biomass removal (e.g., biomass cleared and replanted with a different crop) have been estimated; in addition, the total woody crops area has subdivided into age classes, considering three main woody crop types (i.e., olives, vineyards and other fruit). The estimation process has been carried out at NUTS2

(regional) level, based on the available data from national statistics (ISTAT, [b], [c]) for the different woody crops species⁴⁹ and harvest/maturity cycles.

The carbon stock change in living biomass during the plantation cycle is estimated based on an annual constant net gain (accumulation rate), per perennial crop type and age class. Table 6.18 summarises the aboveground and belowground biomass carbon stock at the end of the maturity cycle for each group of perennial crops. These values correspond to the total biomass carbon stocks removed during the harvesting. All values have been assessed based on the database collected in the framework of the LIFE project MEDINET⁵⁰.

Crops	Harvest/maturity cycle	Aboveg	round C stock	Belowground C stock		
· ·	yr	t C ha⁻¹	std dev (t C ha⁻¹)	t C ha⁻¹	std dev (t C ha⁻¹)	
olive	50	9.13	1.07	2.60	0.09	
vineyards (wine grapes)	20	5.60	0.50	4.46	0.34	
vineyards (for other)	30	5.62	0.50	4.48	0.35	
orchards, pear, apple, cherry	25	8.91	1.32	5.75	0.32	
peach, apricot	15	8.94	1.29	5.72	0.65	
kiwifruit	20	8.90	1.31	5.73	0.68	
other fruits	20	8.90	1.31	5.73	0.68	

Table 6.18 Harvest/maturity cycle, aboveground and belowground biomass carbon stock at harvest

Net biomass carbon stock changes are equal to -316.5 kt C for 1990, and -414.8 kt C for 2021, a complete time series is summarised in table 6.19.

Table 6.19	Change in	carbon s	stock in	living	biomass
------------	-----------	----------	----------	--------	---------

			eground	biomass	belo	net change		
	Area	Gains	Losses	Net change	Gains	Losses	Net change	in C stock
	kha	kt C	kt C	kt C	kt C	kt C	kt C	kt C
1990	2,698	486	-693	-207	316	-425	-110	-317
1995	2,712	443	-534	-91	285	-367	-82	-173
2000	2,606	376	-693	-316	240	-533	-293	-609
2005	2,577	360	-467	-107	234	-305	-71	-178
2010	2,574	360	-441	-81	236	-320	-84	-165
2015	2,405	319	-665	-346	214	-451	-237	-582
2017	2,419	316	-407	-91	217	-274	-58	-148
2018	2,427	316	-438	-122	219	-289	-70	-192
2019	2,434	314	-375	-61	220	-240	-20	-81
2020	2,481	329	-548	-219	232	-366	-134	-353
2021	2,465	324	-595	-271	230	-374	-144	-415

Soils – annual and perennial crops

For mineral soils, the estimation method is based on changes in SOC stocks over a finite period due to changes in management practices. According to the 2006 IPCC Guidelines (IPCC, 2006), the change in mineral SOC stocks (vol. 4, chapter 2, eq. 2.25) is the result of a change in management practices in a unit of land across time. The SOC stock changes in annual and perennial crops have been estimated considering the following cropland management practices reported in table 6.20.

⁴⁹ Olive, vineyard (for wine grapes and other), orchards (orange, mandarine, clementine, lemon, grapefruit, bergamot, cedar, chinotto), apple, peach, pear, apricot, cherry, kiwifruit, other fruits (carob, fig, plum, hazelnut, almond, raspberry)

⁵⁰ MEDINET (Mediterranean Network for Reporting Emissions and Removals in Cropland and Grassland): https://www.lifemedinet.com/

cropland subcategory	management practices	definition	CAP regulations	
	Arable land (Ordinary)	A kind of agriculture that does not evidence any kind of soil carbon stock technical maintenance		
	Organic arable land	Management of waste crop; Organic manure; Extended crop rotation; Selection of better crop varieties; Cover crops	Reg. (EEC) n. 2078/92, Reg. (EC) n. 834/2007 and Reg. (EC) n. 889/2008, RDPs 2000-2006: Reg. (EC) n. 1257/99, RDPs 2007-2013: Reg. (EC) n. 1698/2005 and Reg. (EC) n. 74/2009	
annual crops	Sustainable arable land	Crop rotation; Grassing; Specific erosion prevention; Cover crops; Minimum tillage	National decree on sustainable agriculture n. 2722/2008; RDPs 2000-2006: Reg. (EC) n. 1257/99; RDPs 2007-2013: Reg. (EC) n. 1698/2005 and Reg. (EC) n. 74/2009	
	Set aside	Natural grassing; At least one mowing	Reg. (EEC) N. 1765/1992; National decree on cross compliance implementation n. 30125/2009 and subsequent revisions	
	Conservative practices	Zero tillage; Organic manure; Grassing; Cover crops; Minimum tillage; Crop rotation	RDPs 2007-2013: Reg. (EC) n. 1698/2005 and Reg. (EC) n. 74/2009	
	Woody crops (Ordinary)	A kind of agriculture that does not evidence any kind of soil carbon stock technical maintenance		
perennial crops	Organic woody crops	Management of waste crop; Organic manure; Extended crop rotation; Selection of better crop varieties; Cover crops	Reg. (EEC) n. 2078/92, Reg. (EC) n. 834/2007 and Reg. (EC) n. 889/2008, RDPs 2000-2006: Reg. (EC) n. 1257/99, RDPs 2007-2013: Reg. (EC) n. 1698/2005 and Reg. (EC) n. 74/2009	
	Sustainable management	Crop rotation; Grassing; Specific erosion prevention; Cover crops; Minimum tillage	National decree on sustainable agriculture n. 2722/2008; RDPs 2000-2006: Reg. (EC) n. 1257/99; RDPs 2007-2013: Reg. (EC) n. 1698/2005 and Reg. (EC) n. 74/2009	

In the following table 6.21 the data source for each management practice is listed.

cropland subcategory	management practice	data source				
	Ordinary	ISTAT				
	Organic	National Information system on organic agriculture (SINAB)				
annual crops	Sustainable	Annual Implementation Reports (RAE) and Annual Report on Operational Programs: 2000-2018				
	Set aside	Eurostat: 1990-2016				
	Conservative practices	Annual Implementation Reports (RAE): 2008-2018				
	Ordinary	ISTAT				
perennial crops	Organic	National Information system on organic agriculture (SINAB)				
	Sustainable	Annual Implementation Reports (RAE) and Annual Report on Operational Programs: 2000-2018				

The annual areas subject to the abovementioned management practices, at regional level, have been estimated, also considering the transition to and from different management practices (e.g., ordinary annual crops to organic annual crops, ordinary annual crops to sustainable annual crops, etc.). Specifically, Italy assumes that the surface increment or decrement related to each improved management practice (i.e., organic, sustainable, set aside, conservative) is due to a corresponding decrement or increment in

the surface of the ordinary management practice of the same cropland subcategory (i.e., annual crops and perennial crops). Changes in carbon stocks in mineral soils has been calculated by applying formulation B of equation 2.25 of the IPCC, 2006 (vol. 4, chapter 2). The IPCC default transition period, i.e., 20 years, has been considered.

The SOC_{ref} classification of the soils is based on the default reference SOC stocks for mineral soils (tC/ha in 0-30 cm) provided in Table 2.3 of IPCC 2006. The identification of country specific SOC_{ref} have been performed using a combination of the following map layers:

- IPCC climate zones (JRC) <u>http://eusoils.jrc.ec.europa.eu/projects/RenewableEnergy/</u>
- Corine Land cover 2006 (cropland: legend codes: 2.1, 2.2 and 2.4) -<u>http://sia.eionet.europa.eu/CLC2006</u>
- Soil map of Italy (reclassified according to the main groups of soil types as in Table 2.3 of 2006 IPCC Guidelines, vol. 4) - Costantini E.A.C., L'Abate G., Barbetti R., Fantappiè M., Lorenzetti R., Magini S. (2013) Carta dei suoli d'Italia, scala 1:1.000.000 -<u>https://esdac.jrc.ec.europa.eu/content/carta-dei-suoli-ditalia-soil-map-italy</u>
- Map of Italy with administrative boundaries.

Overlapping the abovementioned layers, the Italian soils have been classified according to the IPCC soil classes (Table 2.3, vol. 4, chapter 2 of the 2006 IPCC Guidelines), and their related climate zones as percentage in each region. According to the thereby defined distribution of the soil types and climate zones in each Italian region, it was possible to define the SOC_{ref}. The stock change factors (F_{LU}, F_{MG}, F_I) adapted to the national circumstances, have been derived by the default values provided in Table 5.5 of the 2006 IPCC Guidelines (vol. 4, chapter 5) and have been applied considering the percentage of moist and dry climates in each administrative region. The F factors considered for each management practice are reported in the following table 6.22.

	Management	FLU		F _{MG}		Fi	
	practice	Moist	Dry	Moist	Dry	Moist	Dry
	Ordinary	0.69	0.8	1	1	0.92	0.95
	Organic	0.69	0.8	1	1	1.44	1.37
annual	Sustainable	0.69	0.8	1.08	1.02	1	1
crops	Set aside	0.82	0.93	1.15	1.1	0.92	0.95
	Conservative	0.69	0.8	1.15	1.1	1.11	1.04
	Ordinary	1	1	1	1	1	1
perennial	Organic	1	1	1.08	1.02	1.44	1.37
crops	Sustainable	1	1	1.08	1.02	0.92	0.95

Table 6.22 Stock change factors

The SOC stocks per hectare in the mineral soil, calculated with the previously described procedure, are shown in the table 6.23, per region and per management practices, for annual and perennial crops. Estimates of SOC stock changes in annual and perennial crops are reported in table 6.24.

	annual crops					perennial crops		
Region	Ordinary	Organic	Sustainable	Set aside	Conservative	Ordinary	Organic	Sustainable
			SOC stock (t (C ha ⁻)1		SC	OC stock (t	C ha ⁻)1
Piemonte	49.04	74.86	56.02	65.64	65.18	72.91	109.79	71.92
Valle D'Aosta	57.29	89.45	67.07	78.13	79.15	89.72	139.09	89.08
Liguria	51.15	78.64	58.89	68.87	68.82	77.29	117.47	76.40
Lombardia	52.32	80.88	60.59	70.76	71.06	80.06	122.53	79.26
Trentino – Alto Adige	56.84	88.97	66.73	77.68	78.87	89.54	139.26	88.97
Veneto	46.88	71.05	53.14	62.38	61.55	68.60	102.36	67.53
Friuli - Venezia Giulia	55.94	87.56	65.67	76.45	77.62	88.12	137.05	87.56
Emilia - Romagna	40.13	59.60	44.50	52.53	50.87	56.17	81.60	54.94
Toscana	38.18	56.43	42.11	49.78	47.98	52.88	76.32	51.64
Umbria	46.72	70.81	52.96	62.17	61.34	68.37	102.01	67.30
Marche	39.05	57.86	43.18	51.02	49.29	54.36	78.72	53.14
Lazio	39.33	58.52	43.69	51.55	50.01	55.26	80.48	54.09
Abruzzo	40.97	60.98	45.54	53.72	52.13	57.61	83.93	56.39
Molise	32.74	47.67	35.52	42.18	40.09	43.94	62.20	42.72
Campania	31.64	45.99	34.26	40.71	38.63	42.31	59.75	41.11
Puglia	29.21	42.21	31.43	37.42	35.30	38.60	54.07	37.42
Basilicata	30.64	44.37	33.05	39.31	37.17	40.67	57.16	39.46
Calabria	34.42	50.34	37.53	44.51	42.48	46.63	66.39	45.39
Sicilia	28.70	41.38	30.81	36.69	34.56	37.76	52.77	36.59
Sardegna	30.11	43.56	32.44	38.60	36.47	39.89	55.99	38.69

Table 6.24 SOC stock changes in in the mineral soil for annual and perennial crops

		ea	SOC stock change					
	annual crops - mineral soil	perennial crops	annual crops	perennial crops	total			
	kha	kha	kt C	kt C	kt C			
1990	8,005.9	2,698.5	325.4	2.4	327.8			
1995	7,992.1	2,712.3	574.8	37.8	612.5			
2000	7,797.2	2,605.9	933.6	186.5	1,120.1			
2005	7,217.4	2,577.4	850.4	204.7	1,055.1			
2010	6,500.3	2,574.4	451.4	309.3	760.7			
2015	6,440.6	2,404.9	336.9	306.1	643.0			
2017	6,426.2	2,419.3	504.1	323.1	827.1			
2018	6,419.0	2,426.5	497.0	310.0	807.0			
2019	6,411.8	2,433.7	450.0	301.1	751.1			
2020	6,404.7	2,440.8	353.7	301.4	655.2			
2021	6,409.6	2,424.4	431.2	271.4	702.7			

CO₂ emissions from cultivated organic soils in cropland remaining cropland have been estimated, using default emission factor for warm temperate climate zone from Table 5.6 of the 2006 IPCC Guidelines (vol.4, chapter 5): 10 t C ha⁻¹ y⁻¹. The area of organic soils is taken from the FAOSTAT⁵¹ database that overlaps:

- the map of Histosols classes in the Harmonized World Soil Database⁵² and
- the three "cropland" classes in the global land cover dataset, GLC2000⁵³.

⁵¹ FAOSTAT database: <u>http://faostat3.fao.org/faostat-gateway/go/to/download/G1/GV/E</u>

⁵² FAO/IIASA/ISRIC/ISSCAS/JRC, 2012. Harmonized World Soil Database (version 1.2). FAO, Rome, Italy and IIASA, Laxenburg, Austria.

⁵³ EC-JRC. 2003. Global Land Cover 2000 database. Available at <u>http://bioval.jrc.ec.europa.eu/products/glc2000/glc2000.php</u>

Land converted to Cropland

In accordance with the IPCC methodology, estimates of carbon stock change in living biomass and in SOM in mineral soils have been provided. Italy applies a 20-year conversion period and an approach 2 for land representation, so that in any inventory year the area reported under this category is the cumulated area of all conversions occurred in that year plus the area converted in the 19 previous years.

Direct and indirect N_2O emissions arising from nitrogen mineralization associated with loss of soil organic matter have also been estimated, and these are reported in CRF Tables 4(III) and in Tables (IV), respectively.

The biomass carbon stock change, for land converted to cropland, is estimated at Tier 1 (equation 2.16, vol. 4, chapter 2 of the 2006 IPCC Guidelines) and it is equal to the removal of biomass from the initial land use plus the carbon stocks of one year of growth in perennial crops or the average biomass stock in annual crops following the conversion. Since only conversion from grassland to cropland has occurred the biomass removal is that of grassland (natural grassland), and the value applied, as dry matter, is the default reported in Table 6.4 of the 2006 IPCC Guidelines (vol. 4, chapter 6) for warm temperate – dry climate, i.e., 6.1 t d.m. ha⁻¹. In accordance with national expert judgement, it has been assumed that the final crop type in all land converted to cropland is ordinary managed perennial crop; consequently, for perennial crop, the carbon stock gain of one year of growth has been taken from Table 5.9 of the 2006 IPCC Guidelines (vol. 4, chapter 5), for temperate region i.e., 2.1 t C ha⁻¹. Conversion to cropland is a quite rare event in the time series of land matrices (table 6.4 and CRF Tables 4.1).

Changes in carbon stocks in mineral soils in land converted to cropland have been estimated applying formulation B of the IPCC equation 2.25 (vol. 4, chapter 2). As described for cropland remaining cropland and grassland remaining grassland (see par. 6.3), SOC_{ref} was defined according to the distribution of the soil types and climate zones in each Italian region, both for cropland and grassland. The stock change factors (FLU, FMG, FI) adapted to the national circumstances, have been derived by the default values provided in Table 5.5 of the 2006 IPCC Guidelines (vol. 4, chapter 5) and Table 6.2 of the 2006 IPCC Guidelines (vol. 4, chapter 6) for cropland and grassland, respectively. Then, they have been applied considering the percentage of moist and dry climates in each administrative region. SOC values for cropland are reported in the table 6.23, according to the different management practices considered and disaggregated by region.

Carbon stocks changes in living biomass and soils in land converted to cropland are reported in Table 6.25.

	Convers	ion Area	Carbon s	tock
	annual change	20 years change	Living biomass	Soils
year	kha	kha	kt C	kt C
1990	0	136.1	0	-233.7
1995	16.8	220.0	-12.9	-367.0
2000	0	83.8	0	-133.2
2005	0	83.8	0	-133.2
2010	0	83.8	0	-133.2
2015	0	0	0	0
2017	38.9	77.8	-29.8	-127.7
2018	38.9	116.7	-29.8	-194.1
2019	38.9	155.6	-29.8	-256.7
2020	38.9	194.5	-29.8	-321.8
2021	0	194.5	0	-321.8

Table 6.25 Change in carbon stock in living biomass and soil in land converted to cropland

6.3.5 Uncertainty and time series consistency

Uncertainty estimates for the period 1990–2021 have been assessed following Approach 1 of 2006 IPCC Guidelines (IPCC, 2006). Input uncertainties dealing with activity data and emission factors have been assessed based on the information provided in the 2006 IPCC Guidelines (IPCC, 2006). For 2021, the uncertainty related to the living biomass and soils pools have been estimated equal to 16.3% and 8.4%, respectively. The uncertainty related to the cropland category is equal to 72.9%, for 2021.

6.3.6 Category-specific QA/QC and verification

Category-specific quality control activities includes comparison with alternative data sources (FAO database⁵⁴, ISTAT data⁵⁵). Land use matrices have been accurately checked and cross-checked to ensure that data were properly reported. Several QA activities are carried out in the different phases of the inventory process. All the LULUCF categories have been embedded in the overall QA/QC system of the Italian GHG inventory.

6.3.7 Category-specific recalculations

Recalculations occur in the 2023 submission, comparing to the 2022 submission, as shown in tables 6.26 and 6.27, for living biomass and mineral soils, affecting both cropland remaining cropland and land converted to cropland. Considering cropland remaining cropland, the recalculation is due to following: i) updated data for management practices at a regional level in mineral soils (years 2016-2020); ii) updated data for organic soil annual crops (whole time series), and iii) error fixing in the disaggregation in the woody crop age classes (year 2020). For land converted to cropland the recalculation is due to: i) an update of the activity data from (years 2017-2020), ii) an error fixing in the spreadsheet used for the input in CRF reporter for SOC in mineral soil (year 2020) discovered during the 2022 UNFCCC review process, and ii) an error fixing in the disaggregation of grassland land use subcategories and, therefore, in grassland converted to cropland at a regional level (years 2006-onward, see par. 6.4.7, recalculations section in grassland category).

	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020
2023 submission					kt (5				
- living biomass	-317	-186	-609	-178	-165	-582	-178	-222	-111	-383
- mineral soils	94	246	987	922	627	643	699	613	494	333
2022 submission					kt (2				
- living biomass	-317	-186	-609	-178	-165	-582	-181	-225	-113	-381
- mineral soils	94	246	987	922	627	643	697	615	497	608
recalculation					%					
- living biomass	-					-	-1.4	-1.1	-2.3	0.5
- mineral soils	-					-	0.3	-0.4	-0.5	-82.5

Table 6.26 Recalculation in cropland category, for carbon pool

⁵⁴ FAO, 2005. FAOSTAT, http://faostat3.fao.org/home/E

⁵⁵ ISTAT, several years [a], [b], [c]

	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020
2023 submission					CO2 eq	kt				
Cropland	1,722	659	-500	-1,846	-821	661	-987	-559	-542	1,047
CL-CL	865	-734	-988	-2,335	-1,309	661	-1,564	-1,380	-1,593	-242
L-CL	857	1,393	489	489	489	NO	577	821	1,051	1,289
2022 submission					CO2 eq	kt				
Cropland	1,631	570	-586	-1,937	-909	572	-1,057	-640	-607	-33
CL-CL	774	-823	-1,075	-2,426	-1,398	572	-1,645	-1,456	-1,651	-317
L-CL	857	1,393	489	489	489	NO	588	815	1,044	284
recalculation					%					
Cropland	5.3	13.5	-17.3	-4.9	-10.8	13.4	-7.1	-14.5	-11.9	103.2
CL-CL	10.5	-12.1	-8.8	-3.9	-6.8	13.4	-5.2	-5.4	-3.6	-30.8
L-CL	0.0	0.0	0.0	0.0	0.0	NO	-1.9	0.7	0.7	78.0

Table 6.27 Recalculation in cropland category, for CL-CL and L-CL

6.3.8 Category-specific planned improvements

Italy is currently implementing a change in land classification system, by the use of the Oper-Foris Collect Earth tool. The new classification system is expected to supply land use and land use data for a time series, starting from 2010; the results of the abovementioned land classification will be evaluated, by comparing them against the used data and ancillary available statistics and information. The land classification system will hopefully be adopted for the reporting starting with the 2024 submission.

As regards the soil, Italy intends to apply the stock change factors from the 2019 IPCC Refinement, planning to define the factors, or soil carbon stocks in the different management practices, on the basis of data deriving from national peer- reviewed studies.

6.4 Grassland (4C)

6.4.1 Description

Under this category, CO₂ emissions from living biomass, and soil organic matter, in grassland remaining grassland and land converted to grassland have been reported.

Grassland category is responsible for 7.505 kt of CO_2 net removals in 2021 sharing 10.0% of total CO_2 eq. LULUCF net removals; in particular, the living biomass emissions represent 23.3% of the grassland CO_2 fluxes and the removals from soil organic matter 75.5%, while the remaining 1.2% is represented by the dead organic matter pool.

CO₂ emissions and removals from grassland remaining grassland and land converted to grassland are key categories in trend assessment both with Approach 1 and Approach 2; land converted to grassland is also a key category in level assessment both with Approach 1 and Approach 2

6.4.2 Information on approaches used for representing land areas and on land-use databases used for the inventory preparation

Information on the land representation is reported in section 6.1. For the grassland category, as already discussed, it is assumed that the only conversion occurring is from cropland to grassland. The IPCC default land use transition period of 20 years is applied.

6.4.3 Land-use definitions and the classification systems used and their correspondence to the LULUCF categories

Grassland includes all grazing land, natural grassland and other wooded land that do not fulfil the forest definition (as shrublands).

Due to the technical characteristics of the IUTI assessment (i.e., classification of orthophotos), it was not possible clearly distinguish among some subcategories in *cropland* and non-woody *grassland* categories (e.g., annual crops, annual pastures versus grazing land). Therefore, although the total aggregated area of the 2 categories *cropland* and *grassland* together is derived from the IUTI data, the area of each of their subcategories is disaggregated using as proxies the national statistics (ISTAT, [b], [c]) on grazing lands, forage crops, permanent pastures, natural grassland and lands once used for agriculture purposes, but actually set-aside since 1970. However, the area of the subcategory other wooded land, i.e., shrublands, has been derived from the NFIs (CRA-MPF, NFI1985, NFI2005 and the NFI2015), based on IUTI data (par. 6.1), through linear interpolations for the periods 1985-2005, 2005-2015 and linear extrapolation for the period 2015-2021.

6.4.4 Methodological issues

Grassland remaining Grassland

Grazing land

This land mostly includes annual biomass so that according to IPCC Tier 1 methodological approach gain and losses in the biomass and DOM and pools are assumed at long term equilibrium, so no net C stock changes are estimated.

For mineral soils, the estimation method is based on changes in SOC stocks over a finite period following changes in management that impact soil organic C. According to the 2006 IPCC Guidelines (IPCC, 2006), the change in mineral SOC stocks (vol. 4, chapter 2, eq. 2.25) is the result of a change in management practices in a unit of land across time. The SOC stock changes have been estimated considering natural (unmanaged) grazing land and managed grazing land subcategories. The latter are reported in the table 6.28.

Table 6.28 Grazing land ma	anagement practices and data sources
----------------------------	--------------------------------------

Management practices	Definition	CAP regulations	Data source
Managed grazing land (ordinary)	Renewal and/or thickening of crops; connection to zootechnics	National decree on cross compliance implementation n. 30125/2009 and subsequent revisions	ISTAT
organic grazing land	Renewal and/or thickening of crops; connection to zootechnics	RDPs 2000-2006: Reg. (EC) n. 1257/1999; RDPs 2007 - 2013: Reg. (EC) n. 1998/2005 and Reg. (EC) n. 74/2009; Reg. (EC) n. 834/2007 and Reg. (EC) n. 889/2008; Reg. (EC) n. 1804/2007	National Information system on organic agriculture (SINAB)

The annual areas subject to the abovementioned management practices, at regional level, have been estimated, considering the transition to and from different management practices (i.e., managed grazing land to organic grazing land and vice versa). Changes in organic carbon stocks in mineral soils has been calculated by applying formulation B of equation 2.25 (IPCC GLs, 2006; vol. 4, chapter 2). The IPCC default transition period, i.e., 20 years, has been considered.

The SOC_{ref} classification of the soils is based on the default reference SOC stocks for mineral soils (tC/ha in 0-30 cm) provided in Table 2.3 of IPCC 2006. The identification of country specific SOC_{ref} have been performed using a combination of the following map layers:

IPCC climate zones (JRC) - <u>http://eusoils.jrc.ec.europa.eu/projects/RenewableEnergy/</u>

- Corine Land cover 2006 (Grassland: legend codes: 2.3 ad 3.2) -<u>http://sia.eionet.europa.eu/CLC2006</u>
- Soil map of Italy- (reclassified according to the main groups of soil types as in Table 2.3 of 2006 IPCC Guidelines, vol. 4) -Costantini E.A.C., L'Abate G., Barbetti R., Fantappiè M., Lorenzetti R., Magini S. (2013) Carta dei suoli d'Italia, scala 1:1.000.000 https://esdac.jrc.ec.europa.eu/content/carta-dei-suoli-ditalia-soil-map-italy
- Map of Italy with administrative boundaries.

Overlapping the abovementioned layers, the Italian soils have been classified according to the IPCC soil classes (Table 2.3, vol. 4, chapter 2 of the 2006 IPCC Guidelines), and their related climate zones as percentage in each region. According to the thereby defined distribution of the soil types and climate zones in each Italian region, it was possible to define the SOC_{ref}. The stock change factors (FLU, FMG, FI) adapted to the national circumstances, have been derived by the default values provided in Table 6.2 of the 2006 IPCC Guidelines (vol.4, chapter 6). The F factors considered are reported in the following table 6.29.

Table 6.29 Stock change factors for grazing land subcategories

Grazing land	FLU		F _{MG}		Fi	
subcategory	Moist	Dry	Moist	Dry	Moist	Dry
Ordinary management	1	1	1	1	1.11	1.11
Organic management	1	1	1.14	1.14	1.11	1.11
Natural (unmanaged)*	1	1	0.95	0.95	1.11	1.11

* The same factors of natural (unmanaged) grazing land subcategory are also used to estimate other wooded land SOC stock (see next section)

The SOC stocks per hectare in mineral soil, calculated with the abovementioned procedure, are shown in the table 6.30, per region and per management practices. Estimates of SOC stock changes in grazing land are reported in the table 6.31.

Table 6.30 SOC stocks on hectares basis per region and management practice

		grazing land	
Region	Ordinary management	Organic management	Natural (unmanaged)*
	SOC stock (t C ha ⁻¹)	SOC stock (t C ha ⁻¹)	SOC stock (t C ha ⁻¹)
Piemonte	91.78	104.62	78.55
Valle D'Aosta	77.1	87.9	65.99
Liguria	92.7	105.68	79.34
Lombardia	79.93	91.13	68.41
Trentino – Alto Adige	78.51	89.5	67.19
Veneto	101.54	115.76	86.91
Friuli - Venezia Giulia	99.93	113.92	85.52
Emilia - Romagna	91.11	103.87	77.98
Toscana	62.24	70.95	53.27
Umbria	91.28	104.06	78.12
Marche	91	103.74	77.88
Lazio	88.98	101.43	76.15
Abruzzo	99.01	112.87	84.74
Molise	75.28	85.82	64.43
Campania	64.66	73.72	55.34
Puglia	42.03	47.91	35.97
Basilicata	60.13	68.55	51.46
Calabria	65.84	75.05	56.35
Sicilia	46.5	53.01	39.80
Sardegna	56.91	64.88	48.71

* The same SOC stocks on hectares basis of natural (unmanaged) grazing land subcategory are estimated for other wooded land (see next section)

	area	net change in C stock
	kha	kt C
1990	7,033	-31.6
1995	6,394	278.4
2000	5,942	345.7
2005	5,780	428.6
2010	5,404	489.8
2015	5,027	216.5
2017	4,892	116.1
2018	4,824	119.8
2019	4,756	150.5
2020	4,688	143.7
2021	4,708	62.8

Table 6.31 SOC stock changes in in mineral soil for grazing land

CO₂ emissions from drainage of organic soils in grassland remaining grassland have been estimated, using default emission factor for warm temperate climate zone from Table 6.3 of the 2006 IPCC Guidelines (vol.4, chapter 6): 2.5 t C ha⁻¹ y⁻¹. The area of organic soils is taken from the FAOSTAT⁵⁶ database that overlaps:

- the map of Histosols classes in the *Harmonized World Soil Database*⁵⁷, and
- the grassland area in the global land cover dataset, GLC2000⁵⁸.

Other wooded land

Other wooded land includes all woody vegetation types that do not fit the forest definition as, for example, the "macchia mediterranea" (Italian translation for "Mediterranean maquis"). Other wooded lands are considered in the NFIs although they do not meet the forest minimum height threshold; this subcategory is here defined as "shrublands". In this land, the total biomass changes (aboveground and belowground) are estimated by the *For-est* model at regional scale (NUTS2). A detailed description of the model is reported in Annex 13.

In table 6.32, the biomass expansion factor (BEF) to expand growing stock volume to aboveground shrub volume, the wood basic density (WBD) conversion factor to convert volume in mass of dry matter, the root/shoot ratio (R) to estimate the belowground biomass and the carbon fraction (CF) to convert dry matter are reported.

Table 6.32 Expansion and Conversion Factors for shrublands

	BEF	WBD	R	CF
Inventory typology	aboveground biomass / growing stock	dry weight t d.m./ fresh volume m³	root to shoot ratio	carbon stock t C/ biomass t d.m.
shrublands	1.49	0.63	0.62	0.47

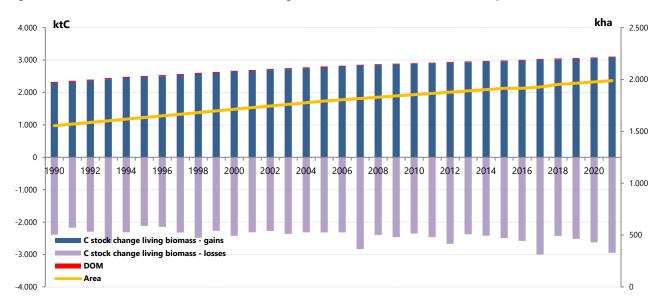
Almost all new other wooded land surfaces are the results of a land cover change (from natural grassland to other wooded land) within the grassland land use category (grassland remaining grassland). The DOM pools have been estimated using coefficient values and assuming a constant, linear, accumulation rate of both dead wood and litter across the conversion time till the coefficient value is achieved when the land

⁵⁶ FAOSTAT database: <u>http://faostat3.fao.org/faostat-gateway/go/to/download/G1/GV/E</u>

⁵⁷ FAO/IIASA/ISRIC/ISSCAS/JRC, 2012. Harmonized World Soil Database (version 1.2). FAO, Rome, Italy and IIASA, Laxenburg, Austria.

⁵⁸ EC-JRC. 2003. Global Land Cover 2000 database. Available at <u>http://bioval.jrc.ec.europa.eu/products/glc2000/glc2000.php</u>

cover change to other wooded land. In practice, in each conversion year 1/20 of the dead wood mass coefficient and of the litter mass coefficient are reported as net CO₂ removals.


Both, the dead wood and the litter mass coefficient, see table 6.33, have been estimated from data taken for the Italian national forest inventory, in 2008 and 2009 across the country from the plots of the national forest inventory network (<u>http://www.sian.it/inventarioforestale/jsp/necromassa.jsp</u>). The mass (wet matter) collected on the ground in those plots has been converted in dry matter using basic densities appositely calculated in a specific study (Di Cosmo et al., 2013). The data collected, aggregated at regional level, are accessible at the NFI website: <u>http://www.sian.it/inventarioforestale/jsp/dati carquant tab.jsp.</u>

The definition of the deadwood pool, coherent with the definition adopted by the NFI, is "All non-living woody biomass not contained in the litter, either standing, lying on the ground, or in the soil. Dead wood includes wood lying on the surface, stumps larger than or equal to 10 cm in diameter and standing trees with DBH > 4,5 cm". In table 6.33 dead wood and litter coefficients are reported.

Inventory typology	dead wood	litter
Inventory typology	t C ha⁻¹	t C ha⁻¹
Shrublands	1.510	1.990

As for soils pool, following the ERT recommendation, Italy has decided to apply the IPCC Tier1, assuming that, the carbon stock in soil organic matter, for other wooded land, does not change. Land conversions from natural (unmanaged) grazing land to other wooded land are possible because of land abandonment and woody encroachment. However, for these two subcategories of grassland, the same SOC stocks are estimated on the basis of the factors of Table 6.2 of the 2006 IPCC Guidelines (vol.4, chapter 6) as shown in tables 6.29 and 6.30. Therefore, carbon stock changes in soils pool, for other wooded land in grassland remaining grassland, have been not reported.

In figure 6.9, other wooded land areas and net changes in carbon stock, for the different pools, are reported, for the period 1990-2021.

Land converted to Grassland

In accordance with the IPCC methodology, estimates of carbon stock change in living biomass and in SOC stock in mineral soils have been provided. Italy applies a 20-year conversion period and an approach 2 for land representation, so that in any inventory year the area reported under this category is the

cumulated area of all conversions occurred in that year plus the area converted in the 19 previous years. As a result of conversion to grassland, it is assumed that the dominant vegetation is removed entirely, after which some type of grass is planted or otherwise established; alternatively, grassland can result from the abandonment of the preceding land use, and the area is taken over by grassland.

Three land-use changes have occurred in Italy:

- 1. annual crops to managed grazing land (previous vegetation removal and subsequent plantation);
- 2. annual crops to natural (unmanaged) grazing land (abandonment without vegetation removal);
- 3. woody crops to other wooded land (abandonment without vegetation removal).

The estimates of biomass C stock changes are based on the following reasonings:

- the annual crop biomass (before) is entirely removed, and the grassland (after) is planted. Tier 1 is used with default factors: CBEFORE: 4.7 tC ha⁻¹ value before the conversion; CAFTER: 2.867 tC ha⁻¹ (6.1 t dry matter/ha) in the biomass pool in the conversion year, as suggested by IPCC 2006 (vol. 4, ch. 6, Table 6.4) for warm temperate dry climate.
- the annual crops (before) is abandoned with no abrupt biomass change (i.e., change is not deliberate and therefore is not associated with land preparation operations like clearing and burning), and natural (unmanaged) grazing land occurs (after):
 Δ Cgrowth : 2.867 tC ha⁻¹ (6.1 t d.m. ha⁻¹) in the biomass pool in the conversion year, as suggested by IPCC 2006 (vol.4, chapter 6, Table 6.4) for warm temperate dry climate grasslands.
- The woody crops (before) is abandoned with no abrupt biomass change (i.e., change is not deliberate and therefore is not associated with land preparation operations like clearing and burning), and other wooded land occurs (after):
 Δ C_{growth} : 2.867 tC ha⁻¹ (6.1 t d.m. ha⁻¹) in the biomass pool in the conversion year, as suggested by IPCC 2006 (vol.4, chapter 6, Table 6.4) for warm temperate dry climate grasslands.

After the Second World War wide portions of cropland and managed grazing land has been abandoned in the less accessible and productive areas both in Europe and in Italy (see Pellis et al., 2019 and the references therein). The resulting conversion is generally defined as woody encroachment (specific kind of secondary succession). Generally, this type of conversion is quite slow, and its speed depends on climatic and pedological parameters. The literature on the argument is mainly based on chronosequence approaches (based on the space-for-time substitution concept) and does not measure annual C stock change in the annual transition from cropland to grassland but a general C stock change rate over a long period (generally from cropland/grassland to forest). For example, according to Alberti et al. (2008), in the Eastern Alps in Italy, the linear regression of biomass increment after agricultural abandonment is of 1.69 tC ha⁻¹ yr⁻¹, but it is significantly affected by the late stages of the secondary successions identified. In a Sicilian study, Novara et al. (2013) found that annual and perennial herbs colonize abandoned perennial crops with a dry matter of 4.95 t d.m. ha⁻¹. The references suggest that in the years following the LUC there is a biomass increase. Because of the limited literature on the national territory, we therefore preferred to use the 6.1 t d.m. ha⁻¹ factor suggested by the 2006 IPCC Guidelines (vol. 4, chapter 6, Table 6.4).

The total C emissions [kt C] due to change in carbon stocks in living biomass in land converted to grassland are reported in table 6.34.

	Conver	Conversion Area				
year	annual change kha	20 years change kha	kt C			
1990	0	325.0	0			
1995	0	292.5	0			
2000	60	594.1	135.8			
2005	97	777.0	188.0			
2010	178	1,387.4	268.1			
2015	44	1,608.0	124.6			
2017	0	1,487.3	0			
2018	0	1,427.0	0			
2019	0	1,366.7	0			
2020	0	1,306.4	0			
2021	0.5	1,212.4	1			

Table 6.34 Change in carbon stock in living biomass in land converted to grassland

Changes in SOC stocks in mineral soils in land converted to grassland have been estimated applying formulation B of the IPCC equation 2.25 (vol. 4, chapter 2). SOC stocks for the different subcategories of grassland are reported in the table 6.31, according to the different management practices considered and broken down by region. C emissions [kt C] due to SOC change in mineral soil in land converted to grassland, are summarized in table 6.35.

Table 6.35 Change in carbon stock in soils

	Convers	sion Area	Carbon stock
year	annual change kha	20 years change kha	kt C
1990	0	325.0	321.7
1995	0	292.5	277.9
2000	60.3	594.1	611.3
2005	97.5	777.0	978.7
2010	177.9	1,387.4	1,761.9
2015	44.1	1,608.0	1,938.2
2017	0	1,487.3	1,806.3
2018	0	1,427.0	1,740.1
2019	0	1,366.7	1,671.4
2020	0	1,306.4	1,604.9
2021	0.5	1,212.4	1,479.5

6.4.5 Uncertainty and time series consistency

For the period 1990–2021, the uncertainty estimates have been assessed following Approach 1 of 2006 IPCC Guidelines (IPCC, 2006). Input uncertainties dealing with activity data and emission factors have been assessed based on the information provided in the 2006 IPCC Guidelines (IPCC, 2006). In 2021, the uncertainty related to the living biomass and soils pools have been estimated equal to 42.6% and 71.0%, respectively. The uncertainty related to the grassland category is equal to 65.5%, for 2021.

6.4.6 Category-specific QA/QC and verification

Systematic quality control activities have been carried out to ensure completeness and consistency in time series and correctness in the sum of sub-categories. Where possible, activity data comparison among different sources (FAO database⁵⁹, ISTAT data⁶⁰) has been made. Data entries have been checked several

⁵⁹ FAO, 2005. FAOSTAT, <u>http://faostat3.fao.org/home/E</u>

⁶⁰ ISTAT, several years [a], [b], [c]

times during the compilation of the inventory; attention has been focused on the categories showing significant changes between two years in succession. Land use matrices have been accurately checked and cross-checked to ensure that data were properly reported. Several QA activities are carried out in the different phases of the inventory process. The applied methodologies have been presented and discussed during several national workshop and expert meetings, collecting findings and comments to be incorporated in the estimation process. All the LULUCF categories have been embedded in the overall QA/QC-system of the Italian GHG inventory.

6.4.7 Category-specific recalculations

The recalculation, as shown in table 6.36, occurs in the 2023 submission, comparing to the 2022 submission, for the grassland remaining grassland (from 2006 onward) and land converted to grassland (from 2006 onward). The recalculation is due to an update of the activity at a regional level (years 2017-2020), and an error fixing in the disaggregation of grassland land use derived by the last NFI (NFI2015) at regional level for C stock change in mineral soil. Therefore, the regional 2015 "other wooded land" area, reported under grassland category, have been modified accordingly, resulting in a consequent recalculation of the 2005-2015 period (annual areas have been interpolated) and 2015-2020 period (annual areas have been extrapolated).

	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020
2023 submission					CO ₂	- kt				
Grassland	4,187	-2,147	-1,969	-6,355	-9,521	-9,464	-4,491	-8,904	-8,205	-7,394
GL-GL	5,367	-1,128	771	-2,077	-2,078	-1,901	2,132	-2,523	-2,077	-1,509
L-GL	-1,180	-1,019	-2,739	-4,278	-7,443	-7,564	-6,623	-6,380	-6,128	-5,885
2022 submission					CO ₂	- kt				
Grassland	4,179	-2,155	-1,977	-6,364	-9,537	-9,535	-4,628	-9,003	-8,166	-7,364
GL-GL	5,358	-1,136	762	-2,086	-2,101	-1,960	2,007	-2,611	-2,026	-1,468
L-GL	-1,180	-1,019	-2,739	-4,278	-7,437	-7,564	-6,634	-6,392	-6,140	-5,896
recalculation					CO ₂	- kt				
Grassland	0.2	-0.4	-0.4	-0.1	-0.2	-0.8	-3.0	-1.1	0.5	0.4
GL-GL	0.2	-0.8	1.1	-0.4	-1.1	-3.1	5.9	-3.5	2.4	2.7
L-GL	-	-	-	-	0.1	-	-0.2	-0.2	-0.2	-0.2

Table 6.36 Recalculation in grassland category

6.4.8 Category-specific planned improvements

Italy is currently implementing a change in land classification system, by the use of the Oper-Foris Collect Earth tool. The new classification system is expected to supply land use and land use data for a time series, starting from 2010; the results of the abovementioned land classification will be evaluated, by comparing them against the used data and ancillary available statistics and information. The land classification system will hopefully be adopted for the reporting starting with the 2024 submission.

As regards the soil, Italy intends to apply the stock change factors from the 2019 IPCC Refinement and planning to define the factors, or soil carbon stocks in the different management practices, on the basis of data deriving from national peer- reviewed studies.

6.5 Wetlands (4D)

6.5.1 Description

Under this category, activity data from wetlands remaining wetlands are reported. Neither wetlands remaining wetlands nor land converted to wetlands are a key category.

6.5.2 Information on approaches used for representing land areas and on land-use databases used for the inventory preparation

Wetlands area have been estimated within the national land representation applying the methodology described in section 6.1. During the period 1990-2021 conversions of annual cropland and natural grassland to wetlands have occurred.

6.5.3 Land-use definitions and the classification systems used and their correspondence to the LULUCF categories

Wetlands includes lands covered or saturated by water, for all or part of the year (MAMB, 1992). Reservoirs or water bodies regulated by human activities have not been considered.

6.5.4 Methodological issues

Italy applies a 20-year conversion period and an approach 2 for land representation, so that in any inventory year the area reported under this category is the cumulated area of all conversions occurred in that year plus the area converted in the 19 previous years.

Only CO₂ emissions from flooded lands have been estimated. In wetlands remaining wetlands no activities are implemented. According to the equation 7.10 of the 2006 IPCC guidelines (vol. 4, chapter 7) the biomass stock after flooding is assumed to be zero, while for the biomass immediately before flooding default values reported in the 2006 IPCC guidelines have been used. For grassland (B_{before}) the value reported in Table 6.4 (vol. 4, chapter 6) for warm temperate dry climate, 6.1 t d.m. ha⁻¹, has been used; while for cropland (B_{before}) the value equal to 10 t C ha⁻¹ has been used (vol. 4, chapter 6) for cropland containing annual crops. The carbon fraction of 4.7 t of carbon ha⁻¹ has been used.

C stocks [kt C] in living biomass are reported in table 6.37 and 6.38, for cropland converted to wetlands and grassland converted to wetlands, respectively.

Table 6.37 Change in carbon stocks in li	ving biomass in cropland converted to wetlands

	annual change	20 years change	B after	B before	∆C converted
	kha	kha	t d.m. ha ⁻¹	t d.m. ha ⁻¹	kt C
1990	0.00	0.00	0.00	10.00	0.00
1995	0.00	0.00	0.00	10.00	0.00
2000	0.47	2.37	0.00	10.00	-2.23
2005	0.47	4.74	0.00	10.00	-2.23
2010	7.52	21.19	0.00	10.00	-35.34
2015	7.52	58.79	0.00	10.00	-35.34
2017	0.00	57.84	0.00	10.00	0.00
2018	0.00	57.37	0.00	10.00	0.00
2019	0.00	56.89	0.00	10.00	0.00
2020	0.00	56.42	0.00	10.00	0.00
2021	0.00	55.95	0.00	10.00	0.00

	annual change	20 years change	B after	B before	∆C converted
	kha	kha	t d.m. ha-1	t d.m. ha-1	kt C
1990	0.00	0.00	0.00	6.10	0.00
1995	0.47	2.37	0.00	6.10	-1.36
2000	0.00	2.37	0.00	6.10	0.00
2005	0.00	2.37	0.00	6.10	0.00
2010	0.00	2.37	0.00	6.10	0.00
2015	0.00	0.00	0.00	6.10	0.00
2017	3.01	6.01	0.00	6.10	-8.62
2018	3.01	9.02	0.00	6.10	-8.62
2019	3.01	12.03	0.00	6.10	-8.62
2020	3.01	15.04	0.00	6.10	-8.62
2021	0.00	15.04	0.00	6.10	0.00

Table 6.38 Change in carbon stocks in living biomass in grassland converted to wetlands

6.5.5 Uncertainty and time series consistency

Uncertainty estimates for the period 1990–2021 have been assessed following Approach 1 of 2006 IPCC Guidelines (IPCC, 2006). Input uncertainties for activity data and emission factors have been assessed based on the information provided in the 2006 IPCC Guidelines (IPCC, 2006).

6.5.6 Category-specific QA/QC and verification

Systematic quality control activities have been carried out to ensure completeness and consistency in time series and correctness in the sum of sub-categories; where possible, activity data comparison among different sources (FAO database⁶¹, ISTAT data⁶²) has been made. Data entries have been checked several times during the compilation of the inventory; particular attention has been focused on the categories showing significant changes between two years in succession. Land use matrices have been accurately checked and cross-checked to ensure that data were properly reported. Several QA activities are carried out in the different phases of the inventory process. All the LULUCF categories have been embedded in the overall QA/QC-system of the Italian GHG inventory.

6.5.7 Category-specific recalculations

No recalculation occurs in the 2023 submission, comparing to the 2022 submission.

6.5.8 Category-specific planned improvements

Italy is currently implementing a change in land classification system, by the use of the Oper-Foris Collect Earth tool. The new classification system is expected to supply land use and land use data for a time series, starting from 2010; the results of the abovementioned land classification will be evaluated, by comparing them against the used data and ancillary available statistics and information. The land classification system will hopefully be adopted for the reporting starting with the 2024 submission.

The monitoring of reservoirs or water bodies regulated by human activities will be considered for a potential inclusion of these areas in future submissions.

⁶¹ FAO, 2015. FAOSTAT, <u>http://faostat3.fao.org/home/E</u>

⁶² ISTAT, several years [a], [b], [c]

6.6 Settlements (4E)

6.6.1 Description

Under this category, CO_2 emissions, from living biomass and soil, from land converted to settlements only have been reported. In 2021, settlements emissions share 11.2% of absolute CO_2 eq. LULUCF emissions and removals. CO_2 emissions and removals from land converted to settlements is a key category, in the level, with Approach 1 and Approach 2, and only with Approach 2 in trend assessment.

6.6.2 Information on approaches used for representing land areas and on land-use databases used for the inventory preparation

Information on the land representation is reported in section 6.1.

6.6.3 Land-use definitions and the classification systems used and their correspondence to the LULUCF categories

All artificial surfaces, transportation infrastructures (urban and rural), power lines and human settlements of any size, including parks, have been included in this category.

6.6.4 Methodological issues

Settlements remaining Settlements

Following the 2006 IPCC Tier 1 approach no C stock changes have been estimated for any of the C pools.

Land converted to Settlements

The 2006 IPCC Guidelines equations 2.15 and 2.16 (Vol. 4, chapter 2) have been used to estimate changes in biomass and DOM carbon stocks. According to IPCC Tier 1, biomass and DOM stocks in the settlement category are assumed to be 0, which means that a complete loss of biomass and DOM stocks due to the land use change.

For the land converted to settlements, the 20-years transition period has been applied to determine the area in conversion. However, due to the characteristics of the final land use category (settlements), it is assumed that, for each carbon pool, all C stocks of the area subjected to an annual conversion are completely lost in the same conversion year, while the related CO₂ emissions are assigned to the first year the conversion has occurred.

As reported in table 6.4, in the period 1990-2021 conversions to settlements have occurred from the following categories: forest land, grassland, cropland and other land.

Carbon stock changes in forest land converted to settlements have been estimated for living biomass, dead organic matter and mineral soils, using forest land carbon stocks estimated, at regional level, by the *For-est* model described in paragraph 6.2.4 and in the Annex 13.

Concerning forest soils, the SOC stocks reported in the table 6.39 have been considered; the time range reported in the first column of the abovementioned table provides the time references for the SOC stocks' use.

Table 6.39 Soil organic carbon (SOC) stocks for forest land

years	SOC stock
years	t C ha⁻¹
1985-1994	79.809
1995-1999	80.174
2000-2004	80.586
2005-2009	81.121
2010-2014	81.682
2015-2020	82.430
2021	82.801

In Table 6.40, C stocks changes [kt C] in living biomass, dead organic matter and soils in forest land converted to settlements are reported.

		Forest land	Total Carbon stock		
Year	conversion Area	living biomass	dead organic matter	soils	Total Carbon Stock
	kha	kt C	kt C	kt C	kt C
1990	0.72	-32.09	-3.06	-57.64	-92.79
1995	0.72	-33.24	-3.05	-57.90	-94.20
2000	0.72	-34.23	-3.04	-58.20	-95.47
2005	3.69	-183.39	-15.53	-299.71	-498.63
2010	3.69	-192.82	-15.45	-301.78	-510.05
2015	3.69	-204.16	-15.37	-304.54	-524.07
2017	3.69	-207.58	-15.34	-304.54	-527.46
2018	3.69	-210.19	-15.32	-304.54	-530.06
2019	3.69	-212.30	-15.31	-304.54	-532.15
2020	3.69	-213.87	-15.30	-304.54	-533.71
2021	3.69	-215.17	-15.28	-304.54	-534.99

For cropland converted to settlements, carbon stocks changes have been estimated, for annual or perennial crops biomass, using default factors shown in the following Table 6.41 (IPCC, 2006, Table 8.4, vol. 4, chapter 8). SOC value for cropland has been set to 56.7 tC/ha based on reviewed references (par. 6.3.4).

Table 6.41 Stock change factors for cropland

	Biomass carbon stock
	t C ha⁻¹
Annual cropland	4.7
Perennial woody cropland	10

For grassland converted to settlements, changes in carbon stocks have been estimated for living biomass and for the soil pool. In table 6.42 C stocks changes [kt C] in living biomass in cropland and grassland converted to settlements are reported.

	cropland to s	ettlements	grassland to s	ettlements
Year	conversion area kha	carbon stock kt C	conversion area kha	carbon stock kt C
1990	25.15	-151.84	1.73	-4.96
1995	0.00	0.00	26.70	-76.56
2000	26.70	-160.96	0.00	0.00
2005	23.73	-144.62	0.00	0.00
2010	10.98	-68.09	0.00	0.00
2015	10.98	-67.42	0.00	0.00
2017	0.00	0.00	10.98	-31.48
2018	0.00	0.00	10.98	-31.48
2019	0.00	0.00	10.98	-31.48
2020	0.00	0.00	10.98	-31.48
2021	10.98	-67.57	0.00	0.00

Table 6.42 Change in carbon stocks in living biomass in cropland and grassland converted to settlements

In table 6.43 SOC changes [kt C] in mineral soils in cropland and grassland converted to settlements are reported.

Table 6.43 Change in carbon stocks in soil in cropland and grassland converted to settlements

	cropland to s	ettlements	grassland to s	ettlements
Year	conversion area	carbon stock	conversion area	carbon stock
	kha	kt C	kha	kt C
1990	25.15	-1426.12	1.73	-135.10
1995	0.00	0.00	26.70	-2085.25
2000	26.70	-1513.98	0.00	0.00
2005	23.73	-1345.46	0.00	0.00
2010	10.98	-622.46	0.00	0.00
2015	10.98	-622.46	0.00	0.00
2017	0.00	0.00	10.98	-857.33
2018	0.00	0.00	10.98	-857.33
2019	0.00	0.00	10.98	-857.33
2020	0.00	0.00	10.98	-857.33
2021	10.98	-622.46	0.00	0.00

Concerning other land converted to settlements, change in carbon stocks has been not estimated, in line with the 2006 IPCC Guidelines (IPCC, 2006) as other land does not contain any significant carbon stocks.

6.6.5 Uncertainty and time series consistency

Uncertainty estimates for the period 1990–2021 have been assessed following Approach 1 of 2006 IPCC Guidelines (IPCC, 2006). Input uncertainties dealing with activity data and emission factors have been assessed on the basis of the information provided in the 2006 IPCC Guidelines (IPCC, 2006).

6.6.6 Category-specific QA/QC and verification

Systematic quality control activities have been carried out to ensure completeness and consistency in time series and correctness in the sum of sub-categories; where possible, activity data comparison among different sources (FAO database⁶³, ISTAT data⁶⁴) has been made. Data entries have been checked several times during the compilation of the inventory; particular attention has been focused on the categories

⁶³ FAO, 2015. FAOSTAT, http://faostat3.fao.org/home/E

⁶⁴ ISTAT, several years [a], [b], [c]

showing significant changes between two years in succession. Land use matrices have been accurately checked and cross-checked to ensure that data were properly reported. Several QA activities are carried out in the different phases of the inventory process. All the LULUCF categories have been embedded in the overall QA/QC-system of the Italian GHG inventory.

6.6.7 Category-specific recalculations

Slight recalculation, as shown in table 6.44, in the 2023 submission, comparing to the 2022 submission. The recalculation, affecting forest land converted to settlements, considering both living biomass and soils pool, is due to the update of the forest land data, as detailed in the par. 6.2.7.

	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020
2023 submission					CO₂ eq.	- kt				
Settlements	7,089	8,867	6,928	7,749	4,659	4,709	5,516	5,525	5,533	5,538
2022 submission					CO2 eq.	- kt				
Settlements	7,145	8,941	6,982	7,804	4,688	4,735	5,549	5,555	5,563	5,569
recalculation					%					
Settlements	-0.79	-0.84	-0.78	-0.72	-0.63	-0.57	-0.60	-0.55	-0.55	-0.55

Table 6.44 Recalculation in settlements category

6.6.8 Category -specific planned improvements

Italy is currently implementing a change in land classification system, by the use of the Oper-Foris Collect Earth tool. The new classification system is expected to supply land use and land use data for a time series, starting from 2010; the results of the abovementioned land classification will be evaluated, by comparing them against the used data and ancillary available statistics and information. The land classification system will hopefully be adopted for the reporting starting with the 2024 submission.

Urban tree formations will be probed for information, to estimate carbon stocks.

6.7 Other Land (4F)

Under this category, CO₂ emissions, from living biomass, dead organic matter and soils, from land converted in other land should be accounted for; no data is reported since the conversion to other land is not occurring.

6.8 Direct N2O emissions from N inputs to managed soils (4(I))

N₂O emissions from N inputs to managed soils of cropland and grassland are reported in the agriculture sector; therefore, only N inputs to managed soils in forest land should be included in this section. All the related emissions are reported in the Agriculture sector, following the 2006 IPCC Guidelines (IPCC, 2006, par. 11.2.1.3, vol. 4, chapter 11).

6.9 Emissions and removals from drainage and rewetting and other management of organic and mineral soils (4(II))

As regards N₂O emissions from N drainage of forest or wetlands soils no data have been reported, since no drainage is applied to forest or wetlands soils.

6.10 N2O emissions from N mineralization/immobilization associated with loss/gain of soil organic matter resulting from change of land use or management of mineral soils

6.10.1 Description

Under this category, direct N_2O emissions from N mineralization associated with loss of soil organic matter in mineral soils in land converted to cropland and to settlements are reported.

6.10.2 Methodological issues

N₂O emissions from mineralization of soil organic matter in mineral soils occur in land converted to cropland and land converted to settlements. The 2006 IPCC Guidelines eq. 11.1 and 11.8 (vol. 4, chapter 11) have been used to estimate the direct N₂O emissions. IPCC default values, from 2006 Guidelines have been used, namely 15 for the C/N ratio and 0.01 kg N₂O-N/kg N as EF.

In table 6.45 and table 6.46 N_2O emissions from land-use conversion to cropland and from land-use conversion to settlements are reported, respectively.

	Convers	ion area	Carbon stock			N ₂ O emissions
	annual change	20 yrs change	change	Fsom	N ₂ O _{net-min} -N	N ₂ O emissions
year	kha	kha	kt C	kt N	kt N₂O-N	kt N₂O
1990	0	136.1	233.7	15.58	0.16	0.24
1995	16.8	220.0	367.0	24.47	0.24	0.38
2000	0	83.8	133.2	8.88	0.09	0.14
2005	0	83.8	133.2	8.88	0.09	0.14
2010	0	83.8	133.2	8.88	0.09	0.14
2015	0	0	0	0	0	0.00
2017	38.9	77.8	127.7	8.51	0.09	0.13
2018	38.9	116.7	194.1	12.94	0.13	0.20
2019	38.9	156	256.7	17.12	0.17	0.27
2020	38.9	194	321.8	21.45	0.21	0.34
2021	0.0	194	321.8	21.45	0.21	0.34

Table 6.45 N₂O emissions from land-use conversion to cropland

	Convers	ion area	Carbon stock	F _{SOM}	N ₂ O _{net-min} -N	N ₂ O emissions
	annual change	20 yrs change	change	■ SOM	N2O net-min	N2O EIIIISSIOIIS
year	kha	kha	kt C	kt N	kt N₂O-N	kt N₂O
1990	27.61	220.84	1,618.86	107.92	1.08	1.70
1995	27.61	331.26	2,143.15	142.88	1.43	2.25
2000	27.61	441.68	1,572.19	104.81	1.05	1.65
2005	27.61	552.10	1,645.16	109.68	1.10	1.72
2010	14.67	526.24	924.24	61.62	0.62	0.97
2015	14.67	461.58	927.00	61.80	0.62	0.97
2017	14.67	435.71	1,161.87	77.46	0.77	1.22
2018	14.67	422.78	1,161.87	77.46	0.77	1.22
2019	14.67	409.85	1,161.87	77.46	0.77	1.22
2020	14.67	396.92	1,161.87	77.46	0.77	1.22
2021	27.61	220.84	1,618.86	107.92	1.08	1.70

Table 6.46 N₂O emissions from land-use conversion to settlements

6.10.3 Category-specific recalculations

The recalculation occurred in the 2023 submission, comparing to the 2022 submission, for the N_2O emissions from land-use conversion to cropland and settlements is shown in table 6.47. The recalculation is due to a change in the soil carbon stock changes for the abovementioned subcategories, driving an update of the F_{SOM} values used in the estimation process.

Table 6.47 Recalculation in N₂O emissions from N mineralization/immobilization associated with loss/gain of soil organic matter resulting from change of land use or management of mineral soils

	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020
2023 submission					CO₂ eq.	- kt				
L-CL	0.2	0.4	0.1	0.1	0.1	NO	0.1	0.2	0.3	0.3
L-SL	1.7	2.2	1.6	1.7	1.0	1.0	1.2	1.2	1.2	1.2
2022 submission										
L-CL	0.2	0.4	0.1	0.1	0.1	NO	0.1	0.2	0.3	0.0
L-SL	1.7	2.2	1.6	1.7	1.0	1.0	1.2	1.2	1.2	1.2
recalculation					%					
L-CL	-	-	-	-	-	-	-1.9	1.1	1.0	85.4
L-SL	-	-	-	0.01	0.02	-	0.03	0.03	0.03	0.03

6.11 Indirect N2O emissions from managed soils (4(IV))

6.11.1 Description

Direct N_2O emissions from N inputs of synthetic and organic fertilizer to managed soils in any land use categories are reported in the agriculture sector; accordingly, the indirect N_2O emissions are reported in the agriculture sector too. In this category, only the indirect N_2O emissions from N mineralization associated with loss of soil organic matter are reported.

6.11.2 Methodological issues

Indirect N₂O emissions from nitrogen leaching and runoff have been estimated with method (equation 11.10) and default values (Table 11.3) from the 2006 IPCC Guidelines (vol. 4, ch. 11). In particular, 0.3 for the Frac_{LEACH-(H)} and 0.0075 kg N₂O-N/kg N default values have been adopted for the EF₅. Indirect N₂O emissions are shown in Table 6.48.

	F som	FracLEACH-(H)	EFs	N ₂ Onet-min -N	N ₂ O emissions
year	kt N		kg N₂O-N/kg N	kt N₂O-N	kt N₂O
1990	15.58	0.30	0.0075	0.04	0.06
1995	24.47	0.30	0.0075	0.06	0.09
2000	8.88	0.30	0.0075	0.02	0.03
2005	8.88	0.30	0.0075	0.02	0.03
2010	8.88	0.30	0.0075	0.02	0.03
2015	0.00	0.30	0.0075	0.00	0.00
2017	8.51	0.30	0.0075	0.02	0.03
2018	12.94	0.30	0.0075	0.03	0.05
2019	17.12	0.30	0.0075	0.04	0.06
2020	21.45	0.30	0.0075	0.05	0.08
2021	21.45	0.30	0.0075	0.05	0.08

Table 6.48 Indirect N₂O emissions from managed soils - Nitrogen leaching and run-off

6.11.3 Category-specific recalculations

The recalculation occurred in the 2023 submission, comparing to the 2022 submission, for the indirect N₂O emissions from managed soils, is shown in Table 6.49. The recalculation is due to a change in the soil carbon stock changes for cropland, driving an update of the F_{SOM} values used in the estimation process.

Table 6.49 Recalculation in Indirect N2O emissions from managed soils

	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020
2023 submission					N ₂ O	- kt				
Indirect N ₂ O emissions	0.06	0.09	0.03	0.03	0.03	NO	0.03	0.05	0.06	0.08
2022 submission					N ₂ O	- kt				
Indirect N ₂ O emissions	0.06	0.09	0.03	0.03	0.03	NO	0.03	0.05	0.06	0.01
recalculation %										
Indirect N ₂ O emissions		-	-	-	-	-	-1.86	1.12	0.98	85.42

6.12 Biomass Burning (4(V))

6.12.1 Description

Under this source category, CH₄ and N₂O emissions from wildfires occurring in forest land and CO₂, CH₄ and N₂O emissions from wildfires occurring in cropland and grassland categories are estimated. Areas affected by fires encompassed in settlements category have been reported, but no emissions are estimated, since the emissions have been assumed to be insignificant. An approximate estimate of GHG emissions from settlements has been carried out based on the 2006 IPCC (i.e., value for shrublands, Table 2.4, vol. 4, chapter 2, namely 26.7 t dm/ha). This resulted in a maximum of 7.07 kt CO₂ eq. in 2017 (0.36

kt CO₂ eq. in 2021), which is less than 500 kt CO₂ eq. and represents about 0.002 per cent of the national totals without LULUCF in 2021, which is less than 0.05 per cent of the national totals without LULUCF in 2021.

CH₄ and N₂O emissions from wildfires occurring in forest land and other wooded land under grassland have been estimated on a specific model (For-Fires) which is described in Annex 14.

Statistics related to fires occurring in other land use categories (i.e., cropland, grassland, and settlements) have been collected from the Carabinieri Force (the Armed Forces and Police Authority where the State Forestry Service is embedded, following the legislative decree 19/08/2016, n. 177), currently in charge for the data collection related to burned area.

CO₂ emissions due to forest fires in forest land remaining forest land and land converting to forest land are included in CRF Table 4.A.1, under carbon stock change in living biomass - losses.

Non-CO₂ emissions from fires have been estimated and reported in CRF Table 4(V), while NO_x, CO and NMVOC emissions from fires have been reported in CRF Table 4. SO₂ emissions from fires are reported in 4H (Other - SO₂ from fires).

6.12.2 Methodological issues

CO₂ emissions due to forest fires in forest land remaining forest land and land converting to forest land are included in carbon stock change in living biomass – decrease, in CFR Table 4.A.1. The total biomass loss due to forest fires has been estimated following the methodology reported in section 6.2.4.

Detailed information on the estimation process for the non-CO₂ emissions from forest fires is reported in Annex 14.

C released from forest cropland and grassland fires have been estimated following the 2006 IPCC methodology (vol. 4, chapter 4, eq. 2.27); these estimates have been, then, multiplied by the emission ratios elaborated for EMEP/EEA 2009 (Table 3.3, Ch. 11.B) to estimate CH₄, N₂O, CO and NO_x fire emissions.

In Table 6.50 CH₄ and N₂O emissions resulting from biomass burning in forest land category are reported.

	Forest land remo	aining forest land	Land converted to forest land				
	CH₄	N ₂ O	CH₄	N ₂ O			
year	kt	kt	kt	kt			
1990	21.62	0.01	2.16	0.00			
1995	4.27	0.00	0.56	0.00			
2000	10.53	0.00	1.85	0.00			
2005	4.09	0.00	0.90	0.00			
2010	3.70	0.00	0.72	0.00			
2015	5.57	0.00	0.96	0.00			
2017	38.99	0.01	6.43	0.00			
2018	4.22	0.00	0.68	0.00			
2019	3.86	0.00	0.61	0.00			
2020	8.11	0.00	1.24	0.00			
2021	19.87	0.01	2.62	0.00			

Table 6.50 CH₄ and N₂O emissions from biomass burning in forest land category

In Table 6.51 CO₂, CH₄ and N₂O emissions resulting from biomass burning in cropland and grassland categories are reported.

		Cropland		Gı	assland	
	CO ₂	CH₄	N₂O	CO ₂	CH4	N ₂ O
year	kt	kt	kt	kt	kt	kt
1990	39.82	0.22	0.01	5,032.03	27.45	0.86
1995	11.46	0.06	0.00	1,324.25	7.22	0.23
2000	23.18	0.13	0.00	2,945.32	16.07	0.50
2005	10.73	0.06	0.00	1,270.28	6.93	0.22
2010	8.55	0.05	0.00	1,748.79	9.54	0.30
2015	17.63	0.10	0.00	721.49	3.94	0.12
2017	59.53	0.32	0.01	2,696.00	14.71	0.46
2018	8.06	0.04	0.00	214.10	14.71	0.46
2019	13.02	0.07	0.00	495.52	2.70	0.08
2020	14.65	0.08	0.00	699.92	3.82	0.12
2021	42.96	0.23	0.01	2,240.02	12.22	0.38

Table 6.51 CO₂, CH₄ and N₂O emissions from biomass burning in cropland and grassland categories

6.12.3 Uncertainty and time series consistency

Uncertainty estimates for the period 1990–2021 have been assessed following Approach 1 of 2006 IPCC Guidelines (IPCC, 2006). Input uncertainties dealing with activity data and emission factors have been assessed on the basis of the information provided in the 2006 IPCC Guidelines (IPCC, 2006).

6.12.4 Category-specific QA/QC and verification

Systematic quality control activities have been carried out to ensure completeness and consistency in time series and correctness. Data entries have been checked several times during the compilation of the inventory. Several QA activities are carried out in the different phases of the inventory process. In particular, the applied methodologies have been presented and discussed during several national workshop and expert meeting, collecting findings and comments to be incorporated in the estimation process. Additional methodological information and a comparison of approaches for reporting forest fire-related biomass loss and greenhouse gas emissions in southern Europe may be found in Chiriacò et al., (2013). All the LULUCF categories have been embedded in the overall QA/QC-system of the Italian GHG inventory.

6.12.5 Category-specific recalculations

The recalculation occurred in the 2023 submission, comparing to the 2022 submission, for fire emissions, is shown in table 6.52. The recalculation occurring for GHG emissions from wildfires occurred in cropland and grassland are due to an error fixing in the activity data (i.e., burned area for 2018, 2019 and 2020). For forest land, the recalculation occurs only in 2020, for a revision of activity data (i.e., burned area).

	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020		
2023 submission					Forest la	nd						
CH4 - kt	23.77	4.82	12.38	4.99	4.42	6.54	45.41	4.90	4.47	9.36		
N ₂ O - kt	0.01	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00		
		Cropland										
CO ₂ - kt	39.82	11.46	23.18	10.73	8.55	17.63	59.53	8.06	13.02	14.65		
CH4 - kt	0.22	0.06	0.13	0.06	0.05	0.10	0.32	0.04	0.07	0.08		
N ₂ O - kt	0.01	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00		
					Grasslar	nd						
CO ₂ - kt	5,032.03	1,324.25	2,945.32	1,270.28	1,748.79	721.49	2,696.00	214.10	495.52	699.92		
CH4 - kt	27.45	7.22	16.07	6.93	9.54	3.94	14.71	1.17	2.70	3.82		
N ₂ O - kt	0.86	0.23	0.50	0.22	0.30	0.12	0.46	0.04	0.08	0.12		

Table 6.52 Recalculation of emissions from biomass burning occurring in forest land, cropland and grassland

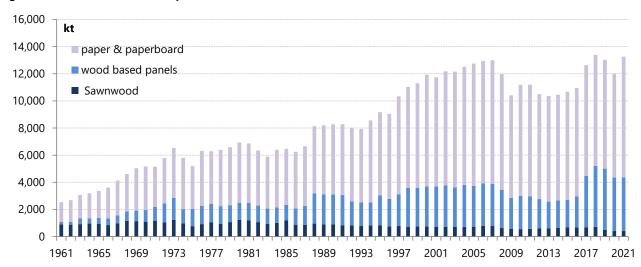
	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020		
2022 submission					Forest la	nd						
CH4 - kt	23.77	4.82	12.38	4.99	4.42	6.54	45.41	4.90	4.47	5.80		
N ₂ O - kt	0.01	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00		
		Cropland										
CO ₂ - kt	39.82	11.46	23.18	10.73	8.55	17.63	59.53	16.13	24.67	25.69		
CH4 - kt	0.22	0.06	0.13	0.06	0.05	0.10	0.32	0.09	0.13	0.14		
N ₂ O - kt	0.01	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00		
					Grasslar	nd						
CO ₂ - kt	5,032.03	1,324.25	2,945.32	1,270.28	1,748.79	721.49	2,696.00	269.51	643.51	835.86		
CH4 - kt	27.45	7.22	16.07	6.93	9.54	3.94	14.71	1.47	3.51	4.56		
N ₂ O - kt	0.86	0.23	0.50	0.22	0.30	0.12	0.46	0.05	0.11	0.14		

	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020			
recalculation	Forest land												
CH4 - kt	-	-	-	-	-	-	-	-	-	38.00			
N ₂ O - kt	-	-	-	-	-	-	-	-	-	38.00			
		Cropland											
CO ₂ - kt	-	-	-	-	-	-	-	-100.00	-89.48	-75.32			
CH ₄ - kt	-	-	-	-	-	-	-	-100.00	-89.48	-75.32			
N ₂ O - kt	-	-	-	-	-	-	-	-100.00	-89.48	-75.32			
					Grassland	d							
CO ₂ - kt	-	-	-	-	-	-	-	-25.89	-29.87	-19.42			
CH4 - kt	-	-	-	-	-	-	-	-25.89	-29.87	-19.42			
N ₂ O - kt	-	-	-	-	-	-	-	-25.89	-29.87	-19.42			

6.12.6 Category-specific planned improvements

No improvements are planned for the next submission.

6.13 Harvested wood products (HWP) (4G)

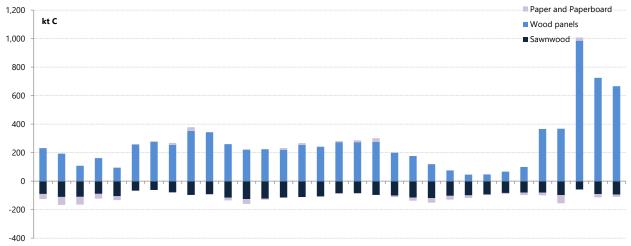

6.13.1 Description

Under this source category, annual changes in carbon stocks and associated CO₂ emissions and removals from the Harvested Wood Products (HWP) pool are estimated, following the production approach as outlined in the 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (2019 Refinement, IPCC, 2019), that actually revise and correct errors included in the HWP chapter in the 2006 IPCC Guidelines).

CO₂ emissions and removals from HWPs have been identified as key categories in level and in trend assessment either with Approach 1 and Approach 2.

6.13.2 Methodological issues

Emissions from this source are mainly influenced by the trend in forest harvest rates: in 2021, the net emissions from harvested wood products were -662.5 kt CO₂. The figure 6.10 shows the trend of HWP in use for the period 1961-2021, disaggregated into sawnwood, wood-based panels and paper & paperboard.


Figure 6.10 HWP in use for the period 1961-2021

The activity data (production of sawnwood, wood-based panels and paper and paperboard) are derived from FAO forest product statistics (Food and Agriculture Organization of the United Nations: forest product statistics, http://faostat3.fao.org/download/F/FO/E).

The estimates have been carried out based on the 2019 Refinement methodology. The Tier 1 approach, first order decay, was applied to the HWP categories (sawnwood, wood-based panels and paper and paperboard) according to equation 12.2 of the 2019 Refinement (IPCC, 2019, vol. 4, ch. 12), corresponding to the equation 12.1 of the 2006 IPCC Guidelines (IPCC, 2006, vol. 4, ch. 12). Equation 12.8 of the 2019 Refinement (IPCC, 2019, vol. 4, ch. 12) has been applied to estimate the annual fraction of the feedstock coming from domestic harvest for the HWP categories sawnwood and wood-based panels.

The change in carbon stocks was estimated separately for each product category; the default values (Table 12.2 in IPCC, 2019) have been applied. Emission factors for specific product categories were calculated with default half-lives of 35 years for sawnwood, 25 years for wood panels and 2 years for paper (Table 12.3, IPCC 2019).

The annual change in stock for the period 1961-2021, disaggregated into sawnwood, wood-based panels and paper & paperboard, is reported in figure 6.11.

Figure 6.11 Annual change in stock (kt C) for the period 1990-2021

1990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020201 The CO₂ emissions reported in the CRF table 4Gs.1, as information item. The reported values are based on the estimates carried out with the first-order decay model, HWP sheet, from the 2006 IPCC Guidelines, implemented to estimate the long-term storage of carbon in waste disposal sites and the annual change in total long-term carbon storage in HWP waste. Therefore, the same estimates are reported in the CRF table 4Gs.1, information item, and in the memo item in CRF table 5.

6.13.3 Uncertainty and time series consistency

Uncertainty estimates for the period 1990–2021 have been assessed following Approach 1 of 2006 IPCC Guidelines (IPCC, 2006). The uncertainties of activity data and emission factors used in the estimation process have assessed based on the uncertainties of the default factors provided in the 2019 Refinement (IPCC, 2019) and the uncertainties of used statistical data.

6.13.4 Category-specific QA/QC and verification

Systematic quality control activities have been carried out to ensure completeness and consistency in time series and correctness. Data entries have been checked several times during the compilation of the inventory. Several QA activities are carried out in the different phases of the inventory process. All the LULUCF categories have been embedded in the overall QA/QC-system of the Italian GHG inventory.

6.13.5 Category-specific recalculations

The HWP recalculation occurred in the 2023 submission, comparing to the 2022 submission, is shown in table 6.53. The recalculation is due to the revision of FAOSTAT time series for wood-based panels, for the years 2017-2020.

	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020
2023 submission					CO2 eq.	- kt				
HWP	-388	-706	-454	-503	-142	89	-974	-778	-3,481	-2,240
2022 submission				СС	0₂ eq kt					
HWP	-388	-706	-454	-503	-669	89	59	264	-1,469	-669
recalculation					%					
HWP	-	-	-	-	78.8	-	1,742.3	394.4	-136.9	-235.1

Table 6.53 Recalculation of emissions and removals from HWP category

6.13.6 Category-specific planned improvements

No improvements are planned for the next submission.

7 WASTE [CRF sector 5]

7.1 Sector overview

The waste sector comprises four source categories:

- 1 solid waste disposal (5A);
- 2 biological treatment of solid waste (5B);
- 3 incineration and open burning of waste (5C);
- 4 wastewater treatment and discharge (5D).

The waste sector share of GHG emissions in the national greenhouse gas total is presently 4.83% (and was 3.64% in 1990).

The trend in greenhouse gas emissions from the waste sector is summarised in Table 7.1. It clearly shows that methane emissions from solid waste disposal sites (landfills) are by far the largest source category within this sector.

Emissions from waste incineration facilities without energy recovery are reported under category 5C, whereas emissions from waste incineration facilities, which produce electricity or heat for energetic purposes, are reported under category 1A4a (according to the IPCC reporting guidelines).

Under 5B, CH₄, N₂O and NMVOC emissions from compost production and CH₄ emissions from anaerobic digestion of solid waste are reported.

Emissions from methane recovered, used for energy purposes, in landfills and wastewater treatment plants are estimated and reported under category 1A4a.

GAS/SUBSOURCE	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
<u>CO2</u> (Gg)											
5C. Waste incineration	512.01	458.23	208.26	230.15	177.21	98.72	92.08	91.03	95.62	88.68	85.77
<u>CH4</u> (Gg)	618.45	728.40	805.01	795.85	733.95	665.69	650.55	650.07	642.12	671.71	662.35
5A. Solid waste disposal on land	488.25	604.93	687.98	680.10	622.46	561.35	545.77	545.07	537.66	569.99	559.78
5B. Biological treatment of waste	0.19	0.43	1.86	3.66	4.65	4.83	4.84	4.77	4.70	4.52	4.51
5C. Waste incineration	2.02	2.25	2.18	2.38	2.28	2.27	2.21	2.17	2.16	2.21	2.15
5D. Wastewater treatment	127.99	120.79	112.98	109.71	104.56	97.25	97.73	98.06	97.60	94.99	95.91
<u>N₂O</u> (Gg)	4.42	4.38	5.10	5.83	6.22	6.05	6.05	6.04	5.97	5.88	5.88
5B. Biological treatment of waste	0.07	0.16	0.68	1.33	1.69	1.75	1.75	1.73	1.70	1.64	1.63
5C. Waste incineration	0.12	0.12	0.09	0.09	0.08	0.07	0.07	0.07	0.07	0.06	0.07
5D. Wastewater treatment	4.22	4.10	4.33	4.41	4.46	4.23	4.23	4.25	4.20	4.18	4.18

Table 7.1 Trend in greenhouse gas emissions from the waste sector 1990 – 2021 (Gg)

In the following box, key and non-key sources of the waste sector are presented based on level, trend or both. Methane emissions from landfills result as a key category at level and trend assessment calculated with Approach 1 and Approach 2; N₂O emission from biological treatment of waste is a key category at level and at trend assessment only considering the uncertainty; methane emission from wastewater treatment is a key source at level assessment with Approach 1 and Approach 2and at trend assessment only with the uncertainty; N₂O emissions from wastewater treatment result as a key category at level and at trend assessment only with the Approach 2, taking into account the uncertainty. When including the LULUCF sector in the key source analysis, methane emissions from landfills is a key category at level and

at trend assessment both with the Approach1 and the Approach 2, whereas N₂O emission from biological treatment of waste is a key category at trend and level assessment with the Approach 2, CH₄ from wastewater treatment is a key category at level assessment both with the Approach 1 and Approach 2 while N₂O from wastewater is a key category at level and at trend assessment only with the Approach 2.

Key-source identification in the waste sector with the IPCC Approach 1 and Approach 2 (without LULUCF) for 2020

-			
5A	CH_4	Emissions from solid waste disposal sites	Key (L, T)
5B	N ₂ O	Emissions from biological treatment of waste	Key (L2, T2)
5D	CH_4	Emissions from wastewater treatment	Key (L, T2)
5D	N ₂ O	Emissions from wastewater treatment	Key (L2, T2)
5B	CH ₄	Emissions from biological treatment of waste	Non-key
5C	CO ₂	Emissions from waste incineration	Non-key
5C	CH_4	Emissions from waste incineration	Non-key
5C	N ₂ O	Emissions from waste incineration	Non-key

7.2 Solid waste disposal on land (5A)

7.2.1 Source category description

The source category solid waste disposal on land is a key category for CH₄, both in terms of level and trend. The share of CH₄ emissions is presently 33.3% (and was about 22.2% in the base year 1990) of the CH₄ national total. For this source category, also NMVOC emissions are estimated; it has been assumed that non-methane volatile organic compounds are 1.3 weight per cent of VOC (Gaudioso et al., 1993): this assumption refers to US EPA data (US EPA, 1990).

Methane is emitted from the degradation of waste disposed of in municipal landfills, both managed and unmanaged. The main parameters that influence the estimation of emissions from landfills are, apart from the amount of waste disposed into managed landfills, the waste composition, the fraction of methane in the landfill gas and the amount of landfill gas collected and treated. These parameters are strictly dependent on the waste management policies throughout the waste streams which start from waste generation, flow through collection and transportation, separation for resource recovery, treatment for volume reduction, stabilisation, recycling and energy recovery and terminate at landfill sites.

Urban waste disposal in landfill sites is still one of the main disposal practices but the percentage of waste disposed in landfills dropped from 91.1% in 1990 to 29.0% in 2021. This trend is strictly dependent on policies that have been taken in the last 20 years in waste management. In fact, at the same time, waste incineration as well as composting and mechanical and biological treatment have shown a remarkable rise due to the enforcement of legislation. Also recyclable waste collection, which at the beginning of nineties was a scarce practice and waste were mainly disposed in bulk in landfills or incineration plants, has been increasing: in 2021, the percentage of municipal solid waste separate collection is about 64.0% (the legislative targets fixed 50% in 2009), characterized by a strong growth in recent years.

In particular, in Italy the first legal provision concerning waste management was issued in 1982 (Decree of President of the Republic 10 September 1982, n.915), as a consequence of the transposition of some European Directives on waste (EC, 1975; EC, 1976; EC, 1978). In this decree, uncontrolled waste dumping as well as unmanaged landfills are forbidden, but the enforcement of these measures has been concluded only in 2000. Thus, from 2000 municipal solid wastes are disposed only into managed landfills.

For the year 2021, the non hazardous landfills in Italy disposed 5,619 kt of MSW and 2,963 kt of industrial wastes, as well as 247 kt of sludge from urban wastewater treatment plants.

Since 1999, the number of MSW landfills has decreased by more than 500 plants up to 126 in 2021, despite the decrease of the amount of wastes disposed of is less pronounced. This because both

uncontrolled landfills and small controlled landfills have been progressively closed, especially in the south of the country, where the use of modern and larger plants was opted in order to serve large territorial areas.

Concerning the composition of waste which is disposed in municipal landfills, this has been changed over the years, because of the modification of waste production due to changes in the life-style and not to a forceful policy on waste management.

The Landfill European Directive (EC, 1999) has been transposed into national decree only in 2003 by the Legislative Decree 13 January 2003 n. 36 and applied to the Italian landfills since July 2005, but the effectiveness of the policies will be significant in the future. Moreover, a following law decree (Law Decree 30 December 2008, n.208) moved to December 2009 the end of the temporary condition regarding waste acceptance criteria, thus the composition of waste accepted in landfills is expected to change slowly.

Finally, methane emissions are expected especially from non hazardous waste landfills due to biodegradability rate of the wastes disposed of; in the past, provisions by law forced only non hazardous waste landfills to have a collecting gas system.

7.2.2 Methodological issues

Emission estimates from solid waste disposal on land have been carried out using the IPCC Tier 2 methodology, through the application of the First Order Decay Model (FOD) with the start of the decay reaction on 1 january in the year after disposal.

Parameter values used in the landfill emissions model are:

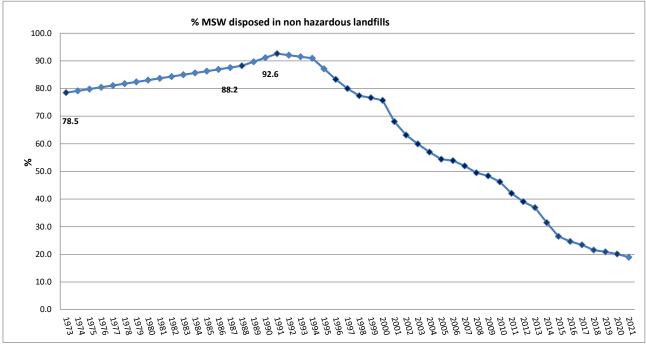
- 1) total amount of waste disposed;
- 2) fraction of Degradable Organic Carbon (DOC);
- 3) fraction of DOC dissimilated (DOC_F);
- 4) fraction of methane in landfill gas (F);
- 5) oxidation factor (Ox);
- 6) methane correction factor (MCF);
- 7) methane generation rate constant (k);
- 8) landfill gas recovered (R).

It has been assumed that all the landfills, both managed and unmanaged, started operations in the same year, and have the same parameters, although characteristics of individual landfill sites can vary substantially.

Moreover, the share of waste disposed of into uncontrolled landfills has gradually decreased, as specified previously, and in the year 2000 it has been assumed equal to 0; nevertheless, emissions still have been occurring due to the waste disposed in the past years. The unmanaged sites have been considered "shallow" according to the IPCC classification.

Municipal solid waste

Basic data on waste production and landfills system are those provided by the national Waste Cadastre. The Waste Cadastre is formed by a national branch, hosted by ISPRA, and by regional and provincial branches. The basic information for the Cadastre is mainly represented by the data reported through the Uniform Statement Format (MUD), complemented by information provided by regional permits, provincial communications and by registrations in the national register of companies involved in waste management activities.


These figures have been elaborated and published by ISPRA yearly since 1999: the yearbooks report waste production data, as well as data concerning landfilling, incineration, composting and generally waste life-cycle data (APAT-ONR, several years; ISPRA, several years).

For inventory purposes, a database of waste production, waste disposal in managed and unmanaged landfills and sludge disposal in landfills was created and it has been assumed that in Italy waste landfilling started in 1950.

The complete database from 1975 of waste production, waste disposal in managed and unmanaged landfills and sludge disposal in landfills is reconstructed on the basis of different sources (MATTM, several years [a]; FEDERAMBIENTE, 1992; AUSITRA-Assoambiente, 1995; ANPA-ONR, 1999 [a], [b]; APAT, 2002; APAT-ONR, several years; ISPRA, several years), national legislation (Legislative Decree 5 February 1997, n.22), and regression models (Colombari et al, 1998).

Since waste production data are not available before 1975, they have been reconstructed on the basis of proxy variables. Gross Domestic Product data have been collected from 1950 (ISTAT, several years [a]) and a correlation function between GDP and waste production has been derived from 1975; thus, the exponential equation has been applied from 1975 back to 1950.

Consequently, the amount of waste disposed into landfills has been estimated, assuming that from 1975 backwards the percentage of waste landfilled is constant and equal to 80%; this percentage has been derived from the analysis of available data. As reported in the Figure 7.1, in the period 1973 – 1991 data are available for specific years (available data are reported in dark blue, whereas estimated data are reported in light blue). From 1973 to 1991 waste disposal has increased, because the most common practice in waste management; from early nineties, thanks to a change in national policies, waste disposal in landfill has started to decrease, in favor of other waste treatments.

In the following Table 7.2, the time series of MSW production and MSW disposed of into non hazardous landfills from 1990 is reported. The amount of waste disposed in managed landfills is yearly provided by the national Waste Cadastre since 1995. The time series has been reconstructed backwards on the basis of several studies reporting data available for 1973, 1988, 1991, 1994 (Tecneco, 1972; MATTM, several years [a]).

The amount of waste disposed in unmanaged landfills has been estimated as a percentage of the waste disposed in managed landfills. Different studies provided information about the percentage of waste in unmanaged sites for 1973, 1979, 1991 (Tecneco, 1972; ISTAT, 1984, MATTM, several years [a]) and data in other years are extrapolated. These studies show that the share of waste disposed of into uncontrolled landfills has gradually decreased, from 72.8%, in 1973, to 53.4% in 1979 and 26.6% in 1991, which is a

consequence of the progressive implementation of the national legislation. Since 2000 the percentage of waste in unmanaged landfills is equal to zero because of legal enforcement described in 7.2.1.

Uncontrolled landfills have been monitored since 1982 when the D.P.R. 915/82 (Decree of the President of the Republic 915/82) introduced this requirement but the effective reduction of uncontrolled landfills occurred only following the D. Lgs. 22/97 with the implementation of European Directives. From 1997 the amount of waste disposed in uncontrolled landfills (landfills not fullfilling the technological standard but allowed with special permits) strongly reduced till 2000 when they were not allowed anymore. Since 2000 police forces as Corpo Forestale dello Stato and Carabinieri (NOE - Environmental Care Command) protect and supervise the compliance with the law; if an illegal disposal of waste is revealed they proceed to the seizure and site remediation. Recently, the Law 68/2015 introduced in the Italian Penal Code a new Title entirely dedicated to crimes against the environment (Law 22 maggio 2015, n. 68).

Industrial waste

Industrial waste assimilated to municipal solid waste (AMSW) could be disposed of in non hazardous landfills. Composition of AMSW must be comparable to municipal solid waste composition.

From 2001, data on industrial waste disposed of in municipal landfills are available from Waste Cadastre.

For previous years, assimilated municipal solid waste production has been reconstructed, and the same percentage of MSW disposed in landfill has been applied also to AMSW.

The complete database of AMSW production from 1975 to 2000 has been reconstructed starting from data available for the years 1988 (ISTAT, 1991) and 1991 (MATTM, several years [a]) with a linear interpolation, and with a regression model based on Gross Domestic Product (Colombari et al, 1998). From 1975 back to 1950 AMSW production has been derived as a percentage of MSW production; this percentage has been set equal to 15%, which is approximately the value obtained from the only data available (MSW and AMSW production for the years 1988 and 1991).

The time series of AMSW and domestic sludge disposed of into non hazardous landfills from 1990 is reported is also reported in Table 7.2.

ACTIVITY DATA	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
MSW production (Gg)	22,231	25,780	28,959	31,664	32,479	29,524	29,572	30,158	30,079	28,941	29,618
MSW disposed in landfills for non hazardous waste (Gg)	17,432	22,459	21,917	17,226	15,015	7,819	6,927	6,496	6,283	5,817	5,619
Assimilated MSW disposed in landfills for non hazardous waste (Gg)	2,828	2,978	2,825	2,914	3,508	3,222	3,899	3,512	3,256	2,910	2,963
Sludge disposed in managed landfills for non hazardous waste (Gg)	2,454	1,531	1,326	544	346	387	342	261	232	253	247
Total Waste to managed landfills for non hazardous waste (Gg)	16,363	21,897	26,069	20,684	18,870	11,428	11,167	10,269	9,771	8,980	8,829
Total Waste to unmanaged landfills for non hazardous waste (Gg)	6,351	5,071	0	0	0	0	0	0	0	0	0

Table 7.2 Trend of MSW production and MSW, AMSW and domestic sludge disposed in landfills, 1990 – 2021

ACTIVITY DATA	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
Total Waste to landfills for non hazardous waste (Gg)	22,714	26,968	26,069	20,684	18,870	11,428	11,167	10,269	9,771	8,980	8,829

Sludge from urban wastewater plants

Sludge from urban wastewater treatment plants has also been considered, because it can be disposed of at the same landfills as municipal solid waste and assimilated, once it meets specific requirements. The fraction of sludge disposed in landfill sites has been estimated to be 75% in 1990, decreasing to 5% in 2020.

On the basis of their characteristics, sludge from urban wastewater treatment plants is also used in agriculture, sludge spreading on land, and in compost production, or treated in incineration plants.

The percentage of each treatment (landfilling, soil spreading, composting, incinerating and stocking) has been reconstructed within the years starting from 1990: for that year, percentages have been set based on data on tonnes of sludge treated in a given way available from a survey conducted by the National Institute of Statistics on urban wastewater plants for the year 1993 (ISTAT, 1998 [a] and [b]; De Stefanis P. et al., 1998).

From 1990 onwards each percentage has been varied on the basis of data available for specific years: in particular, data on sludge use in agriculture have been communicated by the Ministry for the Environment concerning the reference time period from 1995 (MATTM, 2005; MATTM, several years [a]); data on sludge used in compost production are published from 1999, while data on sludge disposed into landfills are published from 2001 (APAT-ONR, several years; ISPRA, several years).

The total production of sludge from urban wastewater plants is communicated, every three years, by the Ministry for the Environment from 1995 (MATTM, 2005; MATTM several years [b]) in the framework of the reporting commitments established by the European Sewage Sludge Directive (EC, 1986) transposed into the national Legislative Decree 27 January 1992, n. 99.

Moreover, sewage sludge production is available from different sources also for the years 1987, 1991 (MATTM, several years [a]) and 1993 (ISTAT, 1998 [a] and [b]). Thus, for the missing years data have been extrapolated.

As for the waste production, also sludge production time series has been reconstructed from 1950. Starting from the number of wastewater treatment plants in Italy in 1950, 1960, 1970 and 1980 (ISTAT, 1987), the equivalent inhabitants have been derived.

To summarize, from 1987 both data on equivalent inhabitants and sludge production are available (published or estimated), thus it is possible to calculate a *per capita* sludge production: the parameter results equal on average to 80 kg inhab.⁻¹ yr⁻¹. Consequently, this value has been multiplied to equivalent inhabitants from 1987 back to 1950.

In Table 7.3, time series of sewage sludge production and landfilling is reported.

Table 7.3 Trend of total sewage sludge production and landfilling, 1990 – 2021

ΑCTIVITY DATA	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
Total sewage sludge production (Go	g) 3,272	2,437	3,402	4,299	3,698	3,069	3,184	3,137	3,142	3,019	3,027
Sewage sludge landfilled (Gg)	2,454	1,531	1,326	544	346	387	342	261	232	253	247
Percentage (%)	75.0	62.8	39.0	12.7	9.4	12.6	10.7	8.3	7.4	8.4	8.2

Waste composition

One of the most important parameters that influences the estimation of emissions from landfills is the waste composition. An in-depth survey has been carried out, in order to diversify waste composition over the years.

On the basis of data available on waste composition (Tecneco, 1972; CNR, 1980; Ferrari, 1996), three slots (1950-1970; 1971-1990; 1991- 2005) have been individuated to which different waste composition has been assigned.

Waste composition used from 2005 back to 1971 (CNR, 1980; Ferrari, 1996) has been better specified, on the basis of data available from those publications. In particular, screened waste (< 20mm) has been included in emissions estimation, because the 50% of it has been assumed as organic and thus rapidly biodegradable. This assumption has been strengthened by expert judgments and sectoral studies (Regione Piemonte, 2007; Regione Umbria, 2007).

In more recent years, taking advantage of the collaboration of the branch of ISPRA that deals with waste, it has been possible to carry out characterizations of the waste based on the data collected at national level from the relevant land registry. This operation is obviously very expensive from a computational point of view, so today it is possible to carry out an in-depth analysis every 10 years, also making use of the regional studies periodically carried out at local level.

So, a fourth slot (2006- 2015) has been individuated on the basis of the analysis of several regional waste composition and the analysis of waste disposed of into non hazardous landfills specified by the European Waste Catalogue (EWC) code for the year 2007, available from Waste Cadastre database (ISPRA, 2010). Data on waste composition refer to recent years and they are representative of the national territory, deriving from the North of Italy (Regione Piemonte, 2007; Regione Veneto, 2006; Regione Emilia Romagna, 2009), the Centre (Regione Umbria, 2007; Provincia di Roma, 2008) and the South (Regione Calabria, 2002; Regione Sicilia 2004). This last waste composition, adopted from 2006, includes compost residues which are disposed into landfills because their parameters are not in compliance with those set by the law: compost residues are reported under garden and park waste component, as they are considered moderately biodegradable. The complete AD time series has been reconstructed by filling gaps with the combination of the methods provided in the 2006 IPCC guidelines (mainly overlap and interpolation). Furthermore, the consistency between the last two classifications is ensured by the high detail of the most recent data which has made it possible to univocally associate the waste deposited in landfills in the last period with those of the previous period. This also ensure the consistency in the application of the k values.

The moisture content and the organic carbon content are from national studies (Andreottola and Cossu, 1988; Muntoni and Polettini, 2002).

Finally, starting from the settings of the previous work carried out on the 2007 data, the municipal waste sent to landfill was classified into the different classes considered in the 2006 IPCC Guidelines in order to obtain the three categories mentioned above. (slowly, moderately and rapidly biodegradable). These values were compared with various regional studies conducted over the last 10 years on the characterization of waste in landfills. The studies taken into consideration were drawn from the PRGRs of Piemonte (Regione Piemonte, 2016), Emilia Romagna (Regione Emilia Romagna, 2016), Toscana (Regione Toscana, 2014), Lazio (Regione Lazio, 2020), Calabria (Regione Calabria, 2016), Campania (Regione Campania, 2016) and Sardinia (Regione Sardegna, 2016). Compared to the previous processing (based on 2007 data), the fractions of food residues (-6%) and cellulosic materials (-8%) decrease, related to the better penetration and effectiveness of separate waste collection, which are able to better intercept these fractions and subtract them from landfill disposal. On the other hand, the fraction defined here as underscreen (*sottovaglio*) and linked to the increase in TMB (Biological Mechanical Treatments) treatments of waste which has led to an increase in treatment residues. Furthermore, from various studies and hypotheses reported in the PRGRs (Regional Waste Mmanagement Plan), an increase in the organic fraction in the underscreen was noted, which was assumed to be equal to 70%.

In Tables 7.4, 7.5, 7.6, 7.7 and 7.8 waste composition of each national survey mentioned above and waste composition derived from the analysis of EWC code is reported, together with moisture content, organic carbon content and consequently degradable organic carbon both in waste type *i* and in bulk waste, DOC calculation is described in following paragraphs. Waste types containing most of the DOC and thus involved in methane emissions are highlighted in bold type.

Since sludge is not included in waste composition, because it usually refers to waste production and not to waste landfilled, it has been added to each waste composition, recalculating the percentage of waste type.

WASTE COMPONENT	Composition by weight (wet waste)	Moisture content	Organic carbon content (dry matter)	DOC content in % of wet waste	DOC _i (kgC/tMSW)
Organic	32.7%	60 %	48%	19%	62.73
Garden and park	3.6%	50%	48%	24%	8.71
Paper, paperboard	29.7%	9 %	50%	46%	135.11
Plastic	2.9%	2%	70%		
Inert	26.9%				
Sludge	4.2%	75%	48%	12%	5.05
DOC					211.61

Table 7.4 Waste composition and Degradable Organic Carbon calculation, 1950 - 1970

Table 7.5 Waste composition and Degradable Organic Carbon calculation, 1971 – 1990

WASTE COMPONENT	Composition by weight (wet waste)	Moisture content	Organic carbon content (dry matter)	DOC content in % of wet waste	DOC _i (kgC/tMSW)
Organic	33.3%	60%	48%	19%	64.02
Garden and park	3.7%	50%	48%	24%	8.89
Paper, paperboard, textile and wood	19.6%	9%	50%	46%	89.29
Plastic	6.3%	2%	70%		
Inert	6.2%				
Metal	2.6%				
Screened waste (< 2 cm)					
- organic	8.1%	60%	48%	19%	15.46
- non organic	8.1%				
Sludge	12.0%	75%	48%	12%	14.40
DOC					192.06

Table 7.6 Waste composition and Degradable Organic Carbon calculation, 1991 - 2005

WASTE COMPONENT	Composition by weight (wet waste)	Moisture content	Organic carbon content (dry matter)	DOC content in % of wet waste	DOC _i (kgC/tMSW)
Organic	24.7%	60 %	48%	19%	47.36
Garden and park	4.2%	50%	48%	24%	10.09
Paper, paperboard	25.5%	8%	44%	40%	103.36
Nappies	2.7%	8%	44%	40%	10.98
Textiles	4.8%	10%	55%	50%	23.98
Leather and rubbers	2.1%	2%	70%		
Light plastics	8.9%	2%	70%		
Rigid plastics	3.0%	2%	70%		

WASTE COMPONENT	Composition by weight (wet waste)	Moisture content	Organic carbon content (dry matter)	DOC content in % of wet waste	DOC: (kgC/tMSW)
Inert and glasses	5.9%				
Metal	2.9%				
Bulky waste	0.5%				
Various	1.5%				
Screened waste (< 2 cm)					
- organic	3.4%	60%	48%	19%	6.60
- non organic	3.4%				
Sludge	6.3%	75%	48%	12%	7.55
DOC					209.92

Table 7.7 Waste composition and Degradable Organic Carbon calculation, 2006 – 2015

WASTE COMPONENT	Composition by weight (wet waste)	Moisture content	Organic carbon content (dry matter)	DOC content in % of wet waste	DOC _i (kgC/tMSW)
Organic	21.9%	60 %	48%	19%	42.07
Garden and park	5.6%	50%	48%	24%	13.53
Wood	1.6%	20%	50%	40%	6.47
Paper, paperboard, nappies	23.9%	8%	44%	40%	96.72
Textiles and leather	3.0%	10%	55%	50%	14.86
Plastics	11.8%	2%	70%		
Metals and Aluminium	2.3%				
Inert and glasses	6.4%				
Bulky waste	2.2%				
Various	6.5%				
Screened waste (< 2 cm)					
- organic	5.4%	60%	48%	19%	10.43
- non organic	5.4%				
Sludge	3.9%	75%	48%	12%	4.68
DOC					188.76

Table 7.8 Waste composition and Degradable Organic Carbon calculation, 2016 – 2021

WASTE COMPONENT	Composition by weight (wet waste)	Moisture content	Organic carbon content (dry matter)	DOC content in % of wet waste	DOC _i (kgC/tMSW)
Organic	15.9%	60%	48%	19%	30.61
Garden and park	4.3%	50%	48%	24%	10.36
Wood	2.1%	20%	50%	40 %	8.54
Paper, paperboard, nappies	16.1%	8%	44%	40%	65.03
Textiles and leather	2.5%	10%	55%	50%	12.50
Plastics	11.7%	2%	70%		
Metals and Aluminium	5.8%				
Inert and glasses	9.5%				
Bulky waste	0.0%				
Various	8.7%				
Screened waste (< 2 cm)					

WASTE COMPONENT	Composition by weight (wet waste)	Moisture content	Organic carbon content (dry matter)	DOC content in % of wet waste	DOC _i (kgC/tMSW)
- organic	14.7%	60 %	48%	19%	28.16
- non organic	6.3%				
Sludge	2.4%	75%	48%	12%	2.85
DOC					158.05

On the basis of the waste composition, waste streams have been categorized in three main types: rapidly biodegradable waste, moderately biodegradable waste and slowly biodegradable waste, as reported in Table 7.9. Methane emissions have been estimated separately for each mentioned biodegradability class and the results have been consequently added up.

Table 7.9 Waste biodegradability

Waste biodegradability	Rapidly biodegradable	Moderately biodegradable	Slowly biodegradable
Food	Х		
Sewage sludge	Х		
Screened waste (organic)	Х		
Garden and park		Х	
Paper, paperboard			Х
Nappies			Х
Textiles, leather			Х
Wood			Х

Degradable organic carbon (DOC) and Methane generation potential (L₀)

Degradable organic carbon (DOC) is the organic carbon in waste that is accessible to biochemical decomposition, and should be expressed as Gg C per Gg of waste. The DOC in waste bulk is estimated based on the composition of waste and can be calculated from a weighted average of the degradable carbon content of various components of the waste stream. The following equation estimates DOC using default carbon content values.

$$DOC = \sum_{i} (DOC_{i} * W_{i})$$

Where:

DOC = fraction of degradable organic carbon in bulk waste, kg C/kg of wet waste

 DOC_i = fraction of degradable organic carbon in waste type *i*,

 W_i = fraction of waste type *i* by waste category

Degradable organic carbon in waste type *i* can be calculated as following:

$$DOC_i = C_i * (1-u_i) * W_i$$

Where:

 C_i = organic carbon content in dry waste type *i*, kg C/ kg of waste type *i*

u_i= moisture content in waste type *i*

 W_i = fraction of waste type *i* by waste category

Once known the degradable organic carbon, the methane generation potential value (L₀) is calculated as:

 $L_0 = MCF * DOC * DOC_F * F * 16/12$

Where:

MCF = methane correction factor

DOC_F = fraction of DOC dissimilated

F = fraction of methane in landfill gas

Fraction of degradable organic carbon (DOC_F) is an estimate of the fraction of carbon that is ultimately degraded and released from landfill, and reflects the fact that some degradable organic carbon does not degrade, or degrades very slowly, under anaerobic conditions in the landfill.

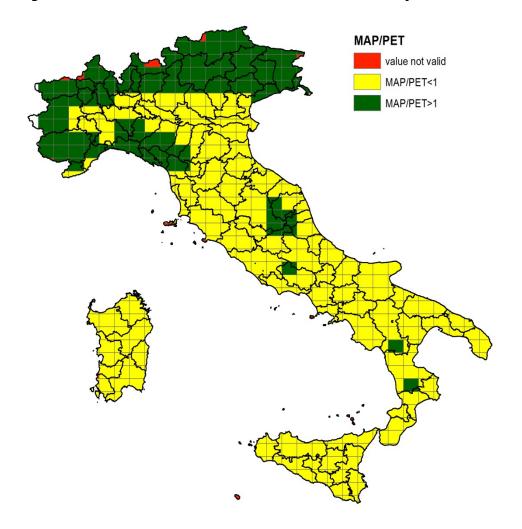
DOC_F value is dependent on many factors like temperature, moisture, pH, composition of waste: the default value 0.5 has been used.

The methane correction factor (MCF) accounts for that unmanaged SWDS (solid waste disposal sites) produce less CH₄ from a given amount of waste than managed SWDS, because a larger fraction of waste decomposes aerobically in the top layers of unmanaged SWDS. The MCF should be also interpreted as the 'waste management correction factor' because it reflects the management aspects.

The MCF value used for unmanaged landfill is the default IPCC value reported for uncategorised landfills: in fact, in Italy, before 2000 the existing unmanaged landfills were mostly shallow, because they resulted in uncontrolled waste dumping instead of real deep unmanaged landfills. On the basis of the qualitative information available regarding the national unmanaged landfills, the default IPCC value used has been considered the most appropriate to represent national circumstances also in consideration of the type of waste landfilled and the humidity degree of landfills. It is assumed that landfill gas is 50% VOC. On the basis of the recent inventory review in the framework of the ESD (Effort Sharing Directive) (EEA, 2017), Italy has distinguished wetlands from dry areas by associating each type of area with landfills in their respective territories, more information are available in the following paragraph. As it is estimated that sewage sludge has been disposed of only into landfills localized in the dry zone, the values of methane generation potential for the rapidly biodegradable fraction are slightly different. The following Table 7.10 summarizes the methane generation potential values (L₀) generated, distinguished for managed and unmanaged landfills.

L₀ (m3CH₄/tRSU)	1950 -	1970	1971 -	1990	1991 - 2	2005	2006 - 2	2015	2016	-2021
$L_0 (MSCH_4/TKSU)$	dry	wet	dry	wet	dry	wet	dry	wet	dry	wet
Rapidly biodegradable										
- Managed landfill	89.7	94.6	85.4	94.6	87.2	94.6	91.4	90.2	91.4	94.6
- Unmanaged Iandfill	53.8	56.7	51.3	56.7	52.3	56.7	54.8	54.1	54.8	56.7
Moderately biodegradable										
- Managed landfill	118.2	118.2	118.2	118.2	118.2	118.2	118.2	118.2	118.2	118.2
- Unmanaged Iandfill	70.9	70.9	70.9	70.9	70.9	70.9	70.9	70.9	70.9	70.9
Slowly biodegradable										
- Managed landfill	224.1	224.1	224.1	224.1	205.9	205.9	204.0	204.0	204.6	204.6
- Unmanaged landfill	134.5	134.5	134.5	134.5	123.5	123.5	122.4	122.4	122.7	122.7

Table 7.10 Methane generation potential values by waste composition, landfill typology and moisture conditions


Finally, oxidation factors have been assumed equal to 0.1 for managed landfills and 0 for unmanaged according to the IPCC 2006 Guidelines where 0.1 is suggested for well managed landfills.

Methane generation rate constant (k)

The methane generation rate constant k in the FOD method is related to the time necessary for DOC in waste to decay to half its initial mass (the 'half life' or $t^{1/2}$).

The maximum value of *k* applicable to any single SWDS is determined by a large number of factors associated with the composition of the waste and the conditions at the site. The most rapid rates are associated with high moisture conditions and rapidly degradable material such as food waste. The slowest decay rates are associated with dry site conditions and slowly degradable waste such as wood or paper. Thus, for each rapidly, moderately and slowly biodegradable fraction, and for each site conditions a different maximum methane generation rate constant has been assigned, as reported in Table 7.11. Different *k* values for rapidly, moderately and slowly biodegradable waste splitted up into dry or wet zones are applied to the different parts of the model. As above reported, consistency has been ensured in the application of a weighted average k value for slowly degradable waste but, more, Italy - applying the FOD model ith the individual k values - noted that non underestimation occurred. Furthermore, Italian experts believe that the application of the weighted average, especially for slowly biodegradable waste, constitutes a more realistic representation of the phenomenon.

The methane generation rate constant *k* values derive from the 2006 IPCC Guidelines. Italy has investigated more deeply the country specific conditions and revised the k-values considering the subdivision of the national territory in dry or wet zones on the basis of georeferenced data (30 km grid) consisting of the monthly average climatic summaries (period 1986-2015) of precipitation and evapotranspiration referring to the rainy period (October-December) and to the entire national territory provided by the Research Centre for Agriculture and Environments CREA-AA (CREA, 2017). Subsequently the ratio between precipitation (MAP = Mean Annual Precipitation) and evapotranspiration (PET = Potential Evapotranspiration) has been calculated and dry and wet zones distinguished following the 2006 Guidelines. Results have been reported in Figure 7.2., more information in (ISPRA, 2018).

Figure 7.2 Distribution of moisture conditions as defined by the 2006 IPCC GL

On the basis of the location of the solid waste disposal sites and of the distribution of dry or wet zones, the appropriate k values have been set; in particular, as reported in Table 7.10: 1) dry zones, rapidly biodegradable waste half life=12 years and k=0.06, moderately biodegradable half life=14 years and k=0.05, slowly biodegradable half life=20 years and k=0.03; 2) wet zones, rapidly biodegradable waste half life=4 years and k=0.17, moderately biodegradable half life=7 years and k=0.10, slowly biodegradable half life=14 years and k=0.05. Information and data about the fraction of waste landfilled in dry or wet zones are reported in (ISPRA, 2018). In particular, in 1990 MSW have been landfilled for 81% in dry zones and 19% in wet zones and assimilated MSW for 84% in dry and 16% in wet zones. In 2020 MSW have been landfilled for 92% in dry zones and 8% in wet zones while assimilated MSW keep the same distribution.

MOISTURE CONDITIONS	WASTE TYPE	Half life	Methane generation rate constant
	Rapidly biodegradable	12 year	0.06
DRY	Moderately biodegradable	14 years	0.05
	Slowly biodegradable	20 years	0.03
	Rapidly biodegradable	4 year	0.17
WET	Moderately biodegradable	7 years	0.10
	Slowly biodegradable	14 years	0.05

Landfill gas recovered (R)

Landfill gas recovered data have been reconstructed on the basis of information on extraction plants (De Poli and Pasqualini, 1991; Acaia et al., 2004; Asja, 2003) and electricity production (TERNA, several years).

Only managed landfills have a gas collection system, and the methane extracted can be used for energy production or can be flared.

The amount of methane recovery in landfills has increased as a result of the implementation of the European Directive on the landfill of waste (EC, 1999); the amounts of methane recovered and flared have been estimated taking into account the amount of energy produced, the energy efficiency of the methane recovered, the captation efficiency and the efficiency in recovering methane for energy purposes assuming that the rest of methane captured is flared. The emissions from biogas recovered from landfills and used for energy purposes are reported in the energy sector in "1A4a biomass" category together with wood, the biomass fraction of incinerated waste and biogas from wastewater plants. In Table 7.12 consumptions and low calorific values are reported for the year 2021.

Fuels		Consumption (Gg)	LCV (TJ/Gg)
Wood and similar	Wood	326.36	10.47
	Steam Wood	0.00	30.80
Incinerated waste (biomass)		2152.47	11.38
Biogas from landfills		214.73	53.46
Biogas from wastewater plants		25.81	53.46

The total CH₄ recovered is the sum of methane flared and methane used for energy purposes (see figure 7.3). Until 2000, the methane used for energy production is estimated starting from the electricity produced annually (E=GWh*3.6=TJ) by landfills (TERNA, several years) assuming an energy conversion efficiency equal to 0.3, typical efficiency value for engines that produce electricity from biogas (Colombo, 2001), and a LCV (Lower Calorific Value) equal to 50.038 TJ/Gg:

$((E/0.3)/50.038) *1000 = CH_4 Mg/year$

The LCV used for biogas derives from national experts and it is verified with energy and quantitative data about biogas production from waste supplied by TERNA (National Independent System Operator).

Since 2001, TERNA directly provides the amounts of biogas recovered for energy purposes, in this case the LCV has been derived from the comparison with the supplied energy data.

For the years 1987, 1988, 1989 and 1990, the methane flared is supplied by the plants (De Poli and Pasqualini, 1991); from 1991 to 1997 the methane flared has been extrapolated from the previous years; finally, for the following years the methane flared has been estimated using information based on monitored data supplied by the main operators (Asja, 2003 and Acaia, 2004) regarding the efficiency in recovering methane for energy purposes with respect to the total methane collected. This efficiency value increased from 56% of the total, in 1998, to 65% since 2002. In particular, the flared quantity of methane in 1990, reported by (De Poli and Pasqualini, 1991), is equal to 1,170,000 m³/day which result in 108,858 Mg/y and, in 1990, this amount corresponds to the total methane recovered. Since 1991 TERNA (National Independent System Operator) supplies the amount of biogas collected with energy recovery while (ASJA, 2003) and (Acaia, 2004) supply the percentage (flared / with energy recovered) equal to 35% in 2000 (survey on landfills in the Lombardy region, year 2000, 32 plants) and 30% in the following years (Asja landfills produced 35% of energy from landfill gas at the national level in 2001-2002). After 2002 this value, 30 % flared of total biogas collected, has been keep constant not considering further improving in efficiency in recovering methane for energy purposes with respect to the total methane collected. Since 2002 the efficiency is estimated on the basis of an interpolation over the period 2002-2021.

Furthermore, following the recommendation of 2016 ESD- review (EU, 2016), Italy has started to collect plant data derived from IPPC permits. The completion of this search takes time as there are no available data base but it is necessary to make a documentary study, plant by plant. The documents analyzed at the time (some of these are available on the website <u>http://ippc-aia.arpa.emr.it/ippc-aia/CercalmpiantiTipo.aspx</u>) seem to confirm current estimates (biogas flared = 30/35% of collected biogas).

Total methane collected is estimated, in 2021, equal to 33% of the total methane produced. In 2021, 70% of collected methane is used for energy purposes.

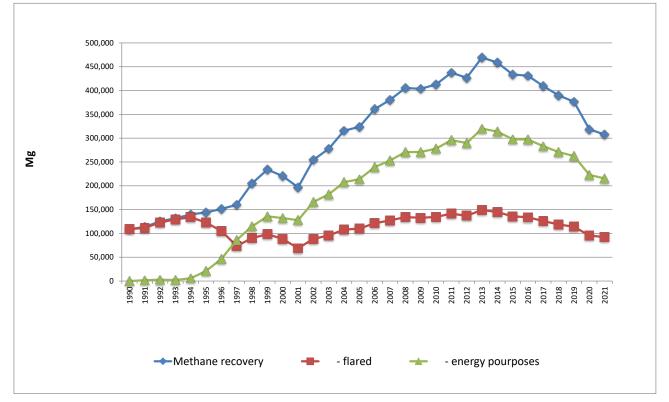


Figure 7.3 Methane recovery distinguished in flared amount and energy purposes (Mg)

CH₄ and NMVOC emission time series

The time series of CH₄ emissions is reported in Table 7.13; emissions from the amount used for energy purposes are estimated and reported under category 1A4a.

Whereas waste production continuously increases, from 2001 solid waste disposal on land has decreased as a consequence of waste management policies, although fluctuations in the amounts of industrial waste and sludge could influence this trend. At the same time, the increase in the methane-recovered percentage has led to a reduction in net emissions.

Further reduction is expected in the future because of the increasing in waste recycling.

EMISSIONS	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
Managed Landfills											
VOC produced (Gg)	396.4	565.5	772.3	916.7	977.6	957.7	925.0	909.1	891.7	874.0	855.2
VOC recovered (Gg)	108.9	144.1	220.4	323.7	412.7	433.6	409.1	389.7	376.6	318.5	307.4
VOC recovered (%)	27.5	25.5	28.5	35.3	42.2	45.3	44.2	42.9	42.2	36.4	36.0
CH ₄ net emissions (Gg)	255	374.3	490.3	526.7	501.8	465.5	458.2	461.4	457.6	493.4	486.5
NMVOC net emissions (Gg)	3.4	4.9	6.5	6.9	6.6	6.1	6.0	6.1	6.0	6.5	6.4
Unmanaged Landfills											
VOC produced (Gg)	235.9	233.6	200.3	155.4	122.3	97.1	88.7	84.8	81.1	77.6	74.2
VOC recovered (Gg)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CH ₄ net emissions (Gg)	232.8	230.6	197.7	153.4	120.7	95.8	87.5	83.7	80.1	76.6	73.3
NMVOC net emissions (Gg)	3.1	3.0	2.6	2.0	1.6	1.3	1.2	1.1	1.1	1.0	1.0

Table 7.13 VOC produced, recovered and CH₄ and NMVOC net emissions, 1990 – 2021 (Gg)

7.2.3 Uncertainty and time-series consistency

The uncertainty in CH₄ emissions from solid waste disposal sites has been estimated both by Approach 1 and Approach 2 of the IPCC guidelines. Following Approach 1, the combined uncertainty is estimated to be 22.4%, 10% and 20% for activity data and emission factors, respectively, as suggested by the IPCC Guidelines (IPCC, 2006). Applying Montecarlo analysis, the resulting uncertainty is estimated equal to 12.6% in 2009. Normal distributions have been assumed for most of the parameters; whenever assumptions or constraints on variables were known this information has been appropriately reflected on the choice of type and shape of distributions. A summary of the results is reported in Annex 1.

Emissions from landfills (Table 7.13) are influenced, apart from the amount of waste landfilled, also from waste composition and site conditions, as for each biodegradability class different parameters are used in the model.

The total amount of waste disposed of into managed landfills increased until 2000 (in 2000 the landfilling of waste in unmanaged landfills has stopped too), then it decreased from 2000 to 2003, while from 2003 to 2008 it is quite stable. Since 2009, due to the increasing in collection and recycling, but also to the economic crisis, the amount of waste disposed of in landfills is significantly decreased. It is important to remind that the total amount of waste disposed of is the sum of municipal solid wastes (which have decreased due to the enforcement of the legislation), sludge and industrial waste (only those similar to the municipal ones), which are subjected to fluctuation.

As previously reported, five waste compositions have been used, changing from 1950 to 2020 as well as the percentage of rapidly, moderately and slowly biodegradable fraction. The combination of the amount of waste landfilled and the waste composition has led to an increase of methane production from 1990 to the period 2005-2010 and a reduction in the last years.

At the same time, biogas recovery has increased up to 2013, but from 2000 the recovery rate is higher: in 2013 the methane recovered is about 43% of the methane produced. Methane emissions for 2013 result mainly from the amount of waste landfilled in the previous three years (2010-2012) and the observed

decline is explained by the sharp decrease in the amount of solid waste disposed in landfills in these years.

7.2.4 Source-specific QA/QC and verification

The National Waste cadastre is managed by ISPRA and is formed by a national branch hosted by ISPRA and regional and provincial branches hosted by the Regional Agencies for the Protection of the Environment. So the system requires continuous and systematic knowledge exchange and QA/QC checks in order to ensure homogeneity of information concerning waste production and management throughout the entire Italian territory. At central level, ISPRA provides assessment criteria and procedures for data validation, through the definition of uniform standard procedures for all regional branches. The national branch, moreover, ensures spreading of the procedures and training of technicians in each regional branch. Data are validated by ISPRA detecting potential errors and data gaps, comparing among different data sources and asking for further explanation to the regional branches whenever needed. Moreover, ISPRA has started a number of sectoral studies with a view to define specific waste production coefficients related to each production process. So through the definition of such 'production factors' and the knowledge of statistical information on production, it is possible to estimate the amount of waste originated from each sector for the selected territorial grid cell and compare the results to the statistical data on waste production.

For general QC checks on emission estimates and related parameters, each inventory expert fills in, during the inventory compilation process, a format with a list of questions to be answered which helps the compiler avoid potential errors and is also useful to prove the appropriateness of the methodological choices.

Following a recommendation during the previous review process further verifications have been carried out to check the k values for slowly degrading waste; the FOD model has been applied using the k value calculated as a weighted average between paper and wood but also imputing the different and appropriate values for paper and for wood. On the basis of 2019 submission data, the methane produced in the first case is 632,294 Mg in 1990 and 1,013,714 Mg in 2017; in the second one the methane produced is equal to 616,283 Mg in 1990 and 1,013,062 Mg in 2017. More, the sum of methane produced with the first model from 1990 to 2017 is equal to 26,943,609 Mg while using two distinct k values the sum results in 26,697,478 demonstrating that there is not an underestimation.

As regards the choice in k values, an in depth survey has been conducted and results have been reported in a technical note (ISPRA, 2018).

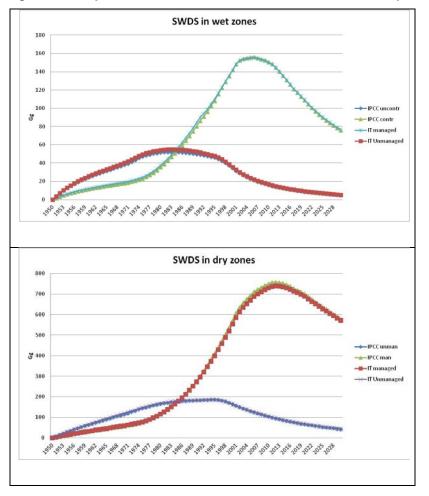

On the basis of the last European Review (EEA, 2020) a comparison of the IPCC waste model (MS excel) with the model used by Italy for the simulation of biogas production was carried out. To adequately compare the two calculation models, 4 outputs were created corresponding to the categories used in the Italian model: wet-managed (SWDS in wet zone and well managed), wet unmanaged (SWDS in wet zone and not managed), dry managed (SWDS in dry zone and well managed) and dry unmanaged (SWDS in dry zone and not managed). By using the same activity data and the same parameters in both models, almost identical results are obtained as can be seen from the following figures demonstrating the correct implementation of the physicochemical relationships in the Italian model. The differences shown in the table are largely within the uncertainty of the estimate.

Table 7.14 Comparison between the I	talian (sub 2021) and the IPCC	Spreadsheet for biogas production
Tuble III i Companison Bettreen the		spicaasiicet ioi biogas pioaacaon

	IPCC model	Italian model	difference
	CH₄ Gg	CH₄Gg	%
1990			
wet managed 1990	80	84	4.4%
wet unmanaged 1990	50	53	5.8%
dry managed 1990	277	273	-1.3%
dry unmanaged 1990	183	183	0.4%

	IPCC model	Italian model	difference
	CH₄ Gg	CH₄Gg	%
tot 1990	589	593	0.6%
2019			
wet managed 2019	113	113	0.4%
wet unmanaged 2019	9	10	8.8%
dry managed 2019	711	698	-1.8%
dry unmanaged 2019	70	71	2.0%
tot 2019	903	892	-1.1%

Figure 7.4 Comparison between the Italian (sub 2021) and the IPCC spreadsheet for biogas production

Following another recommendation deriving from the review process, Italy investigated the possibility to estimate the emissions from certain episodes of illegal dumping. There are no quantitative data about this issue but from a qualitative point of view it was known that waste was prevalently industrial waste rich in heavy metals and inorganic chemicals, generally no or slowly biodegradable. Anyhow, the waste has been collected and temporarily stored in "ecoballe", therefore officially registered and sent to appropriate treatments resulting in the data reported by the National database (for example in the case of events in the Naples region). Moreover, an in depth analysis of EWC codes of waste disposed of in landfills has been done for the year 2007 and 2019, thanks to the complete database of Waste Cadastre kindly supplied by ISPRA Waste Office. This accurate analysis has permitted to verify the correctness of waste typology assumptions used for the estimations.

Finally, an important improvement in waste data collection has been implemented by ISPRA and the Regional Agencies for the Protection of the Environment, consequently the waste statistical report includes the urban waste data referred to last years allowing a timely reporting.

Based on the last review processes, CO₂ emissions from HWP in SWDS are under investigations. Since the previous submissions, as discussed during the review process in an intersectoral way (LULUCF and waste team), a revision of the method used to estimate the HWP in Solid Waste Disposal Sites has been applied: the waste team has implemented the HWP sheet used in the IPCC FOD model to estimate the long-term storage of C in waste disposal sites and the annual change in total long-term C storage in HWP waste. Having demonstrated in the past years the consistency of the Italian calculation model with the IPCC one, the consistency of the HWP estimates with those of the landfill (same activity data) is also ensured, pending the implementation of the calculation within the Italian model. Sharing data with LULUCF experts instead ensures consistency between the two items.

7.2.5 Source-specific recalculations

In Table 7.15, municipal and industrial (assimilated to MSW) wastes disposed into non hazardous landfills are reported also for submission 2023.

Table 7.15 MSW and AMSW disposed into landfills time series, 1990 – 2021 (t), and differences in percentage	
between Submission 2023 and Submission 2022.	

	S	ubmission 202	3	S	ubmission 20	22			
Year	MSW to landfill (t)	AMSW to landfill (t)	Total waste (except sludge) to landfill (t)	MSW to landfill (t)	AMSW to landfill (t)	Total waste (except sludge) to landfill (t)	% MSW	% AMS W	% Total
1990	17,431,760	2,827,867	20,259,627	17,431,760	2,827,867	20,259,627	-	-	-
1995	22,458,880	2,977,672	25,436,552	22,458,880	2,977,672	25,436,552	-	-	-
2000	21,917,417	2,825,340	24,742,757	21,917,417	2,825,340	24,742,757	-	-	-
2005	17,225,728	2,913,697	20,139,425	17,225,728	2,913,697	20,139,425	-	-	-
2006	17,525,881	2,480,830	20,006,711	17,525,881	2,480,830	20,006,711	-	-	-
2007	16,911,545	2,776,637	19,688,182	16,911,545	2,776,637	19,688,182	-	-	-
2008	16,068,760	3,703,220	19,771,980	16,068,760	3,703,220	19,771,980	-	-	-
2009	15,537,822	3,180,904	18,718,726	15,537,822	3,180,904	18,718,726	-	-	-
2010	15,015,119	3,508,400	18,523,519	15,015,119	3,508,400	18,523,519	-	-	-
2011	13,205,749	2,882,686	16,088,435	13,205,749	2,882,686	16,088,435	-	-	-
2012	11,720,316	2,291,946	14,012,262	11,720,316	2,291,946	14,012,262	-	-	-
2013	10,914,353	2,511,711	13,426,064	10,914,353	2,511,711	13,426,064	-	-	-
2014	9,331,898	2,912,908	12,244,806	9,331,898	2,912,908	12,244,806	-	-	-
2015	7,818,795	3,221,646	11,040,441	7,818,795	3,221,646	11,040,441	-	-	-
2016	7,431,611	2,512,938	9,944,549	7,431,611	2,512,938	9,944,549	-	-	-
2017	6,926,548	3,899,413	10,825,961	6,926,548	3,899,413	10,825,961	-	-	-
2018	6,496,000	3,511,898	10,007,898	6,485,714	3,511,898	9,997,612	-	-	-
2019	6,283,307	3,256,299	9,539,606	6,283,307	3,256,299	9,539,606	-	-	-
2020	5,817,128	2,909,686	8,726,814	5,817,128	2,909,686	8,726,814	-	-	-
2021	5,618,640	2,962,608	8,581,248						

In Table 7.16 differences in percentage between emissions from landfills reported in the updated time series and 2022 submission are presented. Some minor recalculations occurred since 2017 because of the update in sludge disposal activity data.

EMISSIONS	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020
Managed Landfills										
VOC produced (Gg)	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	-0.01%	-0.01%	-0.02%
VOC recovered (Gg)	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
CH4 net emissions (Gg)	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	-0.01%	-0.02%	-0.02%	-0.03%
NMVOC net emissions (Gg)	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	-0.01%	-0.02%	-0.02%	-0.03%
Unmanaged Landfills										
VOC produced (Gg)	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
VOC recovered (Gg)	-	-	-	-	-	-	-	-	-	-
CH ₄ net emissions (Gg)	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
NMVOC net emissions (Gg)	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%

 Table 7.16 Differences in percentage between emissions from landfills reported in the updated time series and

 2022 submission

7.2.6 Source-specific planned improvements

Currently, more recent data on the fraction of CH₄ in landfill gas and on the amount of landfill gas collected and treated are under investigation.

7.3 Biological treatment of solid waste (5B)

7.3.1 Source category description

Biological treatment of solid waste is a key category for N₂O emissions at level (for 2021) and trend assessment but only with the Approach 2. Under this source category CH₄ and N₂O emissions from compost production and CH₄ emissions from anaerobic digestion of waste have been reported. NMVOC emissions from compost production have been estimated too. The amount of waste treated in composting and digestion plants has shown a great increase from 1990 to 2021 (from 283,879 Mg to 6,796,335 Mg for composting and from 79,440 Mg to 2,283,162 Mg for anaerobic digestion).

Information on input waste to composting plants are published yearly by ISPRA since 1996, including data for 1993 and 1994 (ANPA, 1998; APAT-ONR, several years; ISPRA, several years), while for 1987 and 1995 only data on compost production are available (MATTM, several years [a]; AUSITRA-Assoambiente, 1995); on the basis of this information the whole time series has been reconstructed. Regarding anaerobic digestion, the same sources of information have been used to reconstruct the time series until 2004 while ISPRA publishes yearly more accurate data from 2005.

7.3.2 Methodological issues

Composting

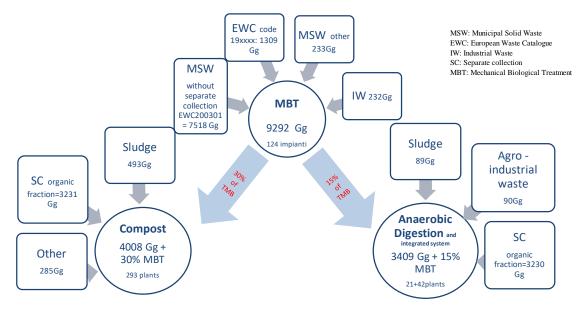
The composting plants are classified in two different kinds: plants that treat a selected waste (food, market, garden waste, sewage sludge and other organic waste, mainly from the agro-food industry); and mechanical-biological treatment plants, where the unselected waste is treated to produce compost, refuse derived fuel (RDF), and a waste with selected characteristics suitable for landfilling or incinerating systems.

It is assumed that 100% of the input waste to the composting plants from selected waste is treated as compost, while in mechanical-biological treatment plants 30% of the input waste is treated as compost on the basis of national studies and references (Favoino and Cortellini, 2001; Favoino and Girò, 2001).

In previous submissions, literature data (Hogg, 2001) have been used for the emission factor, 0.029 g CH₄ kg⁻¹ treated waste, corresponding to the minimum of the range proposed by 2006 IPCC Guidelines on a wet weight basis. This choice has been taken because in the 2006 IPCC Guidelines the default value (4 g CH₄/kg waste treated) is clearly shifted towards high values because most of world plants does not use advanced technologies. The majority of references reported in Table 4.1 of 2006 IPCC Guidelines that have found high emission factors referred to composting time of 10-14 months, low turning frequency and no aeration system. In Italy, almost all of the plants are industrial plants (216/279 > 1000 Mg/year in 2014), with enclosed areas for rotting and decomposition served by biofilters, turning when needed (to maintain the right porosity) and, above all, forced ventilation or suction system. Following the discussion started during the effort sharing decision review (EU, 2016) a specific survey on methane emission factor from composting and the relationship with technologies and management practices has been conducted (ISPRA, 2017) resulting in a new emission factor equal to 0.65 kg CH₄/Mg waste treated on a wet weight basis. As reported in the IPCC Guidelines, Table 4.1, the emission factors for dry waste are estimated from those for wet waste assuming a moisture content of 60% in wet waste.

NMVOC emissions have also been estimated: emission factor (51 g NMVOC kg⁻¹ treated waste) is from international scientific literature too (Finn and Spencer, 1997). In Table 7.17 and in Figure 7.5, activity data expressed in wet weight, CH₄, N₂O and NMVOC emissions are reported.

Anaerobic digestion


The anaerobic digestion plants too are subdivided in the same two different kinds: plants that treat a selected waste and mechanical-biological treatment plants.

It is assumed that 100% of the input waste to the plants from selected waste is treated as anaerobic digestion, while in mechanical-biological treatment plants 15% of the input waste is considered as anaerobically digested. The default IPCC 2006 emission factor has been used. Since the plants are closed systems, emissions are related to the possibility of gas leaks estimated in 5 % of potential emissions.

	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
Activity data											
Amount of waste to											
composting process (Gg	283.88	657.22	2,834.31	5,550.89	7,030.81	7,288.30	7,302.93	7,192.29	7,085.97	6,818.91	6,796.34
ww)											
Amount of waste to											
composting process (Gg	113.55	262.89	1,133.72	2,220.36	2,812.32	2,915.32	2,921.17	2,876.91	2,834.39	2,727.57	2,718.53
dw)											
Amount of waste to	70.44	107 10	107.00	4 407 00	4 070 00	0 0 0 0 4 7	0 400 47	0 005 00	0 450 60	a a a a a a	0 000 4 6
anaerobic digestion (Gg	79.44	127.43	467.80	1,407.20	1,976.36	2,303.17	2,422.17	2,385.20	2,450.63	2,309.97	2,283.16
ww) Amount of waste to											
anaerobic digestion (Gg	31.78	50.97	187.12	562.88	790.54	921.27	968.87	954.08	980.25	923.99	913.26
dw)	51.70	50.57	107.12	502.00	750.54	521.27	500.07	554.00	500.25	525.55	515.20
<u>CH</u> 4											
Compost production (Gg)	0.18	0.43	1.84	3.61	4.57	4.74	4.75	4.67	4.61	4.43	4.42
	0.00	0.01	0.02	0.06	0.08	0.09	0.10	0.10	0.10	0.09	0.09
Anaerobic digestion (Gg)	0.00	0.01	0.02	0.06	0.08	0.09	0.10	0.10	0.10	0.09	0.09
N ₂ O											
Compost production (Gg)	0.068	0.158	0.680	1.332	1.687	1.749	1.753	1.726	1.701	1.637	1.631
NMVOC											
Compost production (Gg)	0.014	0.033	0.144	0.282	0.357	0.370	0.371	0.365	0.360	0.346	0.345

Table 7.17 CH₄, N₂O and NMVOC emissions from biological treatment of solid waste, 1990 – 2021

7.3.3 Uncertainty and time-series consistency

The uncertainty in CH_4 emissions from biological treatment of waste is estimated to be about 100% in annual emissions, 20% and 100% concerning activity data and emission factors respectively. The uncertainty in N₂O emissions from biological treatment of waste is estimated to be about 100% in annual emissions, 20% and 100% concerning activity data and emission factors, respectively.

7.3.4 Source-specific QA/QC and verification

This source category is covered by the general QA/QC procedures. Moreover, as concerns composting, an in depth survey has been conducted in 2017 investigating literature and plant data. Results are reported in (ISPRA, 2017).

7.3.5 Source-specific recalculations

No recalculations occur.

		1990	1995	2000	2005	2010	2015	2017	2018	2019	2020
<u>CH</u> ₄											
Compost (Gg)	production	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Anaerobic di	gestion (Gg)	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
N₂O		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Compost (Gg)	production	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%

Table 7.18 CH₄ and N₂O recalculations for biological treatment of solid waste, 1990 – 2020

7.3.6 Source-specific planned improvements

Anaerobic digestion of solid waste is under investigation to collect more information about technologies and emission factors.

7.4 Waste incineration (5C)

7.4.1 Source category description

Existing incinerators in Italy are used for the disposal of municipal waste, together with some industrial waste, sanitary waste and sewage sludge for which the incineration plant has been authorized by the competent authority. Other incineration plants are used exclusively for industrial and sanitary waste, both hazardous and not, and for the combustion of waste oils, whereas there are few plants where residual waste from waste treatments, as well as sewage sludge, are treated. Since 2007, the activity of co-incineration in industrial plants, especially to produce wooden furniture, has increased significantly, resulting in an increase of the relevant emissions related to the proportion of waste burned.

Emissions from incineration of human bodies in crematoria have been estimated too.

As mentioned above, emissions from waste incineration facilities with energy recovery are reported under category 1A4a (Combustion activity, commercial/institutional sector, see Table 7.12) in the "Other fuel" and "Biomass" subcategory for the fossil and biomass fraction of wastes, respectively, whereas emissions from other types of waste incineration facilities are reported under category 5C (Waste incineration). For 2021, about 99% of the total amount of waste incinerated is treated in plants with energy recovery system.

A complete database of the incineration plants is now available, updated with the information reported in the yearly report on waste production and management published by ISPRA (APAT-ONR, several years; ISPRA, several years).

Emissions from removable residues from agricultural production are included in the IPCC category 5C: the total residues amount and carbon content have been estimated by both IPCC and national factors. The detailed methodology is reported in Chapter 5 (5.6.2).

CH₄ and N₂O emissions from biogenic, plastic and other non-biogenic wastes have been calculated.

7.4.2 Methodological issues

Regarding GHG emissions from incinerators, the methodology reported in the IPCC Good Practice Guidance (IPCC, 2000) has been applied, combined with that reported in the CORINAIR Guidebook (EMEP/CORINAIR, 2007; EMEP/EEA, 2009; EMEP/EEA, 2019). A single emission factor for each pollutant has been used combined with plant specific waste activity data. Since 2010, NO_x, SO₂ and CO emission factors for urban waste incinerators have been updated on the basis of data provided by plants (ENEA-federAmbiente, 2012; De Stefanis P., 2012).

As regard incineration plants, emissions have been calculated for each type of waste: municipal, industrial, hospital, sewage sludge and waste oils.

A complete database of these plants has been built, on the basis of various sources available for the period of the entire time series, extrapolating data for the years for which no information was available (MATTM, several years [a]; ANPA-ONR, 1999 [a] and [b]; APAT, 2002; APAT-ONR, several years; AUSITRA-Assoambiente, 1995; Morselli, 1998; FEDERAMBIENTE, 1998; FEDERAMBIENTE, 2001; AMA-Comune di Roma, 1996; ENI S.p.A., 2001; COOU, several years; Fondazione per lo sviluppo sostenibile e FISE UNIRE, 2016).

For each plant a lot of information is reported, among which the year of the construction and possible upgrade, the typology of combustion chamber and gas treatment section, if it is provided with energy recovery (thermal or electric), and the type and amount of waste incinerated (municipal, industrial, etc.).

Different procedures were used to estimate emission factors, according to the data available for each type of waste, except CH_4 and N_2O emission factor that is derived from EMEP Corinair (EMEP/CORINAIR, 2007).

Specifically:

- 1 for municipal waste, emission data from a large sample of Italian incinerators were used (FEDERAMBIENTE, 1998; ENEA-federAmbiente, 2012);
- 2 for industrial waste and waste oil, emission factors have been estimated on the basis of the allowed levels authorized by the Ministerial Decree 19 November 1997, n. 503 of the Ministry of Environment;
- 3 for hospital waste, which is usually disposed of alongside municipal waste, the emission factors used for industrial waste were also applied;
- 4 for sewage sludge, in absence of specific data, reference was made to the emission limits prescribed by the Guidelines for the authorisation of existing plants issued on the Ministerial Decree 12 July 1990.

In Table 7.19, emission factors are reported in kg per tons of waste treated, for municipal, industrial, hospital waste, waste oils and sewage sludge.

POLLUTANT/WASTE TYPOLOGY	NMVOC (kg/t)	CO (kg/t)	CO₂ fossil (kg/t)	N₂O (kg/t)	NO _x (kg/t)	SO₂ (kg/t)	CH₄ (kg/t)
Municipal waste 1990 - 2009	0.46	0.07	295.17	0.1	1.15	0.39	0.06
Municipal waste since 2010	0.46	0.07	467.50	0.1	0.62	0.02	0.06
Hospital waste	7.4	0.075	1200	0.1	0.604	0.026	0.06
Sewage sludge	0.25	0.6	0	0.227	3	1.8	0.06
Waste oils	7.4	0.075	3000.59	0.1	2	1.28	0.06
Industrial waste	7.4	0.56	1200	0.1	2	1.28	0.06

Table 7.19 Waste incineration emission factors

Here below (Tables 7.20, 7.21, 7.22, 7.23), details about data and calculation of specific emission factors are reported. Emission factors have been estimated on the basis of a study conducted by ENEA (De Stefanis, 1999), based on emission data from a large sample of Italian incinerators (FEDERAMBIENTE, 1998; AMA-Comune di Roma, 1996), legal thresholds (Ministerial Decree 19 November 1997, n. 503 of the Ministry of Environment; Ministerial Decree 12 July 1990), the last study conducted by ENEA and federAmbiente (ENEA-federAmbiente, 2012) and expert judgements.

The CO₂ implied emission factor for waste incineration varies annually and depends on the fossil carbon fraction in line with the variation of waste composition thath varies yearly on the basis of the amount of annual municipal, industrial and hospital waste and the quantity of sewage sludge to burn.

In details, from 1990 to 2009 CO₂ emission factor for municipal waste has been calculated considering a carbon content equal to 23%; moreover, on the basis of the IPCC Guidelines (IPCC, 2006) and referring to the average content analysis on a national scale (De Stefanis P., 2002), a distinction was made between CO₂ from fossil fuels (generally plastics) and CO₂ from renewable organic sources (paper, wood, other organic materials). Only emissions from fossil fuels, which are equivalent to 35% for municipal waste, were included in the inventory. In the last submissions, further improvement has been carried out; with the aim to upgrade the C content in municipal waste an analysis on waste composition in recent years has been conducted resulting in a carbon content for municipal waste equal to 25.5% (ISPRA, 2010) and a subdivision between fossil and renewable fuels equal to 50-50%. These updates have been applied starting from 2010. Regarding the other waste components, C in sludge is considered completely organic, while C in industrial and hospital waste are considered completely fossil carbon according to the national definitions of these type of wastes. Mortal remains are not part of hospital waste but are included in the activity data used to estimate emissions from crematories; C in this case is considered completely organic. CO₂ emission factor for industrial, oils and hospital waste has been derived as the average of values of investigated industrial plants.

On the other hand, CO₂ emissions from the incineration of sewage sludge were not included at all, while all emissions relating to the incineration of hospital and industrial waste were considered.

In this way, the resulting CO_2 emission factor for waste incineration varies in line with the variations of waste composition as can be seen in table 5.C of the CRF tables.

In Table 7.24 activity data are reported by type of waste.

Table 7.20 Municipal waste emission factors

MUNICIPAL WASTE	Average conce values (mg/		Standard specific volume (Nm³/Kg		E.F. (g/	Mg)
	1990-2009	2010-	1990-2009	2010-	1990-2009	2010-
SO ₂	78.00	2.17	5	6.7	390	18
NO _x	230.00	97.08			1,150	621
СО	14.00	12.30			70	73
N ₂ O					100	100
CH ₄					59.80	59.80
NMVOC					460.46	460.46
C content, % weight	23	25.5				
CO ₂					843.3 (kg/Mg)	935.4(kg/Mg)

Table 7.21 Industrial waste and oils emission factors

INDUSTRIAL AND OIL WASTE	Average concentration values (mg/Nm ³)	Standard specific flue gas volume (Nm ³ /KgMSW)	E.F. (g/t)
SO ₂	160.00	8	1,280
NOx	250.00		2,000
CO	70.00		560
N ₂ O			100
CH4			59.80
NMVOC			7,400
CO ₂			1,200 (kg/t)

Table 7.22 Hospital waste emission factors

HOSPITAL WASTE	Average concentration values (mg/Nm ³)	Standard specific flue gas volume (Nm³/KgMSW)	E.F. (g/t)
SO ₂	3.24	8	26
NOx	75.45		604
СО	9.43		75
N ₂ O			100
CH4			59.80
NMVOC			7,400
CO ₂			1,200 (kg/t)

Table 7.23 Sewage sludge emission factors

SEWAGE SLUDGE	Average concentration values (mg/Nm ³)	Standard specific flue gas volume (Nm³/KgMSW)	E.F. (g/t)
SO ₂	300	6	1,800
NO _x	500		3,000
СО	100		600
N ₂ O			100
CH ₄			59.80
NMVOC			251.16
CO ₂			700 (kg/t)

Table 7.24 Amount of waste incinerated by type, 1990 – 2021 (Gg)

	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
<u>Total Waste</u> incinerated	1,656	2,149	3,062	4,964	6,977	7,535	7,477	7,726	7,648	7,480	7,402
- with energy recovery	911	1,558	2,750	4,721	6,796	7,431	7,386	7,634	7,558	7,410	7,315
- without energy recovery Total Waste	745	591	312	244	181	103	91	92	90	70	64
incinerated - Carbon content (Gg)	439	560	773	1,309	1,970	2,123	2,132	2,195	2,187	2,143	2,109

	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
MSW incinerated	1,026	1,437	2,325	3,220	4,337	4,698	4,325	4,577	4,359	4,227	4,305
- with energy recovery	626	1,185	2,161	3,168	4,284	4,698	4,325	4,577	4,359	4,227	4,305
- without energy recovery	399	251	164	52	53	0	0	0	0	0	0
MSW incinerated - Carbon content (Gg)	236	330	535	741	1,106	1,199	1,103	1,168	1,112	1,078	1,098
Industrial Waste incinerated											
Other waste	473	536	604	1,602	2,499	2,709	3,033	3,020	3,169	3,145	2,974
- with energy recovery	258	330	508	1,446	2,399	2,676	2,999	2,991	3,138	3,119	2,949
- without energy recovery	215	206	96	155	100	33	34	29	31	26	25
Other waste - Carbon content (Gg)	155	175	198	524	818	887	993	988	1,037	1,029	973
Hospital waste	134	152	110	126	135	102	100	108	106	107	104
- with energy recovery	25	41	77	106	113	57	62	65	61	64	61
- without energy recovery	109	111	34	21	23	45	38	43	44	44	42
Hospital waste- Carbon content (Gg)	44	50	36	41	44	33	33	35	35	35	34
Sludge	20.72	23.18	21.50	15.60	5.98	25.10	18.39	20.49	14.06	0.00	19.57
- with energy recovery	0.00	0.00	3.40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
- without energy recovery	20.72	23.18	18.11	15.60	5.98	25.10	18.39	20.49	14.06	0.00	19.57
Sludge - Carbon content (Gg)	3.96	4.43	4.10	2.98	1.14	4.79	3.51	3.91	2.68	0.00	3.74
Waste oil	2.66	1.41	0.82	0.67	0.18	0.46	0.30	0.42	0.23	0.29	0.40
- with energy recovery	1.77	0.94	0.55	0.54	0.18	0.46	0.30	0.42	0.23	0.29	0.40
- without energy recovery	0.89	0.47	0.27	0.12	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Waste oil - Carbon content (Gg)	0.87	0.46	0.27	0.22	0.06	0.15	0.10	0.14	0.07	0.10	0.13

CH₄ and N₂O emissions from agriculture residues removed, collected and burnt 'off-site', as a way to reduce the amount of waste residues, are reported in the waste incineration sub-sector.

Removable residues from agriculture production are estimated for each crop type (cereal, green crop, permanent cultivation) taking into account the amount of crop produced, the ratio of removable residue in the crop, the dry matter content of removable residue, the ratio of removable residue burned, the fraction of residues oxidised in burning, the carbon and nitrogen content of the residues. Most of these wastes refer especially to pruning of olives and wine, because of the typical national cultivation.

Emissions due to stubble burning, which are emissions only from the agriculture residues burned on field, are reported in the agriculture sector, under 3.F, more info is also rported in the Annex 7. Under the waste sector the burning of removable agriculture residues that are collected and could be managed in different ways (disposed in landfills, used to produce compost or used to produce energy) is reported.

Different percentages of the removable agriculture residue burnt for different residues are assumed, varying from 10% to 90%, according to national and international literature. Moreover, these removable wastes are assumed to be all burned in open air (e.g. on field) taking in consideration the higher (without abatement) available CO, NMVOC, PM, PAH and dioxins emission factors. The amount of these wastes treated differently is not supplied, but they are included in the respective sectors (landfill, composting, biogas production for energy purposes, etc.).

The methodology is the same used to calculate emissions from residues burned on fields, in the category 3F, described in detail in Chapter 5.

On the basis of carbon and nitrogen content of the residues, CH₄ and N₂O emissions have been calculated, both accounting nearly for 100% of the whole emissions from waste incineration. CO₂ emissions have been calculated but not included in the inventory as biomass. All these parameters refer both to the IPCC Guidelines (IPCC, 2006) and country-specific values (CESTAAT, 1988; Borgioli, 1981).

The amount of biomass from pruning used for domestic heating is reported in the energy sector in the 1A4b category as biomass fuel.

As recommended during the 2019 UNFCCC review, to enhance transparency on the total amount of crop residues generated and shares of the crop residue amounts used for different purposes (such as bedding material (3.D.a.2.a), left on fields (3.D.a.4), burnt on-site (3.F) and off-site (1.A, 5.C.2)), a flow-chart is reported in Annex 7, in Figure A.7.1.

As regard incineration of corpses in crematoria, activity data have been supplied by a specific branch of Federutility, which is the federation of energy and water companies (SEFIT, several years).

In Table 7.25 time series of cremation as well as annual deaths and crematoria in Italy are reported.

	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
Cremations (no. of corpses)	5,809	15,436	30,167	48,196	77,379	137,168	170,903	183,146	194,669	247,840	244,186
Deaths (no. of corpses)	543,700	555,203	560,241	567,304	587,488	653,000	649,061	633,133	634,432	746,146	709,035
Mortal remains (no.)	1,000	1,750	1,779	9,880	18,899	34,178	36,425	37,538	38,305	29,266	45,959
Cremation percentage	1.07	2.78	5.38	8.50	13.17	21.01	26.33	28.93	30.68	33.22	25.88
Crematoria (no.)	ND	31	35	43	53	70	79	83	85	87	89

Table 7.25 Cremation time series (activity data), 1990 - 2021

The major emissions from crematoria are nitrogen oxides, carbon monoxide, sulphur dioxide, particulate matter, mercury, hydrogen fluoride (HF), hydrogen chloride (HCl), NMVOCs, other heavy metals, and some POPs.

In Table 7.26 emission factors for cremation are reported; all emission factors are from (SEFIT, 2015; SEFIT, 2019) except for CH₄ and N₂O, assumed equal to MSW emission factor because values were not available. CO_2 emissions have been not calculated for the inventory as human body is 'biomass'.

Table 7.26 Cremation emission factors

POLLUTANT/WASTE	NMVOC	CO	N₂O	NO _x	SO₂	CH₄
TYPOLOGY	(kg/body)	(kg/body)	(kg/t)	(kg/body)	(kg/body)	(kg/t)
Cremation	0.009	0.005	0.1	0.474	0.009	0.06

Since the 2020 submission, CO₂ emissions from open burning of waste have been considered. Open burning of waste is forbidden in Italy but sometimes it illegally occurs. Estimates are based on 2006 IPCC Guidelines, in particular the paragraph 5.3.2 to define the amount of waste open burned using data about population, the fraction of "rural people", the per capita waste production and estimating the rate of the waste amount that is burned relative to the total amount of waste treated on the bases of recent national data (Bfrac=0.4%). In the following table activity data and CO₂ emissions have been reported. To improve the completeness, in this submission CH₄ and N₂O emissions have been estimated too. The methodology used is always that of the 2006 IPCC guidelines. Italy does not agree with the recommendation. The 2006

IPCC Guidelines report as default value Bfrac=0.6. In recent years the most important fires (industrial warehouses) involved 1800 Mg in Corteolona in 2018 and 8400 Mg in Pomezia in 2017 which means negligible quantities even considering an order of magnitude higher. For example, if they were 100,000 Mg of open burning waste annually, they would be equivalent, from 1990 to 2018, to approximately 0.4% to 0.3% (instead of the 60% represented by the default). More 2006GL stated that "For countries that have well functioning waste collection systems in place, it is good practice to investigate whether any fossil carbon is open-burned. In a developed country, Pfrac can be assumed to be the rural population for a rough estimate. In a region where urban population exceeds 80 percent of total population, one can assume no open burning of waste occurs." and Pfrac (Istat,2017 "Forme, livelli e dinamiche dell'urbanizzazione in Italia") is less than 10% (9-9.4%) which means that rural population is more than 90% and open burning of urban waste can be considered negligible.

	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
Pfrac	9.4%	9.4%	9.4%	9.4%	9.4%	9.0%	9.0%	9.0%	9.0%	9.0%	9.0%
Bfrac	0.4%	0.4%	0.4%	0.4%	0.4%	0.4%	0.4%	0.4%	0.4%	0.4%	0.4%
MSW _B (Gg)	8.36	9.69	10.43	11.40	11.69	10.63	10.65	10.86	10.81	10.42	10.66
CO ₂ (Gg) fossil	2.47	2.86	3.08	3.36	5.47	4.97	4.98	5.08	5.05	4.87	4.98
CO ₂ (Gg) organic	4.58	5.31	5.71	6.25	5.47	4.97	4.98	5.08	5.05	4.87	4.98
CH₄ (Gg)	0.05	0.06	0.07	0.07	0.08	0.07	0.07	0.07	0.07	0.07	0.07
N₂O (Gg)	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001

Table 7.26 Open burning of waste time series, 1990 – 2021

7.4.3 Uncertainty and time-series consistency

The combined uncertainty in emissions from waste incineration is estimated to be about 22.4%, 10% and 20% for activity data and emission factors respectively.

The time series of activity data, distinguished in Municipal Solid Waste and other (including cremation), is shown in Table 7.28; CO₂ emission trends for each type of waste category are reported in Table 7.29, both for plants without energy recovery, reported under 5C, and plants with energy recovery, reported under 1A4a. In Table 7.30 N₂O and CH₄ emissions are summarized, including those from open burning and cremation.

In the period 1990-2021, total CO₂ emissions have increased by 449%, but whereas emissions from plants with energy recovery have increased by nearly 962%%, emissions from plants without energy recovery decreased by 84% (Table 7.28). While CO₂ emission trend reported in 5C is influenced by the amount of waste incinerated in plant without energy recovery, CH₄ and N₂O emission trend are related to the open burning, as already reported above.

Activity Data	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
MSW Production (Gg)	22,231	25,780	28,959	31,664	32,479	29,524	29,572	30,158	30,079	28,941	29,618
MSW Incinerated (%)	4.6%	5.6%	8.0%	10.2%	13.4%	15.9%	14.6%	15.2%	14.5%	14.6%	14.5%
- in energy recovery plants	2.8%	4.6%	7.5%	10.0%	13.2%	15.9%	14.6%	15.2%	14.5%	14.6%	14.5%
MSW to incineration (Gg)	1,026	1,437	2,325	3,220	4,337	4,698	4,325	4,577	4,359	4,227	4,305
Industrial, Sanitary, Sewage Sludge and Waste Oil to incineration (Gg)	631	712	737	1,744	2,640	2,836	3,152	3,149	3,289	3,252	3,097

Activity Data	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
Cremation (no. of corpses)	5,809	15,436	30,167	48,196	77,379	137,168	170,903	183,146	194,669	247,840	244,186
Total Waste to incineration, excluding cremation (5C and 1A4a) (Gg)	1,656	2,149	3,062	4,964	6,977	7,535	7,477	7,726	7,648	7,480	7,402

Table 7.29 CO ₂ emissions from waste incineration	(without and with energy recovery), 1990 – 2021 (Gg)
--	--

CO ₂ Emissions	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
Incineration of domestic or municipal wastes (Gg)	117.83	74.12	48.26	15.32	24.74	0.00	0.00	0.00	0.00	0.00	0.00
Incineration of industrial wastes (except flaring) (Gg)	257.99	247.11	115.74	186.50	119.88	40.19	41.32	34.75	37.32	31.13	30.01
Incineration of hospital wastes (Gg)	131.07	132.73	40.36	24.61	27.12	53.57	45.79	51.20	53.25	52.68	50.78
Incineration of waste oil (Gg)	2.66	1.41	0.82	0.36	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Incineration of corpses	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
Waste incineration (5C) (Gg)	510	455	205	227	172	94	87	86	91	84	81
Waste incineration reported under 1A4a (Gg) – not biomass	530	798	1,341	2,799	5,017	5,477	5,696	5,809	5,878	5,796	5,627
Waste incineration reported under 1A4a (Gg) - biomass	343	650	1,185	1,737	2,003	2,196	2,022	2,140	2,038	1,976	2,013
Total waste incineration – fossil (Gg)	1,039	1,254	1,546	3,026	5,189	5,571	5,783	5,894	5,968	5,880	5,707

Table 7.30 N ₂ O and CH ₄ emissions from waste incineration (cremation and open burning included), 199	0 – 2021
(Gg)	

GAS/SUBSOURCE	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
<u>N₂O</u> (Gg)											
Waste incineration (5C)	0.12	0.12	0.09	0.09	0.08	0.07	0.07	0.07	0.07	0.06	0.07
MSW incineration reported under 1A4a – not biomass	0.05	0.08	0.13	0.27	0.47	0.51	0.52	0.53	0.54	0.53	0.52
MSW incineration reported under 1A4a – biomass	0.04	0.08	0.14	0.21	0.21	0.23	0.22	0.23	0.22	0.21	0.22
<u>CH</u> 4 (Gg)											
Waste incineration (5C)	2.02	2.25	2.18	2.38	2.28	2.27	2.21	2.17	2.16	2.21	2.15
MSW incineration reported under 1A4a – not biomass	0.03	0.05	0.08	0.16	0.28	0.30	0.31	0.32	0.32	0.32	0.31
MSW incineration reported under 1A4a – biomass	0.02	0.05	0.08	0.12	0.13	0.14	0.13	0.14	0.13	0.13	0.13

7.4.4 Source-specific QA/QC and verification

Several verifications were carried out on the basis of the analysis of documentation supplied in the framework of IPPC permits and of environmental reports.

7.4.5 Source-specific recalculations

Generally, recalculations occur in 2019 and 2020 because of the annual update of incinerators activity data. Recalculations occur in N₂O emissions because of the introduction of N₂O emissions from open burning of municipal waste while the recalculations in CH₄ emissions are due to the update of carbon values in crop residues. Updated IPCC values consistent with the LULUCF sector have been included. The major variations concern cereals and woody plants (which have a predominant role in the open burning of agricultural waste). More information is reported in the agriculture chapter.

Table 7.31 Differences in percentages between time series reported in the updated time series and 2022 submission

GAS/SUBSOURCE	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020
<u>CO</u> 2 (Gg)										
Waste incineration (5C)	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	-4.62%
MSW incineration reported under 1A4a - fossil	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	2.91%	0.31%
<u>N₂O</u> (Gg)										
Waste incineration (5C)	0.51%	0.62%	0.91%	0.99%	1.13%	1.06%	1.11%	1.15%	1.16%	-4.09%
MSW incineration reported under 1A4a - fossil	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	2.64%	0.17%
<u>CH₄</u> (Gg)										
Waste incineration (5C)	0.99%	-2.89%	-2.22%	-3.14%	-2.04%	-2.26%	-2.20%	-0.91%	-0.87%	-1.27%
MSW incineration reported under 1A4a - fossil	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	2.64%	0.17%

7.4.6 Source-specific planned improvements

No further improvements are planned for the next submission.

7.5 Wastewater handling (5D)

7.5.1 Source category description

Under source category 5D, CH₄, N₂O and NMVOC are estimated both from domestic and industrial wastewater. The principal by-product of the anaerobic decomposition of the organic matter in wastewater is methane gas. Normally, CH₄ emissions are not encountered in untreated wastewater because even small amounts of oxygen tend to be toxic to the organisms responsible for the production of methane. Occasionally, however, as a result of anaerobic decay in accumulated bottom deposits, methane can be produced. Again, wastewater collected in closed underground sewers is not believed to be a significant source of CH₄ (IPCC, 2006).

In 2021, the 99.6% of population is served by sewer systems, whereas 89% of population is served by wastewater treatment plants (BLUE BOOK, several years; COVIRI, several years; ISTAT [d], [e], several years). In 1990, the percentage of population served by sewer system was 57%, whereas only 52% of population was served by wastewater treatment plants (BLUE BOOK, several years; COVIRI, several years; ISTAT [d], [e], several years).

In Italy, domestic wastewaters follow the treatment systems and discharge pathways reported in Figure 7.5, whereas in brown are enhanced CH₄ sources.

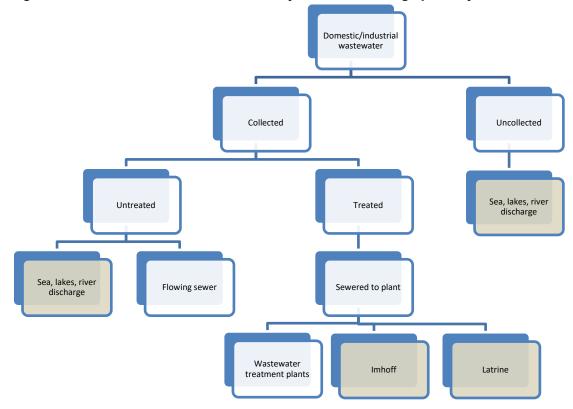


Figure 7.5 Domestic wastewater treatment system and discharge pathways

Methane is produced from the anaerobic treatment process used to stabilize wastewater sludge.

The plant typology is usually distinguished in 'primary' (only physical-chemical unit operations such as sedimentation), 'secondary' (biological unit process) or 'advanced' treatments, defined as those additional treatments needed to remove suspended and dissolved substances remaining after conventional secondary treatment.

In urban areas, wastewater handling is managed mainly using a secondary treatment, with aerobic biological units: a wastewater treatment plant standard design consists of bar racks, grit chamber, primary sedimentation, aeration tanks (with return sludge), settling tank, chlorine contact chamber. The stabilization of sludge occurs in aerobic or anaerobic reactors; where anaerobic digestion is used, the reactors are covered and provided of gas recovery.

On the contrary, in rural areas, wastewaters are treated in Imhoff tanks or in other on-site systems, such as latrines.

For high strength organic waste, such as some industrial wastewater, anaerobic process is recommended also for wastewater besides sludge treatment.

It is assumed that industrial wastewaters are treated 85% aerobically and 15% anaerobically (IRSA-CNR, 1998).

Emissions from methane recovered, used for energy purposes, in wastewater treatment plants are estimated and reported under category 1A4a, as reported in Table 7.12.

7.5.2 Methodological issues

Emissions from domestic wastewater – CH4

CH₄ emissions from domestic wastewater are estimated using a Tier 2 approach, according to new 2006 IPCC Guidelines (IPCC, 2006).

The general equation used to estimate CH₄ emissions from domestic wastewater is:

CH₄ emissions = [
$$\Sigma_{i,j}$$
 (U_i * T_{i,j} * EF_j)] * (TOW - S) - R (kg CH₄/yr)

where:

TOW = total organics in wastewater in inventory year (kg BOD/yr)

S = organic component removed as sludge in inventory year (kg BOD/yr)

Ui = fraction of population in income group i in inventory year

 $T_{i,j}$ = degree of utilisation of treatment/discharge pathway or system, j, for each income group fraction i in inventory year

i = income group: rural and urban high income (urban low income is not considered in national inventory, for the typical Italian urbanization)

j = each treatment/discharge pathway or system

EFj = emission factor (kg CH₄/kg BOD)

 $R = amount of CH_4 recovered in inventory year (kg CH_4/yr)$

An in-depth analysis of national circumstances has been made, collecting many statistical data on population and on urban wastewater treatment plants (BLUE BOOK, several years; COVIRI, several years; ISTAT, 1984; ISTAT, 1987; ISTAT, 1991; ISTAT, 1993; ISTAT [a], [b], 1998; ISTAT [d], [e], several years).

Some data, such as the degree of collected or treated wastewater are available for specific year, so the entire time series has been reconstructed with interpolation of data.

In the following tables (7.32, 7.33, 7.34), domestic wastewater population data are reported.

Population Activity Data	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
Total Population	56,778	56,844	56,961	58,289	59,948	60,164	59,938	59,817	59,641	59,236	58,983
Urban high- income Population	52,947	53,134	53,372	54,867	56,602	56,938	56,761	56,664	56,513	56,132	55,903
Rural Population	3,831	3,710	3,589	3,422	3,347	3,225	3,177	3,153	3,129	3,104	3,080
Population served by collected wastewater systems (%)	57.0	69.8	86.0	83.0	90.1	99.4	99.5	99.5	99.5	99.5	99.6
Population served by wastewater treatment plants (%)	51.9	58.0	60.0	69.0	76.1	82.2	84.6	85.8	87.0	88.2	89.4

Table 7.32 Population data for domestic wastewater, 1990 – 2021 (*1000)

Table 7.33 Urban high-income Population for domestic wastewater, 1990 – 2021 (*1000)

Urban high-income Population	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
Population not served by collected wastewater systems	22,761	16,042	7,472	9,327	5,588	342	312	297	283	267	252
Population served by collected wastewater systems	30,186	37,092	45,900	45,540	51,013	56,597	56,449	56,366	56,230	55,865	55,652
Pop. collected and treated	15,678	21,507	27,540	31,422	38,830	46,501	47,744	48,356	48,919	49,277	49,761
Pop. collected untreated	14,508	15,585	18,360	14,117	12,183	10,096	8,705	8,011	7,311	6,589	5,891
sea/lake/river discharge	8,705	9,351	11,016	8,470	7,310	6,058	5,223	4,806	4,387	3,953	3,534
flowing sewer discharge	5,803	6,234	7,344	5,647	4,873	4,038	3,482	3,204	2,925	2,635	2,356

Table 7.34 Rural Population data for domestic wastewater, 1990 – 2021 (*1000)

Rural Population	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
Population not served by collected wastewater systems	1,647	1,120	502	582	330	19	17	17	16	15	14
Population served by collected wastewater systems	2,184	2,590	3,087	2,840	3,016	3,206	3,160	3,136	3,113	3,090	3,066
Pop. treated in Imhoff tanks	421	647	845	468	635	967	1,120	1,138	1,156	1,174	1,192
Pop. treated in latrines	1,763	1,943	2,242	2,373	2,381	2,239	2,040	1,998	1,957	1,915	1,874

The emission factor for a wastewater treatment and discharge pathway and system is a function of the maximum CH_4 production potential B_0 and the methane correction factor (MCF) for the wastewater treatment and discharge system, as indicated as following:

$EF_j = B_0 * MCF_j$

The default B_0 value (0.6 kg CH₄/kg BOD) and default MCF values have been used.

Type of treatment and discharge pathway or system	MCF
Untreated system	
Sea, river and lake discharge	0.1
Flowing sewer	0
Treated system	
Centralized, aerobic treatment plants	0.05

Anaerobic digester for sludge	0.8
Imhoff tanks	0.5
Latrines	0.1

The total amount of organically degradable material in the wastewater is calculated from the human population and the BOD generation per person:

where:

TOW = total organics in wastewater in inventory year (kg BOD/yr)

P = country population in inventory year (person)

BOD = country specific per capita BOD in inventory year (g/person/day)

0.001 = conversion from grams to kg BOD

I = correction factor for additional industrial BOD discharged into sewers (I = 1.25, IPCC 2006).

The parameter I, equal to 1.25 has been applied both for collected and uncollected wastewater, in order to consider illegal wastewater spills from industry or craft activities that are not taking into account in official statistics and other industries and establishments (e.g., restaurants, butchers or grocery stores) that can co-discharged with domestic wastewater.

The organic load in biochemical oxygen demand per person is equal to 60 g BOD₅ capita⁻¹ d⁻¹, as defined by national legislation and expert estimations (Legislative Decree 11 May 1999, no.152; Masotti, 1996; Metcalf and Eddy, 1991).

The total organics in sludge (TOW sludge) has been estimated half of total organics in wastewater, according to international literature (Metcalf and Eddy, 1991), that states that the typical reduction in volatile solids achieved in anaerobic digestion for mixed sludge (primary plus secondary) varies from 45 to 60 percent.

In the following table 7.35, the total amount of organically degradable material expressed in tons, calculated for each treatment/discharge pathway or system is reported.

TOW (t BOD)	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
Urban high- income											
Population											
TOW uncollected wastewater	623,069	439,148	204,547	255,337	152,984	9,352	8,546	8,144	7,735	7,299	6,887
TOW wastewater treatment plant	429,195	588,761	753,901	860,185	1,062,969	1,272,957	1,306,990	1,323,741	1,339,155	1,348,948	1,362,203
TOW sludge	214,598	294,381	376,951	430,093	531,485	636,478	653,495	661,871	669,578	674,474	681,102
TOW untreated (sea/lake/river)	238,289	255,979	301,560	231,876	200,113	165,825	142,974	131,574	120,091	108,219	96,754
TOW untreated (flowing sewer)	158,860	170,653	201,040	154,584	133,409	110,550	95,316	87,716	80,061	72,146	64,503
Rural											
Population											
TOW uncollected wastewater	45,088	30,665	13,755	15,925	9,045	530	478	453	428	404	379
TOW Imhoff	11,535	17,705	23,129	12,799	17,378	26,467	30,653	31,149	31,646	32,143	32,640
TOW latrines	48,263	53,197	61,366	64,955	65,192	61,300	55,839	54,704	53,569	52,433	51,297

Table 7.35 Total organically degradable material in domestic wastewater, 1990 – 2021 (t BOD)

As previously reported, in Italy wastewater handling is managed mainly using a secondary treatment, with aerobic biological units. The stabilization of sludge occurs in aerobic or anaerobic reactors covered and provided of gas recovery. All the anaerobic digestion systems are equipped with systems to collect the methane produced. The methane collected is partly flared and partly used for energy purposes. The total methane recovered is estimated on the basis of the methane production and the efficiency of capture. Where anaerobic digestion of sludge is used, the reactors are covered and provided of gas recovery and the efficiency of capture is equal to 100% In fact, in Italy, anaerobic digestion tanks for sludge stabilization in wastewater treatment plants are built with fixed covered: fix covered provide a free space between the roof of the digester and the liquid surface. Gas storage is provided so that when the liquid volume is changed, gas, not air, will be drawn into the digester, and gas will not be lost by displacement.

CH₄ emissions from sludge have been subtracted from the total amount of CH₄ produced, because emissions from sludge from wastewater treatment are considered in landfills, agricultural soils and incineration.

Moreover, CH₄ recovery has been distinguished between flaring and CH₄ recovery for energy generation, which has been reported in the Energy Sector.

During the last review process, the ERT compared the indigenous sewage sludge production by EUROSTAT with CH₄ from energy recovery reported in the inventory founding some differences. Italy considers this comparison incorrect as it puts together two quantities that represent two different things and, as it should be, the first must be greater than the second.

Emissions from domestic wastewater -N₂O

Nitrous oxide (N₂O) emissions can occur as direct and indirect emissions. Direct emissions occur from nitrification and denitrification in wastewater treatment plants, whereas indirect emissions are those from wastewater after disposal of effluent into waterways, lakes or sea.

Emissions from advanced centralized wastewater treatment plants are typically much smaller than those from effluent and are estimated using the method reported in Box 6.1 of the Volume 5, Chapter 6 of new 2006 IPCC Guidelines (IPCC, 2006).

Direct emissions

where:

N2OPLANTS = total N2O emissions from plants in inventory year (kg N2O/yr)

P = human population

T_{PLANT} = degree of utilization of modern, centralized wastewater treatment plants (%)

FIND-COM = fraction of industrial and commercial co-discharged protein (default = 1.25)

EF_{PLANT} = emission factor, 3.2 g N₂O/person/year

Indirect emissions

N2OEMISSIONS = NEFFLUENT * EFEFFLUENT * 44/28

where:

 $N_2O_{EMISSIONS} = N_2O$ emissions in inventory year (kg N_2O/yr)

NEFFLUENT = nitrogen in the effluent discharged to aquatic environments (kg N/yr)

 $EF_{EFFLUENT}$ = emission factor for N₂O emissions from discharged to wastewater assumed equal to 0.005 (kg N₂O-N/kg N)

Moreover:

```
NEFFLUENT = NEFFLUENT TOT - NSLUDGE = (P * Protein * FNPR * FNON-CON * FIND-COM) - NSLUDGE
```

where:

 $N_{EFFLUENT}$ = nitrogen in the effluent discharged to aquatic environments (kg N/yr)

P = human population

Protein = annual per capita protein consumption (kg/person/yr)

 F_{NPR} = fraction of nitrogen in protein (default = 0.16 kg N/kg protein)

FNON-COM = fraction of non-consumed protein added to the wastewater

FIND-COM = fraction of industrial and commercial co-discharged protein (default = 1.25)

NsLUDGE = nitrogen removed with sludge (kg N/yr)

The time series of the protein intake is from the yearly FAO Food Balance (FAO, several years) and refers to the Italian value. The estimation procedure checks for consistency with sludge produced and sludge applications, as sludge applied to agriculture soils, sludge incinerated, sludge composting and sludge deposited in solid waste disposal. Sludge spreading is subtracted from nitrogen in the effluent discharged to aquatic environments and is not accounted for twice.

For the parameter F_{NON-COM} the value of 1.1 it is assumed, because, even if Italy is a developed country, garbage disposals of food that is not consumed and may be washed down the drain are not used.

Emissions from industrial wastewater – CH4

The methane estimation concerning industrial wastewaters makes use of the IPCC method based on wastewater output and the respective degradable organic carbon for each major industrial wastewater source. Default emission factors of methane per Chemical Oxygen Demand (COD) equal to 0.25 kg CH₄ kg⁻¹ COD, suggested in the 2006 IPCC Guidelines (IPCC, 2006), has been used for the whole time series.

It is assumed that industrial wastewaters are treated 85% aerobically and 15% anaerobically (IRSA-CNR, 1998).

Data have been collected for several industrial sectors (iron and steel, refineries, organic chemicals, food and beverage, paper and pulp, textiles and leather industry). The total amount of organic material, for each industry selected, has been calculated multiplying the annual production (t year⁻¹) by the amount of wastewater consumption per unit of product (m³ t⁻¹) and by the degradable organic component (kg COD (m³)⁻¹). Moreover, the fraction of industrial degradable organic component removed as sludge has been assumed equal to zero. The yearly industrial productions are reported in the national statistics (ISTAT, several years [a], [b] and [c]), whereas the wastewater consumption factors and the degradable organic component are either from 2006 IPCC Guidelines (IPCC, 2006) or from national references. National data have been used in the calculation of the total amount of both COD produced and wastewater output specified as follows: refineries (UP, several years), organic chemicals (FEDERCHIMICA, several years), beer (Assobirra, several years), wine, milk and sugar sectors (ANPA-ONR, 2001), pulp and paper sector (ANPA-FLORYS, 2001; Assocarta, several years), and leather sector (ANPA-FLORYS, 2000; UNIC, several years).

During the last review process, the ERT recommended Italy to further investigate COD values and wastewater production for the most significant industries and to report data in the next submission. The investigation is also ongoing thanks to the cooperation with Secam, a company founded in 1989, currently Italy's leading manufacturer and supplier of chemicals for industry and civil and industrial wastewater treatment services that could help us to set some parameters country specific.

In Table 7.36 detailed references for 2021 are reported: for these national data, slightly differences within the years can occur.

Emissions from industrial wastewater – N₂O

 N_2O emissions from industrial wastewater have been estimated on the basis of the emission factors equal to 0.25 g N_2O/m^3 of wastewater production (EMEP/CORINAIR, 2007). EMEP/EEA Guidelines, after 2007 version, does not report any N_2O E.F but, about the methodology to estimate N_2O emissions from industrial wastewater, they refer to 2006 IPCC Guidelines. In 2006 IPCC Guidelines it is written that industrial wastewater may be treated on site or released into domestic wastewater. In the national inventory, the fraction of industrial wastewater released into domestic wastewater it is estimated because of the parameter $F_{IND-COM}$. For the fraction treated on site 0.25 g N_2O/m^3 has been applied to the volume of wastewater generated for type of industry.

The wastewater production is resulting from the model for the estimation of methane emissions from industrial wastewater.

	Wastewater generation (m ³ /t)	References	COD (g/l)	References
Coke	1.5	IPCC, 2000	0.1	IPCC, 2000
Petroleum Refineries		UNIONE PETROLIFERA supplies To	tal COD genera	ited per year
Organic Chemicals	22.3	FEDERCHIMICA, several years	3	IPCC, 2000
Paints	5.5	IPCC, 2000	5.5	IPCC, 2000
Plastics and Resins	0.6	IPCC, 2000	3.7	IPCC, 2000
Soap and Detergents	3	IPCC, 2000	0.9	IPCC, 2000
Vegetables, Fruits and Juices	20	IPCC, 2000	5.2	IPCC, 2000
Sugar Refining	4	ANPA-ONR, 2001	2.5	ANPA-ONR, 2001
Vegetable Oils	3.1	IPCC, 2000	1.2	IPCC, 2000
Dairy Products	3.87	ANPA-ONR, 2001	2.7	ANPA-ONR, 2001
Wine and Vinegar	3.8	ANPA-ONR, 2001	0.2	ANPA-ONR, 2001
Beer and Malt	420 (l/hl)	Assobirra, several years	2.9	IPCC, 2000
Alcohol Refining	24	IPCC, 2000	11.0	IPCC, 2000
Meat and Poultry	13	IPCC, 2000	4.1	IPCC, 2000
Fish Processing	13	same value of Meat and Poultry	2.5	IPCC, 2000
Paper	25	Assocarta, several years	0.1	ANPA-FLORYS, 2001; Assocarta, several years
Pulp	25	Assocarta, several years	0.1	ANPA-FLORYS, 2001; Assocarta, several years
Textiles (dyeing)	60	IPCC, 1995	1.0	IPCC, 2000
Textiles (bleaching)	350	IPCC, 1995	1.0	IPCC, 2000
Leather	0.10	UNIC, several years	4.71	UNIC, several years

Table 7.36 Wastewater generation and COD values, 2021

In the Table 7.37, N₂O emissions from industrial wastewater are reported, together with the deriving nitrogen in effluent (kt N-N₂O), that is reported in the CRF table 5.D. In the CRF Reporter GHG inventory software the table related to the category 5.D.2 requests, among the others, the N in effluent (kt) as well as the IEF (kg N₂O-N/kg N); N in effluent is calculated with the following formula, assuming the default emission factor 0.25 kg N₂O-N/kg N (IPCC, 2006):

N in effluent (kt) = N₂O emissions (kt) / IEF (kg N₂O-N/kg N) *28/44

As N₂O emissions from industrial wastewater are estimated on the basis of the cubic meters of wastewater produced by a specific industry and the emission factor equal to 0.25 g N₂O/m³ (EMEP/CORINAIR, 2007), it was not possible to report this value in the CRF Reporter: consequently, we were forced to derive the N in effluent from the N₂O emissions by multiplying for the conversion factor 28/44 and dividing for the IEF 0.25 kg N₂O-N/kg N, the maximum for a cautionary reason.

Table 7.37 N₂O emissions from industrial wastewater, 1990 – 2021 (kt)

N ₂ O Emissions (t)	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
Industrial wastewater											
Industrial wastewater production (1000 m ³)	908,840	928,479	920,614	867,085	717,846	659,246	691,463	708,427	697,032	654,197	703,045
EF (g/m ³)	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
N ₂ O Emissions (kt N ₂ O)	0.227	0.232	0.230	0.217	0.179	0.165	0.173	0.177	0.174	0.164	0.176
N in effluent (kt)	0.578	0.591	0.586	0.552	0.457	0.420	0.440	0.451	0.444	0.416	0.447

Emissions from domestic and industrial wastewater - NMVOC

Emissions from NMVOC has been also estimated, both from domestic and industrial wastewaters, using a default emission factor derived from Guidebook published by the European Environmental Agency with the CLRTAP Task Force on Emission Inventories and Projections (EMEP/EEA, 2016).

In Table 7.38 NMVOC emissions from domestic and industrial wastewater are reported for the whole time series.

Table 7.38 NMVOC emissions from domestic and industrial wastewater, 1990 – 2021 (kt)

NMVOC Emissions (t)	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
Domestic wastewater											
Equivalent inhabitants (*1000)	46,436	60,015	65,601	73,426	76,847	75,239	86,899	88,307	89,716	91,124	92,532
Domestic wastewaters production (10 ⁶ m ³)	4,237	5,476	5,986	6,700	7,012	6,866	7,930	8,058	8,187	8,315	8,444
Per capita water supply (lt./person*die)	250	250	250	250	250	250	250	250	250	250	250
EF (mg/m ³)	15	15	15	15	15	15	15	15	15	15	15
NMVOC Emissions (t)	63.6	82.1	89.8	100.5	105.2	103.0	118.9	120.9	122.8	124.7	126.7
Industrial wastewater											
Industrial wastewaters production (1000 m ³)	908,840	928,479	920,614	867,085	717,846	659,246	691,463	708,427	697,032	654,197	703,045
EF (mg/m ³)	15	15	15	15	15	15	15	15	15	15	15
NMVOC Emissions (t)	13.6	13.9	13.8	13.0	10.8	9.9	10.4	10.6	10.5	9.8	10.5

7.5.3 Uncertainty and time-series consistency

The combined uncertainty in CH_4 and N_2O emissions from wastewater handling is estimated to be about 102% in annual emissions 100% and 20% for activity data and emission factor respectively, as derived by the IPCC Guidelines (IPCC, 2000; IPCC, 2006).

Concerning domestic wastewater, CH₄ emission trends are shown in Table 7.39, whereas the emission trend for N₂O emissions is shown in Table 7.40.

Table 7.39 CH ₄ emissions from domestic wastewater, 1990 – 2021 (t)	Table 7.39 CH	4 emissions fro	m domestic	wastewater,	1990 – 2021 (t)
--	---------------	-----------------	------------	-------------	-----------------

CH4 Emissions (t)	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
Urban high-income Population											
CH ₄ uncollected wastewater	37,384	26,349	12,273	15,320	9,179	561	513	489	464	438	413
CH4 wastewater treatment plant	6,438	8,831	11,309	12,903	15,945	19,094	19,605	19,856	20,087	20,234	20,433
CH ₄ anaerobic digestion	103,007	141,303	180,936	206,444	255,113	305,510	313,677	317,698	321,397	323,748	326,929
CH ₄ untreated (sea/lake/river)	14,297	15,359	18,094	13,913	12,007	9,950	8,578	7,894	7,205	6,493	5,805
CH ₄ untreated (flowing sewer)	0	0	0	0	0	0	0	0	0	0	0
Rural Population											
CH ₄ uncollected wastewater	2,705	1,840	825	956	543	32	29	27	26	24	23
CH₄ Imhoff	3,460	5,312	6,939	3,840	5,213	7,940	9,196	9,345	9,494	9,643	9,792
CH ₄ latrines	2,896	3,192	3,682	3,897	3,912	3,678	3,350	3,282	3,214	3,146	3,078
CH4 total produced	170,188	202,185	234,057	257,272	301,910	346,765	354,948	358,591	361,888	363,726	366,473
CH ₄ recovered	103,007	141,303	180,936	206,444	255,113	305,510	313,677	317,698	321,397	323,748	326,929
CH ₄ flared	103,007	140,583	179,473	205,802	250,613	285,108	292,026	297,317	299,834	302,042	305,921
CH ₄ energy recovery	0	719	1,463	643	4,500	20,401	21,652	20,381	21,563	21,706	21,008
CH ₄ total emissions	67,181	60,882	53,121	50,828	46,798	41,255	41,271	40,893	40,491	39,978	39,544

Table 7.40 N₂O emissions from domestic wastewater, 1990 – 2021 (t)

N ₂ O Emissions (t)	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
N ₂ O emissions from wastewater effluent (Indirect emissions)	3,911	3,787	4,010	4,037	4,129	3,900	3,898	3,911	3,870	3,862	3,850
N ₂ O emissions from wastewater treatment plants (Direct emissions)	86.9	84.2	91.1	155.2	151.9	160.6	160.0	159.6	159.2	158.1	157.4
N ₂ O total emissions	3,997	3,871	4,101	4,192	4,281	4,061	4,058	4,070	4,029	4,020	4,008

The amount of total industrial wastewater production is reported, for each sector, in Table 7.41.

CH₄ emission trend for industrial wastewater handling for different sectors is shown in Table 7.42, whereas the emission trend for N₂O emissions from industrial wastewater handling is shown again in Table 7.43.

Concerning CH₄ emissions from industrial wastewater, neither wastewater flow nor average COD value change much over time, therefore emissions are stable and mainly related to the production data.

Table 7.41 Total industrial wastewater production by sector, 1990 – 2021 (1000 m³)

Wastewater production (1000 m ³)	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
Iron and steel	9.53	7.78	6.76	6.86	6.17	2.97	2.87	2.92	2.83	2.17	2.02
Oil refinery	NA										
Organic chemicals	210.94	212.32	215.05	214.74	214.12	213.80	214.24	214.05	213.93	213.67	213.72
Food and beverage	179.12	177.38	182.74	185.66	186.26	177.91	179.05	183.75	186.54	181.45	186.76
Pulp and paper	377.17	402.95	387.28	366.02	232.69	202.64	235.06	246.67	238.78	216.88	255.35
Textile industry	108.46	103.05	101.57	75.49	64.36	48.90	46.82	47.75	42.85	29.92	33.74
Leather industry	23.62	25.00	27.22	18.32	14.25	13.03	13.40	13.29	12.10	10.12	11.45
Total	908.840	928.479	920.614	867.085	717.846	659.246	691.463	708.427	697.032	654.197	703.045

CH₄ Emissions (kt)	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
Iron and steel	0.036	0.029	0.025	0.026	0.023	0.011	0.011	0.011	0.011	0.008	0.008
Oil refinery	5.850	5.625	4.250	4.750	4.750	4.750	4.750	4.750	4.750	4.750	4.750
Organic chemicals	23.794	23.911	24.173	24.177	24.069	23.998	24.101	24.062	24.046	24.014	24.027
Food and beverage	22.946	22.112	22.871	23.197	23.447	22.575	22.830	23.531	23.905	22.736	23.598
Pulp and paper	0.923	0.986	1.055	0.997	0.544	0.552	0.640	0.672	0.650	0.591	0.695
Textile industry	4.067	3.864	3.809	2.831	2.414	1.834	1.756	1.791	1.607	1.122	1.265
Leather industry	3.192	3.378	3.677	2.901	2.517	2.272	2.368	2.348	2.138	1.788	2.024
Total	60.81	59.91	59.86	58.88	57.76	55.99	56.46	57.16	57.11	55.01	56.37

Table 7.42 CH₄ emissions from anaerobic industrial wastewater treatment, 1990 – 2021 (kt)

Table 7.43 N₂O emissions from industrial wastewater, 1990 – 2021 (kt)

N ₂ O Emissions (kt)	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
Industrial wastewater	0.227	0.232	0.230	0.217	0.179	0.165	0.173	0.177	0.174	0.164	0.176

7.5.4 Source-specific QA/QC and verification

Where information is available, wastewater flows and COD concentrations are checked with those reported yearly by the industrial sectoral reports or technical documentation developed in the framework of the Integrated Pollution and Prevention Control (IPPC) Directive of the European Union (http://eippcb.jrc.es).

Moreover, in the framework of EPER/E-PRTR registry the methodology used to estimate emissions from wastewater handling can be used by the operators of wastewater treatment plants to check if their emission data exceed the reporting threshold values.

Finally, a Ph.D. thesis on GHG emissions from wastewater handling has been carried out at Environmental, Hydraulic, Infrastructures and Surveying Engineering Department (DIIAR) of Politecnico di Milano (Solini, 2010), where national methodology has been compared with that reported in 2006 IPCC Guidelines (IPCC, 2006) and with a methodology developed in the framework of a previous thesis Ph.D. for the estimation of emissions from wastewater treatment plants located in Regione Lombardia.

7.5.5 Source-specific recalculations

Minor recalculations regard the update of sludge data (production, spreading and N content) for 2019 and 2020. Moreover, the annual per capita protein consumption value for 2020 has been updated.

7.5.6 Source-specific planned improvements

According with the 2021 annual submission review process, where the ERT encouraged the Party to pursue investigation into a different methodology for estimating total biogas production and revise the amount of CH₄ flared, a draft methodology has been applied, with substantial differences in biogas production. Total gas production is estimated usually from the percentage of volatile solids reduction: typical values vary from 0.75 to 1.12 m³/kg of volatile solids destroyed (Metcalf and Eddy, 1991): unfortunately, data on volatile solids abatement are not available at present. Gas production can also be crudely estimated on a per capita basis: the normal yield is 15 to 22 m³/10³person·day in primary plants

treating normal domestic wastewater; in secondary treatment plants the gas production increase to about 28 m³/10³person·day. Applying this parameter, the total gas production and consequently the CH₄ production has been estimated as reported in the following Table 7.44. Differences are very important, thus further investigations, concerned also volatile solids destroyed, are planned.

Table 7.44 CH₄ production from anaerobic digestion of sludge, estimated with IPCC methodology and Metcalf and Eddy parameters

Total Gas Production in anaerobic digestion	1990	1995	2000	2005	2010	2015	2020	2021
TOW sludge (kg BOD/year)	214,597,690	294,380,746	376,950,614	430,092,574 53	1,484,619 63	6,478,432 674	4,474,07868 [,]	1,101,532
CH ₄ anaerobic digestion - IPCC Guidelines (kg CH ₄ /year)	103,006,891	141,302,758	180,936,295	206,444,436 25	5,112,617 30	5,509,647 323	3,747,558 320	6,928,735
CH₄ anaerobic digestion - Metcalf and Eddy (kg CH₄/year)	54,211,645	74,366,432	95,225,223	108,649,939 134	4,263,586 16	0,787,112 17	0,385,568 172	2,059,794

Further improvements are welcome as soon as additional data will be available. We expect that environmental reports from industry will be improved each passing year. Moreover, specific survey on those industries that produce considerable amounts of wastewater with significant organic carbon levels are planned, to revise the methodology for estimating emissions from industrial wastewater, according to the revised 2019 IPPC Guidelines.

Following the ERT recommendation during the last review, Italy plans to conduct a survey on wastewater generation and COD values for the next submission. The first step consists in finding the sustainability reports of the various trade associations and major industrial groups to acquire the most up-to-date but already available information. Any insights will be made in subsequent submissions through meetings and comparisons with industrial associations. As report above, ISPRA is collaborating, in the framework of other issues not specifically referred to the inventory, with Secam, a company founded in 1989, currently Italy's leading manufacturer and supplier of chemicals for industry and civil and industrial wastewater treatment services that could help us to set some parameters country specific.

8 RECALCULATIONS AND IMPROVEMENTS

8.1 Explanations and justifications for recalculations

To meet the requirements of transparency, consistency, comparability, completeness and accuracy of the inventory, the entire time series from 1990 onwards is checked and revised every year during the annual compilation of the inventory. Measures to guarantee and improve these qualifications are undertaken and recalculations should be considered as a contribution to the overall improvement of the inventory.

Recalculations are elaborated on account of changes in the methodologies used to carry out emission estimates, changes due to different allocation of emissions as compared to previous submissions, changes due to error corrections and in consideration of new available information.

The complete revised CRFs from 1990 to 2020 have been submitted as well as the CRF for the year 2021.

The revisions that lead to relevant changes in GHG emissions are pointed out in the specific sectoral chapters and summarized in the following section 8.4.1.

8.2 Implications for emission levels

The time series reported in the 2023 submission is summarised in Table 8.1 by gas; differences in emission levels due to recalculations are also reported.

Improvements in the calculation of emission estimates have led to a recalculation of the entire time series of the national inventory. Considering total GHG emissions without LULUCF, estimates show a decrease in comparison with the last year submission, equal to 0.19% for 1990 and an increase of 0.38% for 2020. Considering the national total with the LULUCF sector, the year 1990 has increased by 0.17% and the 2020 emission levels increased by 0.38%. Detailed explanations of these recalculations are provided in the sectoral chapters.

	subm	1990	1995	2000	2005	2010	2015	2018	2019	2020
CO ₂ net emissions/removals	2023	433,214	424,391	447,552	465,893	394,075	317,385	304,086	297,929	269,900
(kt CO ₂ .eq.)	2022	433,760	424,689	447,965	466,084	393,802	317,479	312,870	297,856	269,190
Differences		-0.13%	-0.07%	-0.09%	-0.04%	0.07%	-0.03%	-2.81%	0.02%	0.26%
CO ₂ emissions	2023	438,904	449,430	470,524	502,347	436,534	361,936	349,827	340,403	303,281
(without LULUCF)										
(kt CO ₂ -eq.)	2022	439,550	449,826	470,487	502,255	436,117	361,163	349,005	339,233	302,279
Differences		-0.15%	-0.09%	0.01%	0.02%	0.10%	0.21%	0.24%	0.34%	0.33%
CH ₄ emissions	2023	56,416	57,373	58,506	55,038	53,083	49,611	48,144	46,965	47,885
(kt CO2-eq.)	2022	56,757	57,926	58,943	55,445	53,414	49,702	48,321	47,248	48,208
Differences		-0.60%	-0.96%	-0.74%	-0.73%	-0.62%	-0.18%	-0.37%	-0.60%	-0.67%
CH ₄ emissions	2023	54,975	57,034	57,706	54,703	52,690	49,316	47,972	46,762	47,513
(without LULUCF)	2022	55,317	57,587	58,143	55,109	53,022	49,406	48,140	47,020	47,914
(kt CO2-eq.)	2022	55,517	57,507	50,145	55,105	55,022	49,400	40, 140	47,020	47,514
Differences		-0.62%	-0.96%	-0.75%	-0.74%	-0.62%	-0.18%	-0.35%	-0.55%	-0.84%
N ₂ O emissions	2023	24,954	26,958	27,541	26,608	18,472	17,079	17,292	17,124	17,811
(kt CO2-eq.)	2022	24,957	26,955	27,536	26,599	18,462	17,069	17,286	17,119	17,693
Differences		-0.01%	0.01%	0.02%	0.04%	0.06%	0.06%	0.04%	0.03%	0.67%
N ₂ O emissions	2023	24,193	26,177	26,923	26,048	18,090	16,788	16,893	16,691	17,346
(without LULUCF)	2022	24,196	26,174	26,918	26,038	18,080	16,777	16,885	16,680	17,315
(kt CO ₂ -eq.)										
Differences		-0.01%	0.01%	0.02%	0.04%	0.06%	0.06%	0.05%	0.07%	0.18%
HFCs	2023	372	861	2,803	8,718	14,325	15,630	16,928	17,019	16,035
(kt CO ₂ -eq.)	2022	372	816	2,342	7,288	11,613	14,869	15,842	16,148	15,195
Differences		0.00%	5.48%	19.64%	19.63%	23.35%	5.11%	6.86%	5.40%	5.53%
PFCs	2023	2,615	1,351	1,363	1,759	1,377	1,529	1,502	915	499
(kt CO ₂ -eq.)	2022	2,615	1,342	1,339	1,743	1,365	1,516	1,488	923	484
Differences	2022		0.66%	1.83%	0.96%	0.83%	0.87%	0.95%	-0.80%	3.08%
Unspecified mix	2023 2022		24 24	24 24	24 24	24 24	24 24	23 23	23 23	22 22
(kt CO2-eq.) Differences	2022		24 0.00%	24 0.00%	24 0.00%	24 0.00%	24 0.00%	23 0.00%	23 0.00%	22 0.00%
SF6	2023	421	700	621	565	405	485	464	444	257
Sr6 (kt CO2-eq.)	2023	421	700	623	565	405	465 487	464 466	444 454	272
Differences	2022	0.00%	-0.07%	-0.31%	-0.31%	-0.23%	-0.30%	-0.33%	-2.06%	-5.53%
NF ₃	2023	0.0070	77	13	33	20	28	22	18	16
(Gg CO ₂ -eq.)	2022		72	12	31	19	27	21	17	15
Differences	LULL		6.83%	6.83%	6.83%	6.83%	6.83%	6.83%	7.44%	6.39%
Total	2023	517,992	511,734	538,424	558,640	481,781	401,772	388,460	380,439	352,425
(with LULUCF)			,				,			
(kt CO ₂ -eq.)	2022	518,882	512,525	538,785	557,780	479,105	401,172	396,315	379,787	351,079
Differences		-0.17%	-0.15%	-0.07%	0.15%	0.56%	0.15%	-1.98%	0.17%	0.38%
Total	2023	521,480	535,654	559,978	594,197	523,466	445,736	433,631	422,276	384,970
(without LULUCF)			,				,			
(kt CO ₂ -eq.)	2022	522,470	536,542	559,889	593,056	520,646	444,269	431,868	420,497	383,495
Differences		-0.19%	-0.17%	0.02%	0.19%	0.54%	0.33%	0.41%	0.42%	0.38%

8.3 Implications for emission trends, including time series consistency

Recalculations account for an improvement in the overall emission trend and consistency in time series.

In comparison with the time series submitted in 2022, emission levels of the year 1990, as total emissions in CO_2 equivalent without LULUCF, slightly changed (-0.19%). If considering emission levels with LULUCF, a decrease by 0.17% is observed in total figures, in CO_2 equivalent, for 1990.

The trend 1990- 2020, without LULUCF, does not show a significant change from the previous to this year submission; the reduction in emissions, 1990-2020, is equal now to 26.2 % whereas it was 26.6% in the last year submission.

8.4 Recalculations, response to the review process and planned improvements

This chapter summarises the recalculations and improvements made to the Italian GHG inventory since the last year submission.

In addition to a new year, the inventory is updated annually by a revision of the existing activity data and emission factors in order to include new information available; the update could also reflect the revision of methodologies. Revisions always apply to the whole time series.

The inventory may also be expanded by including categories not previously estimated if sufficient information on activity data and suitable emission factors have been identified and collected.

8.4.1 Recalculations

The key differences in emission estimates occurred since the last year submission are reported in Table 8.1.

All sectors were involved in changes due to updates of activity data and some emission factor.

Specifically:

Energy. For the stationary combustion in industry and in transformation sector recalculations occurred because of the review of carbon balance from 2017 due to the update of coking coal fuel consumption statistics and the update of kerosene fuel consumption in residential for the whole time series.

The whole time series of road transport emissions has been recalculated mainly as a result of the upgrade of Copert model version used, applying the planned improvement regarding a general review of mileages and input circulation parameters.

Time series of domestic fuel consumptions and air pollutants emission factors for navigation were updated as result of an advanced emission estimation methodology applied to the main national harbours; fuel consumption previously allocated to the international navigation have been now attributed to domestic navigation. Moreover, inland waterways diesel fuel consumption time series from 1999 has been updated according to the national energy balance. This resulted in the main recalculation of total national CO₂ emissions for around 1.2 Mt CO₂ emissions.

Fugitive CH4 emissions from LNG regasification have been updated since 2015 on the basis of information provided by the main operators.

IPPU. Recalculation for the whole time series occurred in the solvent use categories; according to the review process NMVOC emission factor from metal degreasing category has been changed from 1990 as well as fat edible oil extraction activity data time series, resulting in a slight decrease of the whole time series of CO₂ indirect emissions. Recalculations occurred for F-gases and in particular HFCs. For the Stationary air conditioning sector, recalculations are due to the revision of the average charge of water-cooled chillers with higher capacity, to the updated of the recovery percentage of gases at the end of life of some equipment, to the updated of the operating emission factors for split and VRF since 2015 and

emission factor from containers since 2000. Regarding the commercial refrigeration the recalculation is due to the revision of HFC-134A, R-404A and R-507A consumptions, thanks to the support of sectoral experts that provided us new data. The consumptions of R-448A, R-449A and R-452A were also changed from 2016. Recalculation is also due to the update of the operating emission factor for large commercial refrigeration from 2015 to take into account the effects of F-gas Regulation. For industrial refrigeration recalculation is due to the update of HCF-23 consumptions based on the data supplied by the national expert. For Mobile air conditioning sub-sector recalculation is due to the revision of estimation methodology and activity data. The methodology outlined in the 2006 Guidelines, BOX 7.4, Tier 2 applied specifically to MAC was applied. Concerning activity data, national experts provided HFC-134a consumptions for aftermarket, not included in the previous submission for the lack of information. The operational emission factor has also been updated. Total HFCs recalculations amount for 0.8 Mt higher than the previous submission.

Agriculture. CH₄ emissions from enteric fermentation have been recalculated because of the recalculation of the entire time series of the dry matter intake (DMI) and methane conversion factors (Ym) values of the subcategories of the non-dairy cattle category, For manure management CH₄ emissions have been recalculated mainly because of the updating: of the average monthly temperatures and the update of data used to estimate the national biogas produced. N₂O emissions from soils have been recalculated because of the updating of activity data and parameters.

LULUCF. The recalculation occurred in the sector is due to the following elements reported in the table 8.3:

	CO ₂	CH₄	N₂O
Forest land	Update of the activity data as resulting from the complete NFI results (NFI2015) released in late 2022	- Biomass burning: Update of activity data (bu process	rned area); error fixing in fire estimation
Cropland	Cropland remaining cropland: Update of activity data at regional level in mineral soils(i.e. areas subject to different management practices) and consequent recalculation of related soils C stock changes. Activity data related to organic soils annual crops has been updated. Land converted to cropland: Update of activity data and error fixed	<i>Biomass burning:</i> Update of activity data (burned area)	Biomass burning: Update of activity data (burned area) Update of the FSOM values used in the estimation process
Grassland	Grassland remaining grassland: Update of activity data (i.e. areas subject to different management practices) and consequent recalculation of related soils C stock changes and error fixed. Land converted to grassland: Update of activity data and error fixed.	- <i>Biomass burning:</i> Update of activity data (burned area)	
Wetlands	-	-	-
Settlements	Update of the activity data	-	update of the FSOM values used in the estimation process
НШР	Revision of FAOSTAT time series for wood-based panels	-	-

Table 8.3 Drivers for recalculation in the LULUCF sector

Waste. Minor recalculations occurred in this sector for the update of some activity data as sludge production, sludge disposal in landfills and sludge used for agricultural purposes time series and for waste incineration the update of few plants industrial waste activity data from 2019. Moreover, N₂O emissions

from open burning of waste have been estimated and included in the inventory. Annual per capita protein consumption value for 2020 has been updated resulting in recalculation of emissions from waste water treatment.

8.4.2 Response to the UNFCCC review process

A complete list of improvements following the UNFCCC review process is reported in Annex 12.

Improvements regarded the completeness and transparency of the information reported in the NIR.

Most of the recommendations has been addressed in this year submission. Additional information has been provided in all the sectors, more information on methodology used to estimate emissions for industrial processes (especially for F-gases estimations), estimates for the agriculture sector and LULUCF has been recalculated and the description of country specific methods and the rationale behind the choice of emission factors, activity data and other related parameters for different sector has been better detailed.

8.4.3 Planned improvements (e.g., institutional arrangements, inventory preparation)

Specific improvements are identified in the relevant chapters and specified in the 2023 QA/QC plan; they are summarized in the following.

For the energy and industrial sectors, the database where information collected in the framework of different EU legislation, Large Combustion Plant, E-PRTR and Emissions Trading, is annually updated and improved. The database has helped highlighting the main discrepancies in information and detecting potential errors leading to a better use of these data in the national inventory. Energy data submitted to the international organizations in the framework of the Joint Questionnaire OECD/IEA/EUROSTAT will be compared with the national energy statistics with the aim to reduce the differences with the international statistics. A revision of biomass and waste fuel consumption time series is planned for the next submission on the basis of energy data communicated by the Ministry of Environment to the Joint Questionnaire OECD/IEA/EUROSTAT, after a verification and comparison with data up to now used and available in the National Energy Balance reports.

Improvements for road transport sector will be connected to the availability of information regarding activity data, calculation factors and parameters, development of the methodology and update of the software.

For maritime activities further improvements will regard a verification of activity data on ship movements and emission estimates with the National Institute of Statistics. In particular we plan to build an emission estimation database which calculate every year emissions at harbor level taking in account of the information officially provided by Italy to Eurostat per type of ship, class of tonnage and movement statistics.

For the Industrial processes sector, investigations concerning the replacement of natural raw material in clinker manufacture and in lime production are planned to better explain differences of the average emission factors in the time series. Many improvements are planned for Fgases emissions estimates and in particular in the professional refrigeration sub-sector to try gathering more information and data on the equipment manufactured and sold over the years, the average charge, the operating emission factor in order to estimate the manufacturing and lifetime emissions.

For the agriculture and waste sectors, improvements will be related to the availability of new information on emission factors, activity data as well as parameters necessary to carry out the estimates. Specifically, for agriculture, further improvements are expected on information on the standard diets of cattle for fattening, for the updating of values relating to dry matter intake and Ym. Additional data and information will be collected to improve the estimation of methane emissions from sheep, in particular for the DE parameter for mature ewes and other mature sheep, as recommended during the 2019 UNFCCC review. A working group was set up with *Assofertilizzanti* and ISTAT to compare the statistics produced by these two bodies. The aim is also to revise the data collection questionnaire to detect the amount of CAN distributed throughout the country. The improvement of the waste production and management database, handled by another unit of ISPRA, is ongoing, facilitating the extrapolation and elaboration of the huge amount of information contained in the database. Analysis and elaboration e.g. on waste composition will be easier and will allow improvements in the emission estimates in the future submission.

For the LULUCF, planned improvements are related to the investigation on the end-use, the discard rates of HWP, as well as the final market use of wood in Italy. The main outcome of this investigation could be the set-up of country specific emission factors to be used in the estimation process.

Additional studies will regard the comparison between local inventories and national inventory and exchange of information with the 'local inventories' national expert group.

Further analyses will concern the collection of statistical data and information to estimate uncertainty in specific sectors by implementing Approach 2 of the IPCC guidelines. In this regards we plan to reassess the uncertainty for the same categories reported in the annex of the NIR because these are the main categories for which the analysis makes sense in consideration of the information available on parameters and underlying distributions. We will try to extend the analysis to some other key categories in the IPPU sector (chemical and mineral).

9 REFERENCES

References for the main chapters and the annexes are listed here and are organised by chapter and annex.

9.1 INTRODUCTION and TRENDS IN GREENHOUSE GAS EMISSIONS

EC, 2004. Decision No 280/2004/EC of the European Parliament and of the Council of 11 February 2004 concerning a mechanism for monitoring Community greenhouse gas emissions and for implementing the Kyoto Protocol.

EC, 2007. Commission Decision of 18 July 2007 establishing guidelines for the monitoring and reporting of greenhouse gas emissions pursuant to Directive 2003/87/EC of the European Parliament and of the Council. 2007/589/EC.

EC, 2009. Decision No 406/2009/EC on the effort of Member States to reduce their greenhouse gas emissions to meet the Community's greenhouse gas emission reduction commitments up to 2020.

EMEP/CORINAIR, 2007. Atmospheric Emission Inventory Guidebook. Technical report No 16/2007.

EMEP/EEA, 2009. Air Pollutant Emission Inventory Guidebook. Technical report No 9/2009.

EMEP/EEA, 2016. Air Pollutant Emission Inventory Guidebook. EEA. Technical report No 21/2016.

EMEP/EEA, 2019. Air Pollutant Emission Inventory Guidebook. EEA. Technical report No 13/2019.

EU, 2003. Directive 2003/87/EC of the European Parliament and of the Council of 13 October 2003 establishing a scheme for greenhouse gas emission allowance trading within the Community and amending Council Directive 96/61/EC.

EU, 2009. Directive 2009/29/EC of the European Parliament and of the Council of 23 April 2009 amending Directive 2003/87/EC so as to improve and extend the greenhouse gas emission allowance trading scheme of the Community.

IPCC, 1997. Revised 1996 IPCC Guidelines for National Greenhouse Gas Emission Inventories. Three volumes: Reference Manual, Reporting Manual, Reporting Guidelines and Workbook. IPCC/OECD/IEA. IPCC WG1 Technical Support Unit, Hadley Centre, Meteorological Centre, Meteorological Office, Bracknell, UK.

IPCC, 2000. Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories. IPCC National Greenhouse Gas Inventories Programme, Technical Support Unit, Hayama, Kanagawa, Japan.

IPCC, 2003. Good Practice Guidance for Land Use, Land-Use Change and Forestry. IPCC Technical Support Unit, Kanagawa, Japan.

IPCC, 2006. 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme, Eggleston H.S., Buendia L., Miwa K., Ngara T. and Tanabe K. (eds). Published: IGES, Japan.

ISPRA, 2009. La disaggregazione a livello provinciale dell'inventario nazionale delle emissioni. Anni 1990-1995-2000-2005. ISPRA, 92/2009.

ISPRA, 2013. Quality Assurance/Quality Control plan for the Italian Emission Inventory. Procedures Manual. October 2013.

ISPRA, 2018. National Greenhouse Gas Inventory System in Italy.

ISPRA, 2022. La disaggregazione a livello provinciale dell'inventario nazionale delle emissioni. ISPRA, 369/2022.

ISPRA, 2023 [a]. Quality Assurance/Quality Control plan for the Italian Emission Inventory.

ISPRA, 2023 [b]. Dioxide Intensity Indicators. Internal document.

Legislative Decree, 2006. Dlgs 2006 n. 216. Attuazione delle direttive 2003/87 e 2004/101/CE in materia di scambio di quote di emissioni dei gas a effetto serra nella Comunita', con riferimento ai meccanismi di progetto del Protocollo di Kyoto. Gazzetta Ufficiale N. 140 del 19 Giugno 2006.

Liburdi R., De Lauretis R., Corrado C., Di Cristofaro E., Gonella B., Romano D., Napolitani G., Fossati G., Angelino E., Peroni E., 2004. La disaggregazione a livello provinciale dell'inventario nazionale delle emissioni". Rapporto APAT CTN-ACE 2004.

MATTM, 2008. Legislative Decree, 2008. Dlgs 2008 n. 51. Modifiche ed integrazioni al decreto legislativo 4 aprile 2006, n. 216, recante attuazione delle direttive 2003/87/CE e 2004/101/CE in materia di scambio di quote di emissione dei gas a effetto serra nella Comunità, con riferimento ai meccanismi di progetto del protocollo di Kyoto, pubblicato nella Gazzetta Ufficiale n. 82 del 7 aprile 2008.

MATTM, 2009. Deliberazione n. 14/2009 recante disposizioni di attuazione della decisione della commissione europea 2007/589/CE del 18 luglio 2007 che istituisce le linee guida per il monitoraggio e la comunicazione delle emissioni di gas a effetto serra ai sensi della direttiva 2003/87/CE del Parlamento Europeo e del Consiglio (revised by deliberation 14/2010).

9.2 ENERGY

ACI, several years. Dati e statistiche. Automobile Club d'Italia, Roma. http://www.aci.it/index.php?id=54.

AEEG, several years. Qualità del servizio gas. Autorità per l'energia elettrica e il gas. <u>http://www.autorita.energia.it/it/dati/elenco_dati.htm</u>.

AISCAT, several years. Aiscat in cifre. Data and reports available on website at: <u>http://www.aiscat.it/pubb_cifre.htm?ck=1&sub=3&idl=4&nome=pubblicazioni&nome_sub=aiscat%20i</u> <u>n%20cifre</u>.

ANCMA, several years. Data available on website at: <u>http://www.ancma.it/statistiche</u>.

ANPA, 2001. Redazione di inventari nazionali delle emissioni in atmosfera nei settori del trasporto aereo e marittimo e delle emissioni biogeniche. Rapporto finale. Gennaio 2001.

APAT, 2003 [a]. Indicatori e modelli settoriali finalizzati alla preparazione di inventari delle emissioni del sistema energetico nazionale nel breve e medio periodo. Tricarico A., Rapporto Tecnico N° 01/2003.

APAT, 2003 [b]. Analisi dei fattori di emissione di CO₂ dal settore dei trasporti. Ilacqua M., Contaldi M., Rapporti n° 28/2003.

ARPAT, several years. Monitoraggio delle aree geotermiche toscane. Also available on the website <u>http://www.arpat.toscana.it/documentazione/report/report-geotermia</u>.

ASSOCARTA, several years. Rapporto Ambientale dell'industria cartaria italiana. Also available on the website <u>http://www.assocarta.it</u>.

CONFETRA, several years. Il trasporto merci su strada in Italia. Data and reports available on website at: <u>http://www.confetra.it/it/centrostudi/statistiche.htm</u>.

Contaldi M., 1999. Inventario delle emissioni di metano da uso gas naturale. ANPA, internal document.

EDISON, several years. Rendiconto ambientale e della sicurezza.

EEA, 2000. COPERT III, Computer Programme to Calculate Emissions from Road Transport - Methodology and Emission Factors, European Environment Agency, Technical report No 49, November 2000.

EEA, several years. Monitoring CO₂ emissions from new passenger cars and vans. EEA Technical Reports.

EMEP/CORINAIR, 1996. Atmospheric Emission Inventory Guidebook. February 1996.

EMEP/CORINAIR, 2007. Atmospheric Emission Inventory Guidebook. Technical report No 16/2007.

EMEP/EEA, 2009. Air Pollutant Emission Inventory Guidebook. EEA. Technical report No 9/2009.

EMEP/EEA, 2016. Air Pollutant Emission Inventory Guidebook. EEA. Technical report No 21/2016.

EMEP/EEA, 2019. Air Pollutant Emission Inventory Guidebook. EEA. Technical report No 13/2019.

EMISIA SA, 2021. COPERT 5 v 5.5.1, Computer programme to calculate emissions from road transport, September 2021. <u>http://www.emisia.com/copert/</u>.

ENAC/MIT, several years. Annuario Statistico. Ente Nazionale per l'Aviazione Civile, Ministero delle Infrastrutture e dei Trasporti.

ENEA, several years. Rapporto Energia Ambiente. Ente per le Nuove tecnologie, l'Energia e l'Ambiente, Roma.

ENEA-federAmbiente, 2012. Rapporto sul recupero energetico da rifiuti urbani in Italia. 3° ed.

ENEL, several years. Dati statistici sull'energia elettrica in Italia. ENEL.

ENI, several years [a]. La congiuntura economica ed energetica. ENI.

ENI, several years [b]. Health Safety Environment report. ENI.

EUROCONTROL, several years. EUROCONTROL Fuel and Emissions Inventory. Data provided to EU Member States under the Greenhouse gas Monitoring Mechanism Regulation. Personal Communication. Last communication November 2019.

Frustaci F., 1999. Metodi di stima ed analisi delle emissioni inquinanti degli off-road. Thesis in Statistics.

Giordano R., 2007. Trasporto merci: criticità attuali e potenziali sviluppi nel contesto europeo. National road transporters central commitee.

Innovhub, 2018. Fuel consumption, regulated and unregulated exhaust emission tests on five Euro 6 b/c bifuel LPG passenger cars.

Innovhub, several years. Report on the physico-chemical characterization of fossil fuels used in Italy. Fuel Experimental Station.

IPCC, 1997. Revised 1996 IPCC Guidelines for National Greenhouse Gas Emission Inventories. Three volumes: Reference Manual, Reporting Manual, Reporting Guidelines and Workbook. IPCC/OECD/IEA. IPCC WG1 Technical Support Unit, Hadley Centre, Meteorological Centre, Meteorological Office, Bracknell, UK.

IPCC, 2000. Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories. IPCC National Greenhouse Gas Inventories Programme, Technical Support Unit, Hayama, Kanagawa, Japan.

IPCC 2006, 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme, Eggleston H.S., Buendia L., Miwa K., Ngara T. and Tanabe K. (eds). Published: IGES, Japan

ISPRA, 2023. Emission factors database for road transport in Italy. <u>https://fetransp.isprambiente.it/#/</u>

ISPRA, several years. Fuel Quality Monitoring Annual Report.

ISTAT, 2009. Personal comunication.

ISTAT, 2014. I consumi energetici delle famiglie, 2013. Nota metodologica. Istituto Nazionale di Statistica <u>www.istat.it</u>.

ISTAT, several years [a]. Annuario Statistico Italiano. Istituto Nazionale di Statistica.

ISTAT, several years [b]. Trasporto merci su strada. Istituto Nazionale di Statistica. <u>http://www.istat.it/it/archivio/72254</u>.

Katsis P., Mellios G., Ntziachristos L., 2012. Description of new elements in COPERT 4 v 10.0, December 2012.

Kouridis C., Gkatzoflias D., Kioutsioukis I., Ntziachristos L., Pastorello C., Dilara P., 2009. Uncertainty Estimates and Guidance for Road Transport Emission Calculations, European Commission, Joint Research Centre, Institute for Environment and Sustainability, 2009.

MIT, several years. Conto Nazionale delle Infrastrutture e dei Trasporti (CNIT). Ministero delle Infrastrutture e dei Trasporti. http://www.mit.gov.it/comunicazione/pubblicazioni.

MASE, several years [a]. Bilancio Energetico Nazionale (BEN). Ministero dell'Ambiente. <u>https://dgsaie.mise.gov.it/ben.php</u>

MASE, several years [b]. Bollettino Petrolifero Trimestrale (BPT). Ministero dell'Ambiente. <u>https://dgsaie.mise.gov.it/bollettino-petrolifero</u>

MASE, several years [c]. Elenco dei pozzi idrocarburi perforati in Italia. Ministero dello Sviluppo Economico, Direzione Generale per le Risorse Minerarie ed Energetiche. <u>https://unmig.mite.gov.it/ricerca-e-</u> <u>coltivazione-di-idrocarburi/pozzi-produttivi/</u>.

Patel M.K., Tosato G.C., 1997. Understanding Non-energy Use and Carbon Storage in Italy in the Context of the Greenhouse Gas Issue.

Riva A., 1997. Methodology for methane emission inventory from SNAM transmission system. Snam Spa Italy.

Romano D., Gaudioso D., De Lauretis R., 1999. Aircraft Emissions: a comparison of methodologies based on different data availability. Environmental Monitoring and Assessment. Vol. 56 pp. 51-74.

Sempos I., 2018. Note on fossil carbon content in biofuels. IPCC Working Group I, 10 October 2018.

SNAM, several years. Bilancio di sostenibilità.

STOGIT, several years, Bilancio di sostenibilità.

Techne, 2009. Stima delle emissioni in atmosfera nel settore del trasporto aereo e marittimo. Final report. TECHNE Consulting, March 2009.

TERNA, several years. Dati statistici sugli impianti e la produzione di energia elettrica in Italia. Gestore Rete Trasmissione Nazionale.

http://www.terna.it/default/Home/SISTEMA_ELETTRICO/statistiche/dati_statistici.aspx.

Trozzi C., Vaccaro R., De Lauretis R., Romano D., 2002 [a]. Air pollutant emissions estimate from global air traffic in airport and in cruise: methodology and case study. Presented at Transport and Air Pollution 2002.

Trozzi C., Vaccaro R., De Lauretis R., 2002 [b]. Air pollutant emissions estimate from global ship traffic in port and in cruise: methodology and case study. Presented at Transport and Air Pollution 2002.

UCINA, several years, La nautica in cifre.

UP, several years. Previsioni di domanda energetica e petrolifera in Italia. Unione Petrolifera.

Williams, A., 1993. Methane Emissions - Paper Presented at the 29 Consultative Conference of the Watt Committee on Energy, Edited by Professor Alan Williams, Department of Fuel and Energy, University of Leeds, UK.

9.3 INDUSTRIAL PROCESSES AND PRODUCT USE

ACI, several years. Dati e statistiche. Automobile Club d'Italia, Roma. http://www.aci.it/index.php?id=54.

Aether ltd, 2013. "Findings and Recommendations of the Independent Review of the Italian Greenhouse Gas Inventory", 2013.

AIA, several years [a]. Personal Communication. Associazione Italiana Aerosol.

AIA, several years [b]. Relazioni annuali sulla produzione italiana aerosol. Associazione Italiana Aerosol.

AIET, 2007. Impatto ambientale degli apparecchi elettrici MT ed AT. Rivista AIET n° 6, giugno 2007.

AITEC, 2004. Posizione dell'industria cementiera in merito al Piano Nazionale di Allocazione delle emissioni di gas ad effetto serra. Roma 19/03/2004.

AITEC, several years. L'industria Italiana del Cemento. Associazione italiana tecnico economica del cemento.

ALCOA, 2004. Primary Aluminium in Italy. ALCOA.

ALCOA, 2010. Personal Communication. ALCOA.

ALCOA, several years. Personal Communication.

ANDIL, 2000. Primo rapporto ambientale dell'industria italiana dei laterizi. Assolaterizi, Associazione nazionale degli industriali dei laterizi.

ANDIL, several years. Indagine conoscitiva sui laterizi. Assolaterizi, Associazione nazionale degli industriali dei laterizi.

ANIE, 2001. Il gas SF6 e l'ambiente: un impegno che continua. ANIE Federazione

ANIE, several years. Personal Communication. ANIE Federazione.

APAT, 2003. Il ciclo industriale dell'acciaio da forno elettrico. Agenzia per la Protezione dell'Ambiente e per i servizi tecnici, Rapporti 38/2003.

APEM, 1992. Air Pollution Engineering Manual. Air&Waste Management Association, 1992.

APPLiA Italia, several years. Personal Communication.

APPLiA Italia, 2019. Personal Communication on the Professional refrigeration subsector.

Assocandele, 2015. Personal Communication.

Assocasa, several years. Personal Communication.

Assoclima [a], several years. Statistiche Assoclima

www.anima.it/associazioni/elenco/assoclima/attivita/pubblicazioni/studi-di-mercato.kl .

Assoclima [b], several years. Personal communication.

Assoclima, 2022. Assoclima annual statistical survey. Press release date: 28/03/2022.

Assogastecnici, several years. Personal Communication.

ASSOMET, several years. I metalli non ferrosi in Italia. Associazione nazionale industrie metalli non ferrosi.

ASSOPIASTRELLE, 2004. L'industria italiana delle piastrelle di ceramica e la Direttiva 2003/87.

ASSOPIASTRELLE, several years. Indagine statistica nazionale. Industria italiana delle piastrelle di ceramica. Assopiastrelle, Associazione nazionale dei produttori di piastrelle di ceramica e di materiali refrattari.

Assovetro, several years. Statistical data available on the official web site of the National Glass Industry Association. <u>http://www.assovetro.it/</u>.

ASSURE, 2005. Personal Communication. European Association for Responsible Use of HFCs in Fire Fighting.

AVISA, several years. Personal Communication.

Benndorf R., 1999. Situation in Deutschland. ACCC-Workshop 'N2O und das Kyoto-Ziel', Umweltbundesamt (Berlin), Wien.

Boehringer Ingelheim, several years. Personal Communication. Boehringer Ingelheim Istituto De Angeli.

CAGEMA, 2005. Politiche e misure per la riduzione delle emissioni di gas serra: il settore della calce. Associazione dell'industria italiana della calce, del gesso e delle malte.

CAPIEL, 2002. Switchgear and SF₆ gas. CAPIEL.

CARBITALIA S.p.A., 2009. Personal Communication.

CARBITALIA S.p.A., 2017. Personal Communication.

Chiesi Farmaceutici, several years. Personal Communication. Chiesi Farmaceutici S.p.A.

Clean Gas, 2001. Personal Communication. Clean Gas.

CNH, several years. Personal Communication. Case New Holland.

Co.Da.P., 2005. Personal Communication.

Confindustria Ceramica, several years. Personal Communication.

CoReVe, several years. Programma specifico di prevenzione. Risultati del riciclo.

CTN/ACE, 2000. Rassegna delle informazioni disponibili sulle emissioni di diossine e furani dal settore siderurgico e della metallurgia ferrosa. A cura di Pasquale Spezzano.

DM 73/2020. Decreto del Ministero dell'Interno, 10 marzo 2020, n. 73. Decreto recante "Disposizioni di prevenzione incendi per gli impianti di climatizzazione inseriti nelle attività soggette ai controlli di prevenzione incendi".

DPR 43/2012. Decreto del Presidente della Repubblica, 27 gennaio 2012, n. 43. Regolamento recante attuazione del regolamento (CE) n. 842/2006 su taluni gas fluorurati ad effetto serra.

DPR 146/2018. Decreto del Presidente della Repubblica, 16 novembre 2018, n. 146. Regolamento di esecuzione del regolamento (UE) n. 517/2014 sui gas fluorurati a effetto serra e che abroga il regolamento (CE) n. 842/2006.

EC, 1999. Council Directive 1999/13/EC of 11 March 1999 on the limitation of emissions of volatile organic compounds due to the use of organic solvents in certain activities and installations. Official Journal of the European Communities 29 March 1999.

EC, 2000. Regulation (EC) n. 2037/2000 of the European Parliament and of the Council of 29 June 2000 on substances that deplete the ozone layer.

EC, 2002. Screening study to identify reduction in VOC emissions due to the restrictions in the VOC content of products. Final Report of the European Commission, February 2002.

EC, 2004. Directive 2004/42/EC of the European Parliament and of the Council of 21 April 2004 on the limitation of emissions of volatile organic compounds due to the use of organic solvents in decorative

paints and varnishes and vehicle refinishing products and amending Directive 1999/13/EC. Official Journal of the European Communities 30 April 2004.

EC, 2006. Regulation n. 842/2006 of the European Parliament and of the Council of 17 May 2006 on certain fluorinated greenhouse gases.

EC, several years. Reporting under Article 6 and 19 of the Regulation (EC) N. 842/2006 and Regulation n. 517/2014.

ECOFYS, 2009. Sectoral Emission Reduction Potentials and Economic Costs for Climate Change (SERPEC-CC) – Industry and Refineries Sector, Martijn Overgaag (Ecofys), Robert Harmsen (Ecofys), Andreas Schmitz (JRC-IPTS). October 2009.

EDIPOWER, several years. Rapporto di Sostenibilità. EDIPOWER.

EDISON, several years. Bilancio Ambientale. EDISON.

EEA, 1997. CORINAIR 94 Summary Report, Report to the European Environment Agency from the European Topic Centre on Air Emission.

EHPA, 2014. EuropeanHeatPumpMarketandStatisticsReport2014

EMEP/CORINAIR, 2007. Atmospheric Emission Inventory Guidebook. Technical report No 16/2007.

EMEP/EEA, 2009. Atmospheric Emission Inventory Guidebook. Technical report No 9/2009.

EMEP/EEA, 2013. Air Pollutant Emission Inventory Guidebook. Technical report n. 12/2013.

EMEP/EEA, 2019. Air Pollutant Emission Inventory Guidebook. EEA. Technical report No 13/2019.

ENDESA, 2004. Personal Communication. ENDESA.

ENDESA, several years [a]. Rapporto ambiente e sicurezza. ENDESA.

ENDESA, several years [b]. Rapporto di sostenibilità. ENDESA.

ENEL, several years. Rapporto ambientale. ENEL.

ENEA/USLRMA, 1995. Lavanderie a secco.

Enichem, several years. Rapporto ambientale.

ENIRISORSE, several years. Statistiche metalli non ferrosi. ENIRISORSE.

EPA, 2000. Compilation of Air Pollutant Emission Factors, AP-42.

EPA, 2006. Uses and air emissions of liquid PFC heat transfer fluids from the electronics sector. EPA-430-R-06-901.

EU, 2014. Regulation n. 517/2014 of the European Parliament and of the Council of 16 April 2014 on fluorinated greenhouse gases and repealing Regulation (EC) N. 842/2006 Text with EEA relevance.

FAO, several years. Food balance. http://faostat3.fao.org/home/E.

FEDERACCIAI, 2004. Personal Communication.

FEDERACCIAI, several years. La siderurgia in cifre. Federazione Imprese Siderurgiche Italiane.

FEDERBETON/AITEC[1], several years. Rapporto di Filiera. Federbeton

FEDERBETON/AITEC[2], several years. Rapporto di sostenibilità. Federbeton

FEDERCHIMICA, several years. La chimica in cifre. Federazione Nazionale dell'Industria Chimica.

FIAT, several years [a]. Personal Communication.

FIAT, several years [b]. Rendiconto Ambientale. Gruppo Fiat.

Folchi R., Zordan E., 2004. Il mercato degli esplosivi in Italia. Costruzioni, 28/1/2004.

Gastec Vesta, 2017. Personal Communication

GIADA, 2006. Progetto Giada and Personal Communication. ARPA Veneto – Provincia di Vicenza.

GSK, several years. Personal Communication. GlaxoSmithKline S.p.A.

IAI, 2003. The Aluminium Sector Greenhouse Gas Protocol (Addendum to the WBCSD/WRI Greenhouse Gas Protocol). Greenhouse Gas Emission Monitoring and Reporting by the Aluminium Industry. International Aluminium Institute, May 2003.

IAI, 2006. The Aluminium Sector Greenhouse Gas Protocol (Addendum to the WBCSD/WRI Greenhouse Gas Protocol). Greenhouse Gas Emission Monitoring and Reporting by the Aluminium Industry. International Aluminium Institute, October 2006.

ILVA, 2006. Analisi ambientale iniziale. Rev. 2, March 2006. IPPC permitting process.

INFN, several years. Personal communication.

IPCC, 1997. Revised 1996 IPCC Guidelines for National Greenhouse Gas Emission Inventories. Three volumes: Reference Manual, Reporting Manual, Reporting Guidelines and Workbook. IPCC/OECD/IEA. IPCC WG1 Technical Support Unit, Hadley Centre, Meteorological Centre, Meteorological Office, Bracknell, UK.

IPCC, 2000. Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories. IPCC National Greenhouse Gas Inventories Programme, Technical Support Unit, Hayama, Kanagawa, Japan.

IPPC, 2001. Best Available Techniques Reference Document on the Production of Iron and Steel. Integrated Pollution Prevention and Control. European Commission. December 2001.

IPCC, 2006. 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme, Eggleston H.S., Buendia L., Miwa K., Ngara T. and Tanabe K. (eds). Published: IGES, Japan.

ISPESL, 2005. Profilo di rischio e soluzioni. Metallurgia. Produzione ferroleghe. Edited by A. Borroni.

ISPRA, 2018 [a]. Studio sulle alternative agli idrofluorocarbuti (HFC) in Italia. Rapporto 286/2018

ISPRA, 2018 [b]. Dichiarazione F-gas: analisi dei dati. Rapporto 291/2018

ISPRA – MATTM, 2013. Analisi del mercato della refrigerazione e del condizionamento in Italia nel periodo 1990-2013, verbale incontro Associazioni Nazionali - Roma, 7 novembre 2013

ISTAT, 2003. Bollettino mensile di statistica.

ISTAT, several years [a]. Annuario Statistico Italiano.

ISTAT, several years [b]. Bollettino mensile di statistica.

ISTAT, several years [c]. Statistica annuale della produzione industriale <u>http://www.istat.it/it/archivio/73150</u>.

ISTAT, several years [d]. Personal communication.

Istituto De Angeli, several years. Personal Communication. Istituto De Angeli.

Italghisa, 2011. Personal communication

IVECO, several years. Personal Communication.

Law 22 May 2020, n.77. Conversione in legge, con modificazioni, del decreto-legge 19 maggio 2020, n. 34, recante misure urgenti in materia di salute, sostegno al lavoro e all'economia, nonche' di politiche sociali connesse all'emergenza epidemiologica da COVID-19. (GU n.180 18-07-2020 n. 25)

LFoundry 2018. Personal Communication.

LFoundry, several years. Personal Communication.

Linde Gas, 2015. Personal Communication.

Lusofarmaco, several years. Personal Communication. Istituto Luso Farmaco d'Italia S.p.A.

Lux, 2015. Personal Communication.

Shiloh Industries Italia. Personal Communication..

Menarini, several years. Personal Communication. Industrie farmaceutiche riunite.

MICRON, several years. Personal Communication. Micron Technology Italia S.r.l.

MSE, several years [a]. Consuntivo produzione nazionale clinker. Ministero Sviluppo Economico.

MASE, several years [b]. Bollettino Petrolifero Trimestrale (BPT). Ministero dell'Ambiente. <u>https://dgsaie.mise.gov.it/bollettino-petrolifero</u>

Norsk Hydro, several years. Personal Communication.

Numonyx, several years. Personal Communication. Numonyx Italy S.r.l.

Offredi P., several years. Professione Verniciatore del Legno. Personal communication.

Polimeri Europa, several years. Personal Communication. Polimeri Europa S.p.A.

Radici Chimica, 1993. Progetto CORINAIR. Produzione acido adipico: descrizione del processo utilizzato da Radici Chimica. Radici Group, Novara.

Radici Chimica, 2013. Annual report to the Italian PRTR.

Radici Chimica, several years. Personal Communication.

Regione Campania, 2005. Inventario regionale delle emissioni di inquinanti dell'aria della Regione Campania, marzo 2005.

Regione Toscana, 2001. Inventario regionale delle sorgenti di emissione in aria ambiente, febbraio 2001.

Sanofi Aventis, several years. Personal Communication. Sanofi Aventis Italia.

Shiloh Industries Italia, several years. Personal Communication.

Siemens, several years. Personal communication.

Siteb, several years. Rassegna del bitume.

Solsonica, 2015. Personal communication.

Solvay, 2003. Bilancio di Sostenibilità Solvay 2002. Solvay Solexis S.p.A.

Solvay, several years. Personal Communication. Solvay Solexis S.p.A.

Solvay Fluor, several years. Personal Communication.

Sotacarbo, 2004. Progetto integrato miniera centrale. Studio di fattibilità sito di Portovesme.

Spinetta Marengo, 2011. Verbale riunione Spinetta Marengo.

Statistiche Assoclima, several years

ST Microelectronics, 2018. Personal Communication. ST Microelectronics.

ST Microelectronics, several years. Personal Communication. ST Microelectronics

Syndial, several years. Personal Communication. Syndial S.p.A. – Attività diversificate.

TECHNE, 1998. Personal communication.

TECHNE, 2004. Progetto MeditAiraneo. Rassegna dei fattori di emissione nazionali ed internazionali relativamente al settore solventi. Rapporto Finale, novembre 2004.

TECHNE, 2008. Fattori di emissione per l'utilizzo di solventi. Rapporto Finale, marzo 2008.

TERNA, several years. Rapporto di Sostenibilità. TERNA.

UN, several years. Industrial Commodity Statistics Yearbook. United Nation.

UNFCCC, 2010. Report of the individual review of the greenhouse gas inventories of Italy submitted in 2010. FCCC/ARR/2010/ITA 22 November 2010.

Unione Petrolifera, several years. Previsioni di domanda energetica e petrolifera italiana.

UNIPRO, several years. Rapporto Annuale - Consumi cosmetici in Italia.

UNRAE, several years. Personal Communication. Unione Nazionale Rappresentanti Autoveicoli Esteri.

USEPA, 1997. "Compilation of Air Pollutant Emission Factors". AP-42, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards. Research Triangle Park, North Carolina. October 1997.

USGS, several years. Mineral yearbook. Ferroalloys.

Varian, several years. Personal communication.

Versalis, several years. Personal Communication. Versalis S.p.A.

Vetrella G., 1994. Strategie ottimali per la riduzione delle emissioni di composti organici volatili. Thesis in Statistics.

WG1, 2013. Comments on Appendix A&B of the "Preparatory study for the Review of Regulation 842/2006 on certain fluorinated greenhouse gases (Working document 1).

YARA, 2007. Technical documentations from IPPC permit issuing process.

YARA, several years. Personal Communication.

9.4 AGRICULTURE

ADBPO, 1994. Piano delle direttive e degli interventi urgenti per la lotta all'eutrofizzazione delle acque interne e del mare Adriatico. Autorità di bacino del fiume Po. Parma – Italia.

ADBPO, 2001. Progetto di Piano stralcio per il controllo dell'Eutrofizzazione (PsE). Autorità di bacino del fiume Po. Relazione generale. Parma – Italia.

Agraria, 2009. Rivista di Agraria.org N. 82 del 1giugno 2009. Publication online: *Ovini tecniche di allevamento* <u>http://www.rivistadiagraria.org/articoli/anno-2009/ovini-tecniche-di-allevamento/.</u>

AIA, several years[a]. Controlli della produttività del latte in Italia – Cattle: Median of days open for the first 5 calving intervals - Statistiche Ufficiali. Associazione Italiana Allevatori. Italia <u>http://bollettino.aia.it/</u>.

AlA, several years[b]. Controlli della produttività del latte in Italia – Sheep: Sex ratio in alive and dead newborn; single and double birth ratio - Statistiche Ufficiali. Associazione Italiana Allevatori. Italia <u>http://bollettino.aia.it/</u>.

AIA, several years[c]. Controlli della produttività del latte in Italia– Sheep: Median of lactations from 90 to 300 days by breed - Statistiche Ufficiali. Associazione Italiana Allevatori. Italia <u>http://bollettino.aia.it/</u>.

ANPA-ONR, 2001. I rifiuti del comparto agro-alimentare, Studio di settore. Agenzia Nazionale per la Protezione dell'Ambiente. Rapporto n. 11/2001. Roma –Italia.

APAT, 2004[a]. Linee guida per l'utilizzazione agronomica degli effluenti di allevamento, Fase 2 Effluenti zootecnici, Risultati di una indagine campionaria sulle caratteristiche degli effluenti di allevamento, a cura di CRPA. Reggio Emilia – Italia.

APAT, 2004[b]. Linee guida per l'utilizzazione agronomica degli effluenti di allevamento, Fase 2 Effluenti zootecnici, Risultati di una indagine campionaria sulle tipologie di stabulazione e di stoccaggio, a cura di CRPA. Reggio Emilia – Italia.

ARA, 2017. Associazione Regionale Allevatori della Sardegna. Publication online: *Specie allevate in Sardegna – Ovini*.

ASSONAPA, 2006. Database of goat and sheep animal consistency and breeds. Associazione Nazionale della Pastorizia Ufficio Centrale dei Libri Genealogici e dei Registri Anagrafici, Italy.

Baldoni R., Giardini L., 1989. Coltivazione erbacee. Editor Patron, p 1072. Bologna, Italia.

Baldoni R., Giardini L., 2002. Coltivazione erbacee. Editor Patron, Volume 3.

Barile V.L., 2005. Improving reproductive efficiency in female buffaloes. Livest. Prod. Sci. 92, 83–194.

Bittante G., Gallo L., Schiavon S., Contiero B., Fracasso A., 2004. Bilancio dell'azoto negli allevamenti di vacche da latte e vitelloni. In (Xiccato *et al.*, 2004) Bilancio dell'azoto in allevamenti di bovini, suini e conigli – Progetto interregionale - Legge 23/12/1999 n. 499, art. 2 - report finale, Regione Veneto.

Bonazzi G., Crovetto M., Della Casa G., Schiavon S., Sirri F., 2005, Evaluation of Nitrogen and Phosphorus in Livestock manure: Southern Europe (Italy). In Workshop: Nutrients in livestock manure, Bruxelles, 14 February 2005.

Borgioli E., 1981. Nutrizione e alimentazione degli animali domestici. Edagricole, p. 464.

Braca G., Bussettini M., Lastoria B., Mariani S., Piva F., 2021. Il Bilancio Idrologico Gis BAsed a scala Nazionale su Griglia regolare – BIGBANG: metodologia e stime. Rapporto sulla disponibilità naturale della risorsa idrica. Istituto Superiore per la Protezione e la Ricerca Ambientale, Rapporti 339/21, Roma. <u>https://www</u>.isprambiente.gov.it/it/pubblicazioni/382apport/il-bilancio-idrologico-gis-based-a-scalanazionale-su-griglia-regolare-bigbang

Butterbach-Bahl K., Papen H., Rennenberg H., 1997. Impact of rice transport through cultivars on methane emission from rice paddy fields. Plant, Cell and Environment. 20:1175-1183.

CESTAAT, 1988. Impieghi dei sottoprodotti agricoli ed agroindustriali, Vol. 1. Centro Studi sull'Agricoltura, l'Ambiente e il Territorio, p. 311.

Cóndor R.D., De Lauretis R., Lupotto E., Greppi D., Cavigiolo S., 2007. Methane emission inventory for the rice cultivation sector in Italy. In: Proceeding of the Fourth Temperate Rice Conference. Ed. S. Bocchi, A. Ferrero, A. Porro. 25-28 June Novara – Italy.

Cóndor R.D., Valli L., De Rosa G., Di Francia A., De Lauretis R., 2008[a]. Estimation of the methane emission factor for the Italian Mediterranean buffalo. International Journal of Animal Biosciences 2:1247-1253.

Cóndor R.D., Di Cristofaro E., De Lauretis R., 2008[b]. Agricoltura: inventario nazionale delle emissioni e disaggregazione provinciale. Istituto superiore per la protezione e la ricerca ambientale, ISPRA Rapporto tecnico 85/2008. Roma, Italia <u>https://www.isprambiente.gov.it/it/archivio/notizie-e-novita-normative/notizie-ispra/anno-2009/rapporto-agricoltura</u>.

Cóndor R.D., 2011. Agricoltura: emissioni nazionali in atmosfera dal 1990 al 2009. Istituto superiore per la protezione e la ricerca ambientale (ISPRA). Rapporto ISPRA 140/2011. Roma, Italia <u>https://www.isprambiente.gov.it/it/pubblicazioni/rapporti/agricoltura-emissioni-nazionali-in-atmosfera-dal</u>.

Confalonieri R., Bocchi S., 2005. Evaluation of CropSyst for simulating the yield of flooded rice in northern Italy. European Journal of Agronomy. 2005, 23, 315 – 326.

Consorzio per la tutela del formaggio Mozzarella di Bufala Campana, 2002. Modello di Regolamento per la gestione igienica ed alimentare dell'allevamento bufalino in relazione alla produzione della mozzarella di bufala campana DOP. Edit. Consorzio per la tutela del formaggio mozzarella di bufala campana (Campana Mozzarella Consortium).

CREA, 2020. L'agricoltura italiana conta 2020. CREA - Centro di ricerca Politiche e Bioeconomia 2020 <u>https://www.crea.gov.it/web/politiche-e-bioeconomia/-/l-agricoltura-italiana-conta-2020</u>.

CRPA, 1993. Manuale per la gestione e utilizzazione agronomica dei reflui zootecnici. Regione Emilia Romagna, Assessorato agricoltura.

CRPA, 1996. Biogas e cogenerazione nell'allevamento suino. Manuale pratico. ENEL, Direzione studi e ricerche, Centro ricerche ambiente e materiali. Milano – Italia.

CRPA, 1997[a]. Piani Regionali di Risanamento e tutela della qualità dell'aria. Quadro delle azioni degli enti locali per il settore zootecnico delle aree padane. Allegato 2. Relazione di dettaglio sulla metodologia adottata per la quantificazione delle emissioni di metano. Febbraio 1997.

CRPA, 1997[b]. Piani Regionali di Risanamento e tutela della qualità dell'aria. Quadro delle azioni degli enti locali per il settore zootecnico delle aree padane. Relazione di dettaglio sulla metodologia adottata per la quantificazione delle emissioni di protossido di azoto. Settembre 1997.

CRPA, 2000. Aggiornamento dell'inventario delle emissioni in atmosfera di ammoniaca, metano e protossido di azoto dal comparto agricolo. Centro Ricerche Produzioni Animali. Gennaio 2000.

CRPA, 2004[a]. L'alimentazione della vacca da latte. Edizioni L'Informatore Agrario. Terza edizione, Centro Ricerche Produzioni Animali.

CRPA, 2004[b]. Personal communication, expert in dairy cattle feeding from the Research Centre on Animal Production (CRPA), Maria Teresa Pacchioli.

CRPA, 2004[c]. Personal communication, expert in greenhouse gases emissions from the agriculture sector from the Research Centre on Animal Production (CRPA), Laura Valli.

CRPA, 2005. Personal communication, working group with experts in animal feeding from the Research Centre on Animal Production (CRPA), Maria Teresa Pacchioli and Paola Vecchia.

CRPA, 2006[a]. Progetto MeditAlRaneo: settore Agricoltura. Relazione finale. Technical report on the framework of the MeditAlRaneo project for the Agriculture sector, Reggio Emilia – Italia.

CRPA, 2006[b]. Predisposizione di scenari di emissione finalizzati alla progettazione di interventi per la riduzione delle emissioni nazionali di ammoniaca ed alla valutazione di misure e di progetti per la tutela della qualità dell'aria a livello regionale. Final report. Reggio Emilia – Italy.

CRPA, 2008[a]. Le scelte politiche energetico-ambientali lanciano il biogas. L'Informatore Agrario 3/2008, p.28-32 (with annex).

CRPA, 2009. Valutazione dell'entità delle emissioni ammoniacali derivanti dall'applicazione al suolo dei fertilizzanti, delle loro possibilità di riduzione e individuazione degli elementi per un monitoraggio statistico delle tecniche di applicazione utilizzate. Final report. Reggio Emilia – Italy.

CRPA, 2010. Personal communication - experts Laura Valli and Maria Teresa Pacchioli from the Research Centre on Animal Production (expert consultation on N excretion and national production systems). Reggio Emilia, Italy.

CRPA, 2011. "Il biogas accelera la corsa verso gli obiettivi 2020". Supplemento a L'Informatore Agrario n. 26/2011.

CRPA, 2013. "Biogas, il settore è strutturato e continua a crescere". Supplemento a L'Informatore Agrario n. 11/2013.

CRPA, 2016[a]. Personal communication - experts Nicola Labartino and Laura Valli from the Research Centre on Animal Production (expert consultation on N excretion and national production systems). Reggio Emilia, Italy.

CRPA, 2016[b]. Personal communication – expert Laura Valli from the Research Centre on Animal Production (expert consultation on N excretion and national production systems). Reggio Emilia, Italy.

CRPA, 2018. Studio per la valutazione degli effetti sulle emissioni delle trasformazioni in corso nel settore degli allevamenti. Report. Reggio Emilia – Italy

CRPA/AIEL, 2008. Energia dal biogas prodotto da effluenti zootecnici, biomasse dedicate e di scarto. Ed. Associazione Italiana Energie Ambientali (AIEL).

CRPA/CNR, 1992. Indagine sugli scarti organici in Emilia Romagna.

Dan J., Krüger M., Frenzel P., Conrad R., 2001. Effect of a late season urea fertilization on methane emission from a rice field in Italy. Agri. Ecos. Env. 83: 191–199.

Dannenberg S., Conrad R., 1999. Effect of rice plants on methane production and rhizospheric metabolism in paddy soil. Biogeochemistry 45: 53–71.

De Corso E., 2008. World fertilizer market between food crisis and global economy simulations with partial equilibrium models. Tesi di laurea. Facolta' di Agraria, Universita' Cattolica del Sacro Cuore. 98p.

De Roest and Speroni, 2005. Il bilancio dell'azoto negli allevamenti di latte. Agricoltura. Marzo 2005, 112-114.

De Rosa M., Trabalzi F., 2004. Technological innovation among buffalo breeders of southern lazio, Italy. Agricoltura Mediterranea. Vol. 134, 58-67.

De Rosa M., Di Francia, 2006. Personal communication.

Di Cristofaro E., several years. Procedura per la preparazione, caricamento e *reporting* dell'inventario nazionale delle emissioni del settore Agricoltura. Internal report ISPRA. Rome, Italy.

EMEP/EEA, 2019. Air Pollutant Emission Inventory Guidebook. Technical report n. 13/2019

ENEA, 1994. Personal communication, expert in agriculture sector. Ente nazionale per l'energia, l'ambiente e le nuove tecnologie (ENEA), Andrea Sonnino.

ENEA, 2006. Valutazione della possibilità di sostituzione dell'urea con altri fertilizzanti azotati. Final report. Rome, Italy.

ENAMA, 2011. "Biomasse ed Energia - Censimento impianti, biocarburanti di seconda generazione e casi studio".

ENR, 2011. Personal communication with *Ente Nazionale Risi* (ENR), Enrico Losi. Information available on rice surface by variety and time of cultivation.

ENR, 2013. XLV Relazione annuale Anno 2012. Il risicoltore. Ente Nazionale Risi.

ENR, 2014 [a]. Personal communication with *Ente Nazionale Risi* (ENR), Elena Noja. Information available on the length of the vegetation period for some varieties of rice.

ENR, 2014 [b]. XLVI Relazione annuale Anno 2013. Il risicoltore. Ente Nazionale Risi.

ENR, several years [a]. Personal communication with *Ente Nazionale Risi* (ENR), Dr. Romani. Information on agronomic management of rice cultivation.

ENR, several years [b]. Data available online on rice surface by variety and production. <u>http://www.enterisi.it/servizi/Menu/dinamica.aspx?idSezione=17505&idArea=17548&idCat=17552&ID=17552&TipoElemento=categoria</u>.

ENSE, 1999. Caratterizzazione morfo-fisiologica delle varietà di riso iscritte al catalogo italiano dal 1992 al 1998. Quaderno numero 47 a cura di L. Tamborini. Ente Nazionale delle Sementi Elette – Milano.

ENSE, 2004. Caratterizzazione morfo-fisiologica delle varietà di riso iscritte al catalogo italiano dal 1999 al 2004. Quaderno numero 48 a cura di L. Tamborini e G. Polenghi. Ente Nazionale delle Sementi Elette – Milano.

EPIC, 2015. Environmental Policy Integrated Climate Model. User's Manual Version 0810 September 2015.

EUROSTAT, 2007[a]. Farm structure in Italy – 2005. Statistics in Focus Agriculture and Fisheries 22/2007 Product KS-SF-07-022 European Communities.

EUROSTAT, 2007[b]. Agriculture. Main statistics 2005-2006. Product Ks-ED-07-002-En-C. European Communities.

EUROSTAT, 2012. Agriculture. Main statistics 2010-2011. Product KS-FK-12-001-EN-C. European Communities.

FAO, several years. FAOSTAT, the FAO Statistical Database, <u>http://www.fao.org/faostat/en/#data</u>.

Ferrero A., Nguyen N.V., 2004. Constraints and opportunities for the sustainable development of ricebased production systems in Europe. In proceedings: FAO Rice Conference, 12-13 February 2004, FAO, Rome, Italy.

Gazzetta Ufficiale della Repubblica Italiana (G.U.), 2006. Criteri e norme tecniche generali per la disciplina regionale dell'utilizzazione agronomica degli effluenti di allevamento e di acque reflue di cui all'articolo 38 del decreto legislativo 11 maggio 1999 N. 152. G.U. n. 109 del 12/05/06 - Suppl. Ordinario n.120. Ministero delle Politiche Agricole e Forestali. Italy. <u>http://www.gazzettaufficiale.it/</u>.

Gazzetta Ufficiale della Repubblica Italiana (G.U.), 2016[a]. Ministero delle Politiche Agricole Alimentari e Forestali - Decreto 25 Febbraio 2016 - Criteri e norme tecniche generali per la disciplina regionale dell'utilizzazione agronomica degli effluenti di allevamento e delle acque reflue, nonché per la produzione ed utilizzazione agronomica del digestato (G.U. n. 90 del 18 aprile 2016).

Gazzetta Ufficiale della Repubblica Italiana (G.U.), 2016[b]. Attuazione della legge 3 maggio n. 79 in materia di ratifica ed esecuzione dell'Emendamento di Doha al Protocollo di Kyoto (G.U. n. 298 del 22 dicembre 2016).

Gislon G., Colombini S., Borreani G., Crovetto G. M., Sandrucci A., Galassi G., Tabacco E., Rapetti L., 2020. Milk production, methane emissions, nitrogen, and energy balance of cows fed diets based on different forage systems. J. Dairy Sci. 103:8048–8061 <u>https://doi.org/10.3168/jds.2019-18134</u>.

Greco M., Martino L., 2001. The agricultural statistical system in Italy. In: Conference on Agricultural and Environmental Application, Rome 4-8 June. Italy 46-461pp.

Holzapfel-Pschorn A., Seiler W., 1986. Methane emission during a cultivation period from an Italian Rice Paddy. Journal of Geophysical Research Vol. 91 N° D11 11,803-11,814.

Husted S., 1993. An open chamber technique for determination of methane emission from stored livestock manure. Atmospheric Environment 11 (27).

Husted S., 1994. Seasonal variation in methane emissions from stored slurry and solid manures, J. Env. Qual. 23, pp. 585-592.

Infascelli F., 2003. Nuove acquisizioni sulla nutrizione e sull'alimentazione della bufala. In: Il Congresso Nazionale sull'Allevamento del Bufalo Monterotondo - Roma, pp. 1-18.

IPCC, 1997. Revised 1996 IPCC Guidelines for National Greenhouse Gas Emission Inventories. Three volumes: Reference Manual, Reporting Manual, Reporting Guidelines and Workbook. IPCC/OECD/IEA. IPCC WG1 Technical Support Unit, Hadley Centre, Meteorological Centre, Meteorological Office, Bracknell, UK.

IPCC, 2006. 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme, Eggleston H.S., Buendia L., Miwa K., Ngara T. and Tanabe K. (eds). Published: IGES, Japan.

IPCC 2014, 2013 Revised Supplementary Methods and Good Practice Guidance Arising from the Kyoto Protocol, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds) Published: IPCC, Switzerland.

IPCC, 2019. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories <u>https://www.ipcc-nggip.iges.or.jp/public/2019rf/index.html</u>.

ISPRA, 2009. La disaggregazione a livello provinciale dell'inventario nazionale delle emissioni. Anni 1990-1995-2000-2005. ISPRA, 92/2009

https://www.isprambiente.gov.it/it/pubblicazioni/rapporti/la-disaggregazione-a-livello-provinciale.

ISPRA, 2020. Database SCIA - National System for the collection, processing and dissemination of climatological data of environmental interest - Spatialised monthly average temperature data of the national territory for the periods 1961-1990, 1971-2000, 1981-2010. http://www.scia.isprambiente.it/wwwrootscia/scia eng.html.

ISPRA, 2021. Database della disaggregazione a livello provinciale dell'Inventario nazionale delle emissioni:1990-1995-2000-2005-2010-2015-2019. Istituto Superiore per la Protezione e la Ricerca Ambientale, ISPRA. <u>http://emissioni.sina.isprambiente.it/serie-storiche-emissioni/</u>.

ISPRA, several years [a]. Quality Assurance/Quality Control plan for the Italian Inventory.

ISPRA, several years [b]. Serie storiche delle emissioni nazionali di inquinanti atmosferici, Rete del Sistema Informativo Nazionale Ambientale - SINANET. Istituto Superiore per la Protezione e la Ricerca Ambientale. <u>http://emissioni.sina.isprambiente.it/serie-storiche-emissioni/</u>.

ISTAT, 1991. Caratteristiche strutturali delle aziende agricole, fascicoli provinciali, 4° Censimento generale dell'Agricoltura (20 ottobre 1990-22 febbraio 1991), Roma – Italia.

ISTAT, 2003. 5º Censimento Generale dell'Agricoltura. Caratteristiche strutturali delle aziende agricole. Fascicolo Nazionale: dati regionali, provinciali e comunali. Istituto Nazionale di Statistica, Roma – Italia.

ISTAT, 2004. Personal communication, expert in agriculture statistics- fertilizers from the National Institute of Statistics (ISTAT), Mario Adua.

ISTAT, 2006[a]. Struttura e produzioni delle aziende agricole Anno 2005. Statistiche in breve (27 dicembre 2006). Statistiche Servizio Agricoltura – Allevamenti e pesca. Istituto Nazionale di Statistica, Roma – Italia.

ISTAT, 2006[b]. Personal communication, expert in agriculture statistics from the National Institute of Statistics (ISTAT), Giampaola Bellini.

ISTAT, 2007[a]. Farm and structure survey from 2005. Information on the number of animals at a provincial level. Istituto Nazionale di Statistica, Roma –Italia.

ISTAT, 2007[b]. Annuario Statistico Italiano 2007- Capitolo 13 Agricoltura. Istituto Nazionale di Statistica, Roma –Italia.

ISTAT, 2007[c]. Personal communication with N. Mattaliano. E-mail request for elaboration Farm and structure survey 2003 data on burning residues -cereals. Istituto Nazionale di Statistica, Roma –Italia.

ISTAT, 2007[d]. Indagine sulla struttura e produzione delle aziende agricole. Anno 2005. Prodotto DCSSD1.1.1. Rapporto di qualità su SPA 2005. Istituto Nazionale di Statistica, Roma –Italia.

ISTAT, 2008[a]. Struttura e produzioni delle aziende agricole. Anno 2007 (03 Dicembre 2008). Istituto Nazionale di Statistica, Roma – Italia.

ISTAT, 2008[b]. Indagine sulla struttura e produzione delle aziende agricole. Anno 2007. Rapporto sulla Qualità. Istituto Nazionale di Statistica, Roma - Italia.

ISTAT, 2010. Istruzioni per la rilevazione. 6º Censimento Generale dell'Agricoltura. Istituto Nazionale di Statistica, Roma - Italia.

ISTAT, 2012. 6º Censimento Generale dell'Agricoltura. Istituto Nazionale di Statistica, Roma - Italia. <u>http://dati-censimentoagricoltura.istat.it/</u>.

ISTAT, 2013. La valutazione della qualità. Atti del 6° Censimento Generale dell'Agricoltura. Istituto Nazionale di Statistica, Roma – Italia. <u>http://www.istat.it/it/archivio/112514</u>.

ISTAT, 2015. Indagine sulla struttura e produzione delle aziende agricole. Anno 2013. Istituto Nazionale di Statistica, Roma - Italia.

ISTAT, 2018. Indagine sulla struttura e produzione delle aziende agricole. Anno 2016. Istituto Nazionale di Statistica, Roma - Italia.

ISTAT, several years[a]. Statistiche dell'agricoltura, zootecnia e mezzi di produzione – Annuari (1990-1993), Istituto Nazionale di Statistica, Roma – Italia.

ISTAT, several years[b]. Statistiche dell'agricoltura – Annuari (1994-2000), Istituto Nazionale di Statistica, Roma –Italia.

ISTAT, several years[c]. Struttura e produzioni delle aziende agricole – Informazione (1995- 1999), Istituto Nazionale di Statistica, Roma –Italia.

ISTAT, several years[d]. Statistiche sulla pesca e zootecnia – Informazione (1998-2001), Istituto Nazionale di Statistica, Roma –Italia.

ISTAT, several years[e]. Statistiche sulla pesca, caccia e zootecnia – Informazione (1996-1997), Istituto Nazionale di Statistica, Roma –Italia.

ISTAT, several years[f]. Annuario Statistico Italiano - Annuario (1990; 1993-1994; 1997-2003), Istituto Nazionale di Statistica, Roma –Italia.

ISTAT, several years[g]. Dati annuali sulla consistenza del bestiame. Istituto Nazionale di Statistica, Roma – Italia. <u>http://dati.istat.it/</u>.

ISTAT, several years[h]. Dati annuali e mensili sul settore lattiero caseario. Istituto Nazionale di Statistica, Roma – Italia. <u>http://dati.istat.it/</u>.

ISTAT, several years[i]. Dati congiunturali sui mezzi di produzione. Istituto Nazionale di Statistica, Roma – Italia. <u>http://dati.istat.it/</u>.

ISTAT, several years[j]. Dati congiunturali sulle coltivazioni. Istituto Nazionale di Statistica, Roma –Italia. <u>http://dati.istat.it/</u>.

ISTAT, several years[k]. Personal communication with D. Ciaccia: e-mail request of rabbit production data. Istituto Nazionale di Statistica, Roma – Italia.

ISTAT, several years[I]. Serie storiche - Agricoltura, zootecnia e pesca http://seriestoriche.istat.it/.

Kruger M., Frenzel P., Kemnitz D., Conrad R., 2005. Activity, structure and dynamics of the methanogenic archaeal community in a flooded Italian rice field. FEMS Microbiology Ecology 51: 323–331.

LAORE, 2014. Agenzia regionale per lo sviluppo in agricoltura. Opuscolo n. 3. Note tecniche sull'alimentazione degli ovini e dei caprini. LAORE Sardegna <u>http://www.sardegnaagricoltura.it/documenti/14_43_20140205090638.pdf</u>.

Leip A., Bocchi S., 2007. Contribution of rice production to greenhouse gas emissions in Europe. In: Proceeding of the Fourth Temperate Rice Conference. Ed. S.Bocchi, A. Ferrero, A. Porro. 25-28 June Novara – Italy.

Leip A., Russo S., Smith K.A., Conen F., Bidoglio G., 2002. Rice cultivation by direct drilling and delayed flooding reduces methane emissions. In: van Ham et al. (eds): Non-CO2 Greenhouse Gases (NCGG-3): Scientific understanding, control options and policy aspects. p. 457-458.

Lupotto E., Greppi D., Cavigiolo S., 2005. Personal communication, group of experts in rice paddy cultivation and agronomic practices from the C.R.A. – Experimental Institute of Cereal Research – Rice Research Section of Vercelli (Consiglio per la Ricerca e sperimentazione in Agricoltura, Istituto sperimentale per la Cerealicoltura, Sezione specializzata per la Risicoltura) Italia.

Mannini P., 2004. Risparmio idrico/metodi e sistemi irrigui. La sommersione. In: Supplementi di Agricoltura 18. Le buone pratiche agricole per risparmiare acqua. Assessorato Agricoltura, Ambiente e Sviluppo Sostenibile, Regione Emilia Romagna. pp.154-157. <u>http://agricoltura.regione.emilia-romagna.it/</u>.

Marik T., Fischer H., Conen F., Smith K., 2002. Seasonal variations in stable carbon and hydrogen isotope ratios in methane from rice fields. Global Biogeochemical Cycles, vol. 16, N°4.

Masucci F., Di Francia A., Gioffrè F., Zullo A., Proto V., 1999. Prediction of digestibility in buffalo. In: XIII ASPA Congress, Piacenza (Italy) 21-24 June 345-347.

Masucci F., Di Francia A., Proto V., 1997. In vivo digestibility, rate of particulate passage and dry matter rumen degradability in buffaloes and sheep. In: V World Buffalo Congress, Caserta (Italy) 13-16 October, 296-301.

MATTM, 2022. Eighth National Communication under the UN Framework Convention on Climate Change Italy December 2022 <u>https://unfccc.int/documents/624766</u>

MATTM, 2014. Personal communication with Marco Porrega: E-mail request for sewage sludge applied to agricultural soils in Italy. *Ministero dell'Ambiente e della Tutela del Territorio e del Mare*, Roma –Italia.

Meijide A., Manca G., Goded I., Magliulo V., di Tommasi P., Seufert G., Cescatti A., 2011. Seasonal trends and environmental controls of methane emissions in a rice paddy field in Northern Italy. Biogeosciences, 8, 3809–3821, 2011.

Molle G., Decandia M., Cabiddu A., Landau S. Y., Cannas A., 2008. An update on the nutrition of dairy sheep grazing Mediterranean pastures. Small Ruminant Research, 77(2-3), 93-112.

Molle G., Cannas A., 2015. Tecniche di alimentazione della pecora Sarda: stato dell'arte e prospettive.

Mordenti A., Pacchioli M.T., Della Casa G., 1997. Production and nutrition techniques in the control of meat quality in heavy pigs. XXXII International Symposium on Animal Production: Advances in Technology, Accuracy and Management Milano, 29th September –1st October 1997. pag 81.

NRC, 2001. Nutrient Requirements of dairy cattle Ninth edition, Nat. Acad. Press, Washington, D.C. USA.

OSSLATTE, 2001. Annuario del latte, Edizione 2001. Capitolo 3: La produzione di latte secondo l'ISTAT e l'AIA, Osservatorio sul mercato dei prodotti lattiero-caseari del latte.

OSSLATTE/ISMEA, 2003. Il mercato del latte, rapporto 2003. Capitolo 3: La struttura degli allevamenti e la produzione di latte secondo l'ISTAT. Osservatorio sul mercato dei prodotti lattiero-caseari del latte e l'Istituto di Servizi per il Mercato Agricolo ed Alimentare.

Perelli M., 2007. Prezzi dei prodotti agricoli e fertilizzazione. Fertilizzanti Maggio 2007. Anno IX N3. 10-13pp.

PROINCARNE, 2005. Personal communication, expert in goat and sheep breeding. Associazione Produttori Carni Bovine dell'Emilia-Romagna, Stefano Ronchi.

2004. P.S.A. PROG. 3 Regione Emilia-Romagna, L. R. 28/98 2001 N. Bilancio TAB. Β3 _ dell'azoto nelle specie di interesse zootecnico, Relazione finale, a cura di C.R.P.A., September 2004, Reggio Emilia, Italy.

Regione Emilia-Romagna, 2005. Disciplinari di produzione integrata 2005 Norme tecniche di coltura -Tecnica agronomica - Colture erbacee – RISO. Direzione Agricoltura, Regione Emilia-Romagna.

Roy R., Detlef Kluber H., Conrad R., 1997. Early initiation of methane production in anoxic rice soil despite the presence of oxidants. FEMS Microbiology Ecology 24:311-320.

Russo S., 1976. Influenza dell'interramento della paglia su crescita e produzione del riso. Rivista Il Riso Anno XXV Nº 1 p19-36.

Russo S., 1988. L'interramento delle paglie come fattore di fertilità e di risparmio energetico. In proceedings: 10° Convegno Internazionale sulla Risicoltura. Vercelli 16-18 Novembre 1998, Vercelli, Italy.

Russo S., 1993. Prove di concimazione con azoto frazionato in risaia. L'informatore Agrario 8/93 p 87-94.

Russo S., 1994. Semina interrata con sommersione ritardata: un'alternativa all'impianto della risaia tradizionale. L'informatore Agrario 12/94 p 39-46.

Russo S., 2001. Concimazione più sostenibile in risaia e concimi organo-minerali. L'informatore Agrario 10/2001 p 23-26.

Russo S., Ferrari G., Raso G., 1990. Ricerche sull'efficienza dell'azoto con la somministrazione frazionata. L'informatore Agrario p 27-29

Safley L.M., Casada M.E., Woodbury J., Roos K.F., 1992. Global methane emissions from livestock and poultry manure. USEPA, Washington D.C., EPA/400/191/048.

Schütz H., Holzapfel-Pschorn A., Conrad R., Rennenberg H., Seiler W., 1989 [a]. A 3-year continuous record on the influence of daytime, season and fertilizer treatment on methane emission rates from an Italian rice padd., Journal of. Geophysical Research 94, D13, pp. 16405-16415.

Schütz H., Seiler W., Conrad R., 1989 [b]. Processes involved in formation and emission of methane in rice paddies. Biogeochemistry, 7, pp. 33-53.

Spanu A., 2006. Personal communication, expert in rice cultivation from Università degli Studi di Sassari, Sardegna – Italy.

Spanu A., Murtas A., Ledda L., Ballone F., 2004. Confronto tra varietà di riso sottoposte a irrigazione turnata. L'informatore Agrario 18/2004 p 61-62.

Spanu A., Pruneddu G., 1996. The influence of irrigation volumes on sprinkler-irrigated rice (Oryza sativa) production. Agricoltura Mediterranea, Vol 126, 377-382.

Steed Jr. J., Hashimoto A.G., 1995. Methane emissions from typical manure management systems, Bioresource Technology 50 pp. 123-130.

TERNA, several years. National production data from biogas. <u>https://www.terna.it/it/sistema-elettrico/statistiche/pubblicazioni-statistiche</u>.

Tinarelli A., 1973. La coltivazione del riso Editorial Edagricole, First edition p. 425.

Tinarelli A., 1986. Il riso. Editorail Edagricole, Second edition p. 426.

Tinarelli A., 2005. Personal communication, Italian expert in rice cultivation – Antonio Tinarelli, participated in the working group with the Experimental Institute of Cereal Research – Rice Research Section of Vercelli, Italia.

Tossato S., Regis F., 2002. Collana monografica di manuali naturalistico-agronomici, con riferimento alle principali colture geneticamente modificate. Volume 6. Il Riso. Agenzia Regionale per la Protezione Ambientale Piemonte (ARPA Piemonte), Piemonte, Italy.

UNAITALIA, several years. Poultry production information. Unione nazionale filiere agroalimentari delle carni e delle uova. <u>http://www.unaitalia.com/</u>.

UNFCCC, several years. Report of the individual review of the greenhouse gas inventories of Italy (FCCC/ARR/*year*/ITA) https://unfccc.int/process-and-meetings/transparency-and-reporting/reporting-and-review-under-the-convention/greenhouse-gas-inventories-annex-i-parties/inventory-review-reports-2020.

UNICALCE, 2016. Personnal communication, expert of the lime production sector. Associazione Produttori Calce, Sergio Peruta.

Wassmann R., 2005. Personal communication, expert in methane from rice paddies (Forschungszentrum Karlsruhe IMK-IFU, Garmisch-Partenkirchen, Germany). E-mail communication received on 16/08/2005.

Weber S., Lueders T., Friedrich M.W., Conrad R., 2001. Methanogenic populations involved in the degradation of rice straw in anoxic paddy soil. FEMS Microbiology Ecology 38:11-20.

Xiccato G., Schiavon S., Gallo L., Bailoni L., Bittante G., 2005. Nitrogen excretion in dairy cow, beef and veal cattle, pig, and rabbit farms in Northern Italy. Italian Journal of Animal Science. vol. 4n (suppl. 3), 103-111.

Yan X., Yagi K., Akiyama H., Akimoto H., 2005. Statistical analysis of the major variables controlling methane emission from rice fields. Global Change Biology (2005) 11, 1131–1141.

Zavattaro L., Romani M., Sacco D., Bassanino M., Grignani C., 2004. Fertilization management of paddy fields in Piedmont (NW Italy) and its effects on the soil and water quality. In proceedings: Challenges and opportunities for sustainable rice-based production systems. Torino, Italy 13-15 September 2004.

Zicarelli L., 2001. Evoluzione dell'allevamento bufalino in Italia. In Proc. I Congresso Nazionale sull'Allevamento del Bufalo Eboli, Salerno, Italy, pp. 1-19.

9.5 LAND USE, LAND USE CHANGE AND FORESTRY

Adams, 1973. "The effect of organic matter on the bulk and true densities of some uncultivated podzolic soil." J. Soil Sci. 24:10-17.

Alberti G., Peressotti A., Piussi P., Zerbi G., 2008. Forest ecosystem carbon accumulation during a secondary succession in the Eastern Prealps of Italy, Forestry: An International Journal of Forest Research, Volume 81, Issue 1, Pages 1–11, https://doi.org/10.1093/forestry/cpm026

ARPA Lombardia - Regione Lombardia, 2011 [a]. INEMAR, Inventario emissioni in atmosfera. Emissioni in Lombardia nel 2008 - revisione pubblica.

ARPA Lombardia - Regione Lombardia, 2011 [b] – Personal Communication by Federico Antognazza.

Batjes, N., 1996. Total carbon and nitrogen in the soils of the world. European Journal of Soil Science, 47: 151–163.

Benedetti A., Pompili L., Nisini L., 2004. Ruolo attivo dell'agricoltura nei processi di mitigazione del cambiamento climatico globale. Rapporto del progetto Climagri-Cambiamenti climatici e agricoltura, – CRA- Istituto Sperimentale per la Nutrizione delle Piante.

Bovio G., 2007. Method for forest fire damage level assessment based on detectable effects. In 'Evaluation of Forest Fire Damages in Italy'. Eds Ciancio O., Corona P., Marinelli M., Pettenella D., Accademia Italiana di Scienze Forestali: Florence, Italy, pp. 55–60.

Ceccanti B., Doni S., Macci C., Cercignani G., Masciandaro G., 2008. Characterization of stable humicenzyme complexes of different soil ecosystems through analytical isoelectric focussing technique (IEF), Soil Biology & Biochemistry 40 (2008) 2174–2177.

Chirici G., Giannetti F., Travaglini D., Nocentini S., Francini S., D'Amico G., Calvo E., Fasolini D., Broll M., Maistrelli F., Tonner J., Pietrogiovanna M., Oberlechner K., Andriolo A., Comino R., Faidiga A., Pasutto I., Carraro G., Zen S., Contarin F., Alfonsi L., Wolynski A., Zanin M., Gagliano C., Tonolli S., Zoanetti R., Tonetti R., Cavalli R., Lingua E., Pirotti F., Grigolato S., Bellingeri D., Zini E., Gianelle D., Dalponte M., Pompei E., Stefani A., Motta R., Morresi D., Garbarino M., Alberti G., Valdevit F., Tomelleri E., Torresani M., Tonon G., Marchi M., Corona P., Marchetti M. (2019). Stima dei danni della tempesta "Vaia" alle foreste in Italia. Forest@ 16: 3-9. – doi: 10.3832/efor3070-016 [online 2019-02-15]

CRA-MPF, several years. National Forestry Inventory (INFC2005, INFC2015).

CRPA, 1997. Piani Regionali di Risanamento e tutela della qualità dell'aria. Quadro delle azioni degli enti locali per il settore zootecnico delle aree padane. Relazione di dettaglio sulla metodologia adottata per la quantificazione delle emissioni di protossido di azoto. Settembre 1997.

CRPA, 2009. Progetto Salvaguardia e valorizzazione del prato stabile irriguo in area Parmigiano-Reggiano attraverso l'ottimizzazione della risorsa idrica e azotata, Personal communication.

Del Gardo I., Six J., Peressotti A., Cotrufo M.F., 2003. Assessing the impact of land-use change on soil C sequestration in agricultural soils by means of organic matter fractionation and stable C isotopes. Global Change Biology (2003) 9, 1204–1213.

Di Cosmo L., Gasparini P., Paletto A., Nocetti M., 2013. Deadwood basic density values for national-level carbon stock estimates in Italy. Forest Ecology and Management 295 (2013) 51–58.

EMEP/EEA, 2009. Air pollutant emission inventory guidebook 2009. EEA Technical report n. 9/2009.

ERSAF, 2008. Stock di carbonio nei suoli regionali. Progetto Kyoto-Ricerca sui cambiamenti climatici e il controllo dei gas serra in Lombardia - GS3.

FAO, 2016. FAOSTAT database. URL: <u>http://faostat3.fao.org/home/E</u> (last access 09/03/2016). Food and Agriculture Organization of the United Nations.

Federici S, Vitullo M, Tulipano S, De Lauretis R, Seufert G, 2008. An approach to estimate carbon stocks change in forest carbon pools under the UNFCCC: the Italian case. iForest 1: 86-95 URL: <u>http://www.sisef.it/forest@/show.php?id=466</u>.

Francaviglia R., Aromolo R., Benedetti A., Beni C., Biondi F.A., Dell'Abate M.T., Figliolia A., Mecella G., Pompili L., 2006. Qualità funzionali alla conservazione della fertilità integrale dei suoli. Rapporto del Progetto Conservazione e valorizzazione della risorsa suolo: definizione delle qualità del suolo ai fini della gestione agricola e forestale ecocompatibile – CRA- Istituto Sperimentale per la Nutrizione delle Piante.

Gardi C., Brenna S., Solaro S., Piazzi M., Petrella F., 2007. The carbon sequestration potential of soils: some data from northern italian regions" Italian Journal of Agronomy 2:163-170 <u>http://www.agronomy.it/index.php/agro/article/view/ija.2007.143/140</u>.

IPCC, 2003. Good Practice Guidance for Land Use, Land-Use Change and Forestry. IPCC Technical Support Unit, Kanagawa, Japan.

IPCC, 2006. Guidelines for National Greenhouse Gas Inventories. IPCC Technical Support Unit, Kanagawa, Japan.

IPCC 2014, 2013 Revised Supplementary Methods and Good Practice Guidance Arising from the Kyoto Protocol, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds) Published: IPCC, Switzerland.

IPLA 2007, Realizzazione della parte piemontese della Carta dei Suoli nazionale a scala 1:250.000, Personal communication.

ISTAT, several years [a]. Statistiche forestali. Istituto Nazionale di statistica, Roma.

ISTAT, several years [b]. Statistiche dell'agricoltura. Istituto Nazionale di statistica, Roma.

ISTAT, several years [c]. Annuario Statistico Italiano. Istituto Nazionale di statistica, Roma.

La Mantia T, Oddo G, Rühl J, Furnari G, Scalenghe R, 2007. Variation of soil carbon stocks during the renaturation of old fields: the case study of the Pantelleria Island, Italy. Forest@ 4: 102-109. http://www.sisef.it/forest@/show.php?id=433.

Lagomarsino A., Moscatelli M.C., Di Tizio A., Mancinelli R., Grego S., Marinari S., 2009. Soil biochemical indicators as a tool to assess the short-term impact of agricultural management on changes in organic C in a Mediterranean environment. Ecological indicators 9 (2009) 518–527.

Lugato E., Berti A., 2008. Potential carbon sequestration in a cultivated soil under different climate change scenarios: A modelling approach for evaluating promising management practices in north-east Italy. Agriculture, Ecosystems and Environment 128 (2008) 97–103.

MAF/ISAFA, 1988. Inventario Forestale Nazionale. Sintesi metodologica e risultati. Ministero dell'Agricoltura e delle foreste. Istituto Sperimentale per l'assestamento forestale e per l'Alpicoltura, Trento.

MAMB, 1992. Inventario delle zone umide del territorio italiano (a cura di G. De Maria, Servizio Conservazione Natura, Ministero dell'ambiente e del territorio).

Martiniello P., 2007. Biochemical parameters in a Mediterranean soil as effected by wheat–forage rotation and irrigation. Europ. J. Agronomy 26 (2007) 198–208.

Masciandaro G., Ceccanti B., 1999. Assessing soil quality in different agro-ecosystems through biochemical and chemico-structural properties of humic substances. Soil & Tillage Research 51 (1999) 129-137.

Monaco Stefano, Hatch D. J., Sacco D., Bertora C., Grignania C., 2008. Changes in chemical and biochemical soil properties induced by 11-yr repeated additions of different organic materials in maize-based forage systems. Soil Biology & Biochemistry 40 (2008) 608–615.

Novara A., Gristina L., La Mantia T., Rühl J., 2013. Carbon dynamics of soil organic matter in bulk soil and aggregate fraction during secondary succession in a Mediterranean environment, Geoderma, Volumes 193–194, Pages 213-221, ISSN 0016-7061. https://doi.org/10.1016/j.geoderma.2012.08.036.

Pellis G., Chiti T., Rey A., Curiel Yuste J., Trotta C., Papale D., 2019. The ecosystem carbon sink implications of mountain forest expansion into abandoned grazing land: The role of subsoil and climatic factors, Science of The Total Environment, Volume 672, Pages 106-120, ISSN 0048-9697, https://doi.org/10.1016/j.scitotenv.2019.03.329.

Perucci P., Monaci E., Onofri A., Dischetti C., Casacci C., 2008. Changes in physico-chemical and biochemical parameters of soil following addition of wood ash: A field experiment. Europ. J. Agronomy 28 (2008) 155–161.

Puglisi E., Fragoulis G., Del Re A.A.M., Spaccini R., Piccolo A., Gigliotti G., Said-Pullicino D., Trevisan M., 2008. Carbon deposition in soil rhizosphere following amendments with compost and its soluble fractions, as evaluated by combined soil–plant rhizobox and reporter gene systems. Chemosphere 73 (2008) 1292– 1299.

Rawls W.J., Brakensiek, D.L. 1985. Prediction of soil water properties for hydrologic modelling, in Proceedings of Symposium on Watershed Management, ASCE, pp. 293-299.

Scarascia Mugnozza G., Bauer G., Persson H., Matteucci G., Masci A., 2000. Tree biomass, growth and nutrient pools. In: Schulze E.-D. (edit.) Carbon and Nitrogen Cycling in European forest Ecosystems, Ecological Studies 142, Springer Verlag, Heidelberg. Pp. 49-62. ISBN 3-540-67239-7.

Somogyi Z., Teobaldelli M., Federici S., Matteucci G., Pagliari V., Grassi G., Seufert G., 2008. Allometric biomass and carbon factors database. iForest 1: 107-113. http://www.sisef.it/iforest/contents/?id=ifor0463-0010107.

Tabacchi G., De Natale F., Di Cosmo L., Floris A., Gagliano C., Gasparini P., Genchi L., Scrinzi G., Tosi V., 2007. Le stime di superficie 2005 – Parte 1. Inventario Nazionale delle Foreste e dei Serbatoi Forestali di Carbonio. MiPAF - Corpo Forestale dello Stato - Ispettorato Generale, CRA - ISAFA, TN.: 1-413, vers. 2.

Tabacchi G., De Natale F., Gasperini P., 2010. Coerenza ed entità delle statistiche forestali - Stime degli assorbimenti netti di carbonio nelle foreste italiane, Sherwood n.165/2010.

Tabacchi, G., Di Cosmo, L., Gasparini, P., 2011. Aboveground tree volume and phytomass prediction equations for forest species in Italy. Eur. J. Forest Res. 130 (6), 911–934.

Triberti L., Nastri A., Giordani G., Comellini F., Baldoni G, Toderi G., 2008. Can mineral and organic fertilization help sequestrate carbon dioxide in cropland? Europ. J. Agronomy 29 (2008) 13–20.

Viaroli P., Gardi C., 2004. Censimento e caratterizzazione pedologica e vegetazionale dei "Prati Stabili" presenti nel Parco Regionale Fluviale del Taro. Relazione tecnica - Università degli Studi di Parma - Dipartimento di Scienze Ambientali.

Xiloyannis C., 2007. La valutazione del contenuto e composizione del carbonio organico del suolo di sistemi agricoli. Relazione tecnica - Università degli Studi della Basilicata - Dipartimento di Scienze dei sistemi colturali, forestali e dell'ambiente.

9.6 WASTE

Acaia et al., 2004. Emissioni atmosferiche da discariche di rifiuti in Lombardia: stato attuale e scenari tecnologici di riduzione. RS – Rifiuti Solidi vol. XVIII n. 2, pp. 93-112.

AMA-Comune di Roma, 1996. Nuovo impianto per l'incenerimento dei rifiuti ospedalieri. Rapporto AMA.

Andreottola G., Cossu R., 1988. Modello matematico di produzione del biogas in uno scarico controllato. RS – Rifiuti Solidi vol. Il n. 6, pp. 473-483.

ANPA, 1998. Il sistema ANPA di contabilità dei rifiuti, prime elaborazioni dei dati. Agenzia Nazionale per la Protezione dell'Ambiente.

ANPA-FLORYS, 2000. Industria conciaria, Studio di settore. Agenzia Nazionale per la Protezione dell'Ambiente.

ANPA-FLORYS, 2001. Industria della carta e cartone, Studio di settore. Agenzia Nazionale per la Protezione dell'Ambiente.

ANPA-ONR, 1999 [a]. Primo Rapporto sui rifiuti speciali. Agenzia Nazionale per la Protezione dell'Ambiente.

ANPA-ONR, 1999 [b]. Secondo Rapporto sui Rifiuti Urbani e sugli Imballaggi e rifiuti di imballaggio. Agenzia Nazionale per la Protezione dell'Ambiente.

ANPA-ONR, 2001. I rifiuti del comparto agro-alimentare, Studio di settore. Agenzia Nazionale per la Protezione dell'Ambiente. Rapporto n. 11/2001.

APAT, 2002. Annuario dei dati ambientali. Agenzia per la Protezione dell'Ambiente e per i servizi Tecnici. Rapporto n. 7/2002.

APAT-ONR, several years. Rapporto Rifiuti. Agenzia per la Protezione dell'Ambiente e per i servizi Tecnici.

Asja, 2003. Dichiarazione Ambientale 2003. Asja Ambiente Italia S.p.A., 2003.

Assobirra, several years. Rapporti Annuali e Dati Statistici. Also available on the website <u>http://www.assobirra.it</u>.

Assocarta, several years. Rapporto Ambientale dell'industria cartaria italiana. Also available on the website <u>http://www.assocarta.it</u>.

AUSITRA-Assoambiente, 1995. Impianti di trattamento dei rifiuti solidi urbani e assimilabili. Indagine a cura di Merzagora W., Ferrari S.P.

BLUE BOOK, several years. I dati sul Servizio Idrico Integrato in Italia. Utilitatis, Anea.

Borgioli E., 1981. Nutrizione e alimentazione degli animali domestici. Ed Agricole, p. 464.

CESTAAT, 1988. Impieghi dei sottoprodotti agricoli ed agroindustriali, Vol. 1. Centro Studi sull'Agricoltura, l'Ambiente e il Territorio, edizione fuori commercio, p. 311.

CNR, 1980. Indagine sui Rifiuti Solidi Urbani in Italia. Consiglio Nazionale delle Ricerche, Progetto Finalizzato Energetica.

Colombari et al., 1998. Le emissioni di metano dalle discariche di rifiuti in Italia: stima e scenari futuri. ENEA RT/AMB/98/30.

Colombo, 2001. Nuovo Colombo, Manuale dell'Ingegnere, Vol. 3, 83^{ma} edizione. Hoepli editore.

COOU, several years, Consorzio Olii Usati, also available on the web-site http://www.coou.it .

COVIRI, several years. Relazione annuale al parlamento sullo stato dei servizi idrici. Autorità di vigilanza sulle risorse idriche e sui rifuti.

CREA, 2017. Fornitura dati meteo-climatici georeferenziati nell'ambito della collaborazione CREA-AA/ISPRA. CREA - Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria Centro di ricerca Agricoltura e Ambiente (CREA-AA), delivery data mail 19/10/2017. De Poli F., Pasqualini S., 1991. Landfill gas: the Italian situation. ENEA, atti del convegno Sardinia 91, Third International Landfill Symposium.

De Stefanis P. et al., 1998. Gestione dei rifiuti ad effetto serra. ENEA-CNR, atti della Conferenza Nazionale Energia e Ambiente, Rome 25-18 November 1998.

De Stefanis P., 1999. Personal communication.

De Stefanis P., 2002.Metodologia di stima delle emissioni di gas serra dalla combustione di rifiuti. RS Rifiuti Solidi vol.XVI n. 3 maggio - giugno 2002.

De Stefanis P., 2012. Personal communication (mail 16 November 2012).

Decree of President of the Republic 10 September 1982, n.915. Attuazione delle direttive 75/442/CEE relativa ai rifiuti e 76/403/CEE relativa ai rifiuti tossici e nocivi. G.U. 15 dicembre 1982, n. 343, S.O.

EC, 1975. Council Directive 1975/442/EC. Council Directive 75/442/EC of 15 July 1975 on waste framework. Official Journal of the European Communities 25 July 1975.

EC, 1976. Council Directive 1976/403/EC. Council Directive 76/403/EC of 6 April 1976 on treatment and disposal of PCBs and PCTs. Official Journal of the European Communities 26 April 1976.

EC, 1978. Council Directive 1978/319/EC. Council Directive 78/319/EC of 20 March 1978 on toxic and dangerous waste. Official Journal of the European Communities 31 March 1978.

EC, 1986. Council Directive 86/278/EC. Council Directive 86/278/EC of 12 June 1986 on the protection of the environment, and in particular of the soil, when sewage sludge is used in agriculture. Official Journal of the European Communities 4 July 1986.

EC, 1999. Council Directive 1999/31/EC. Council Directive 99/31/EC of 26 April 1999 on the landfill of waste. Official Journal of the European Communities 16 July 1999.

EEA, 2017. Final Review Report. 2017 annual review of national greenhouse gas inventory data pursuant to Article 19(2) of Regulation (EU) No 525/2013. Italy 30 June 2017.

EEA, 2020. Final Review Report. 2020 Comprehensive Review of National Greenhouse Gas Inventory Data pursuant to Article 4(3) of Regulation (EU) No 2018/842 and to Article 3 of Decision No 406/2009/EC. Italy, 30 August 2020.

EMEP/CORINAIR, 2007. Atmospheric Emission Inventory Guidebook. Technical report No 16/2007.

EMEP/EEA, 2009. Air Pollutant Emission Inventory Guidebook. Technical report No 9/2009.

EMEP/EEA, 2016. Air Pollutant Emission Inventory Guidebook. Technical report No 21/2016.

EMEP/EEA, 2019. Air Pollutant Emission Inventory Guidebook. Technical report No 13/2019.

ENEA-federAmbiente, 2012. Rapporto sul recupero energetico da rifiuti urbani in Italia. 3º ed.

ENI S.p.A. 2001. Rapporto Salute Sicurezza Ambiente.

EU, 2016. 2016 comprehensive review of national greenhouse gas inventory data pursuant to Article 19(1) of Regulation (EU) No 525/2013. Final review report. Italy. 28 August 2016.

FAO, several years. Food balance, available on the website <u>http://faostat.fao.org</u> (last access 26/11/2015).

Favoino E., Cortellini L., 2001. Composting and biological treatment in southern European countries: an overview. Conference Proceedings Soil and Biowaste in Southern Europe. Rome 18-19 January, 2001.

Favoino E., Girò F., 2001. An assessment of effective, optimised schemes for source separation of organic waste in Mediterranean districts. Conference Proceedings Soil and Biowaste in Southern Europe. Rome 18-19 January, 2001.

FEDERAMBIENTE, 1992. Analisi dei principali sistemi di smaltimento dei rifiuti solidi urbani.

FEDERAMBIENTE, 1998. Impianti di smaltimento: analisi sui termocombustori RSU – prima edizione. Indagine a cura di Motawi A.

FEDERAMBIENTE, 2001. Impianti di smaltimento: analisi sui termoutilizzatori RU. Indagine a cura di Morabito L., GEA n. 5/2001.

FEDERCHIMICA, several years. Rapporto Responsible Care. Federazione Nazionale dell'Industria Chimica.

Ferrari G., 1996. I rifiuti città per città. GEA, July 1996.

Finn L., Spencer R., 1997. Managing biofilters for consistent odor and VOC treatment. Biocycle, January 1997 Vol. 38 Iss.1.

Fondazione per lo sviluppo sostenibile e FISE UNIRE, 2016. L'Italia del riciclo, 2016. <u>http://www.fondazionesvilupposostenibile.org/wp-</u> content/uploads/dlm uploads/2016/12/rapporto Italia del Riciclo 2016.pdf.

Gaudioso et al., 1993. Emissioni in atmosfera dalle discariche di rifiuti in Italia. RS, Rifiuti Solidi vol. VII n. 5, Sept.-Oct. 1993.

Hogg D., 2001. Biological treatment of waste: a solution for tomorrow. ISWA Beacon Conference.

IPCC, 1995. IPCC Guidelines for National Greenhouse Gas Emission Inventories. Three volumes: Reference Manual, Reporting Manual, Reporting Workbook. IPCC/OECD/IEA. IPCC WG1 Technical Support Unit, Hadley Centre, Meteorological Centre, Meteorological Office, Bracknell, UK.

IPCC, 2000. Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories. IPCC National Greenhouse Gas Inventories Programme, Technical Support Unit, Hayama, Kanagawa, Japan.

IPCC, 2006. 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme, Eggleston H.S., Buendia L., Miwa K., Ngara T. and Tanabe K. (eds). Published: IGES, Japan.

IRSA-CNR, 1998. Personal Communication.

ISPRA, several years. Rapporto Rifiuti. Istituto Superiore per la Protezione e la Ricerca Ambientale.

ISPRA, 2010. Personal Communication. Waste Cadastre database, year 2007.

ISPRA, 2017. Update of CH₄ emission factor from composting. Technical note n.1/2017.

ISPRA, 2018. Update of CH₄ emission from landfills. Technical note n.1/2018.

ISTAT, 1987. Approvvigionamento idrico, fognature e impianti di depurazione in Italia – anno 1987. Collana d'informazione n. 20, ed. 1991.

ISTAT, 1984. Statistiche ambientali 1984. Istituto nazionale di statistica.

ISTAT, 1991. Statistiche ambientali 1991. Istituto nazionale di statistica.

ISTAT, 1993. Statistiche ambientali 1993. Istituto nazionale di statistica.

ISTAT, 1998 [a]. Il processo di depurazione e la qualità delle acque reflue urbane. Indagine sugli impianti di depurazione delle acque reflue urbane, anno 1993. Istituto nazionale di statistica.

ISTAT, 1998 [b]. Caratteristiche strutturali degli impianti di depurazione delle acque reflue urbane. Indagine sugli impianti di depurazione delle acque reflue urbane, anno 1993. Istituto nazionale di statistica.

ISTAT, several years [a]. Annuario Statistico. Istituto Nazionale di Statistica.

ISTAT, several years [b]. Bollettino mensile di statistica. Istituto Nazionale di Statistica.

ISTAT, several years [c]. Banche dati ISTAT, http://www.istat.it/it/prodotti/banche-dati.

ISTAT, several years [d]. Sistema di Indagini sulle Acque, SIA.Istituto nazionale di statistica, also available at website <u>http://www.istat.it</u>.

ISTAT, several years [e]. Censimento delle acque per uso civile. Istituto nazionale di statistica, also available at website <u>http://www.istat.it</u>.

Law 22 maggio 2015, n. 68 Disposizioni in materia di delitti contro l'ambiente. (G.U. 28 maggio 2015, n. 122)

Law Decree 30 December 2008, n.208. Misure straordinarie in materia di risporse idriche e protezione dell'ambiente. G.U. 31 dicembre 2008, n. 304, S.O.

Legislative Decree 27 January 1992 n. 99 Attuazione della direttiva 86/278/CEE concernente la protezione dell'ambiente, in particolare del suolo, nell'utilizzazione dei fanghi di depurazione in agricoltura. G.U.15 febbraio 1992 n. 38, S.O.

Legislative Decree 11 May 1999, n. 152. Disposizioni sulla tutela delle acque dall'inquinamento e recepimento della direttiva 91/271/CEE concernente il trattamento delle acque reflue urbane e della direttiva 91/676/CEE relativa alla protezione delle acque dall'inquinamento provocato dai nitrati provenienti da fonti agricole. G.U. 29 maggio 1999, n. 124, S.O.

Legislative Decree 13 January 2003 n. 36. Attuazione della direttiva 1999/31/EC relativa alle discariche di rifiuti. G.U. 12 marzo 2003, n. 59 – S.O. 40/L.

Legislative Decree 5 February 1997, n. 22. Attuazione delle direttive 91/156/CEE sui rifiuti 91/698/CEE sui rifiuti pericolosi e 94/62/CEE sugli imballaggi e sui rifiuti di imballaggio. G.U. 15 febbraio 1997, n. 38, S.O.

Masotti L., 1996. Depurazione delle acque. Edizioni Calderoni.

MATTM, 2005. Personal communication.

MATTM, several years [a]. RSA - Rapporto sullo stato dell'ambiente 1989, 1992, 1997, 2001. Ministero dell'Ambiente e della Tutela del Territorio e del Mare.

MATTM, several years [b]. Personal communication with Marco Porrega: E-mail request for sewage sludge applied to agricultural soils in Italy. *Ministero dell'Ambiente e della Tutela del Territorio e del Mare*, Roma –Italia.

Metcalf and Eddy, 1991. Wastewater engineering: treatment, disposal and reuse. Mc Graw Hill, third edition.

Ministerial Decree 12 July 1990. Linee Guida per il contenimento delle emissioni inquinanti degli impianti industriali e la fissazione dei valori minimi di emissione. G.U. 30 luglio 1990, n. 176.

Ministerial Decree 19 November 1997, n. 503. Regolamento recante norme per l'attuazione delle Direttive 89/369/CEE e 89/429/CEE concernenti la prevenzione dell'inquinamento atmosferico provocato dagli impianti di incenerimento dei rifiuti urbani e la disciplina delle emissioni e delle condizioni di combustione degli impianti di incenerimento di rifiuti urbani, di rifiuti speciali non pericolosi, nonché di taluni rifiuti sanitari. G.U. 29 gennaio 1998, n. 23.

Morselli L., 1998. L'incenerimento dei rifiuti, ricognizione sulla realtà regionale. Università degli Studi di Bologna, Dipartimento di chimica industriale e dei materiali e Regione Emilia Romagna, Assessorato Territorio, Programmazione e Ambiente. Muntoni A., Polettini A., 2002. Modelli di produzione del biogas - limiti di applicazione e sensitività. Conference proceedings, Università degli Studi di Roma La Sapienza "Gestione del biogas da discarica: controllo, recupero e monitoraggio. Rome, December 2002.

Provincia di Roma, 2008. Documento di indirizzo per la riduzione della produzione di rifiuti urbani e l'implementazione delle raccolte differenziate nel territorio della provincia di Roma. Dipartimento Ambiente della Provincia di Roma, 12 febbraio 2008.

Regione Calabria, 2002. Piano regionale di gestione rifiuti. Supplemento straordinario al Bollettino Ufficiale Regione Calabria 30 novembre 2002, n. 22.

Regione Emilia Romagna, 2009. La gestione dei rifiuti in Emilia Romagna. Regione Emilia Romagna – ARPA Emilia Romagna, Report 2009.

Regione Piemonte, 2007. L'evoluzione merceologica dei Rifiuti Urbani: la storia e le prospettive. Recycling Prix proceedings. Turin, October 2007.

Regione Sicilia, 2004. Programma regionale per la riduzione dei rifiuti biodegradabili da avviare in discarica. Ordinanza 25 marzo 2004, n. 323 del Commissario delegato per l'emergenza rifiuti e la tutela delle acque in Sicilia.

Regione Umbria, 2007. Programma regionale per la riduzione dei rifiuti biodegradabili da avviare in discarica. Bollettino Ufficiale Regione Umbria 31 gennaio 2007, n. 5.

Regione Veneto, 2006. Programma regionale per la riduzione dei rifiuti biodegradabili da avviare in discarica. Bollettino Ufficiale Regione Veneto 21 luglio 2006, n. 65.

SEFIT, 2015. Emissioni inquinanti in atmosfera per i crematori italiani. Indagine conoscitiva ed elaborazione dati. Novembre 2015.

SEFIT, several years. Personal Communication with Daniele Fogli: E-mail request for activity data regarding cremation of corpses in Italy.

Solini, 2010. Emissioni di gas serra dallo scarico e trattamento di acque reflue. PhD thesis.

Tecneco, 1972. Indagine Nazionale sullo smaltimento dei Rifiuti Solidi Urbani. Dispense 1995 Prof. Liuzzo, Università degli Studi di Roma "La Sapienza".

TERNA, several years. Dati statistici sull'energia elettrica in Italia. Rete Elettrica Nazionale.

UNIC, several years. Rapporto Ambientale. Unione Nazionale Industria Conciaria.

UP, several years. Statistiche economiche, energetiche e petrolifere. Unione Petrolifera.

US EPA, 1990. Air emissions Species Manual, vol. I: Volatile Organic Compound Species Profiles, Second Edition. EPA-450/2-90-001a (United States Environmental Protection Agency – Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711), January 1990.

9.7 ANNEX 2

APAT, 2003. Indicatori e modelli settoriali finalizzati alla preparazione di inventari delle emissioni del sistema energetico nazionale nel breve e medio periodo. Tricarico A., Rapporto Tecnico N° 01/2003.

ENEL, several years. Dati statistici sull'energia elettrica in Italia. ENEL.

ENI, several years. La congiuntura economica ed energetica. ENI.

MASE, several years [a]. Bilancio Energetico Nazionale (BEN). Ministero dell'Ambiente e della Sicurezza Energetica. <u>https://dgsaie.mise.gov.it/ben.php</u> .

TERNA, several years. Dati statistici sull'energia elettrica in Italia. Rete Elettrica Nazionale.

UNAPACE, several years. Data from the association of industrial electricity producers. <u>http://www.assoelettrica.it/</u>.

UP, several years. Statistiche economiche, energetiche e petrolifere. Unione Petrolifera.

9.8 ANNEX 3

IPCC, 2006. 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme, Eggleston H.S., Buendia L., Miwa K., Ngara T. and Tanabe K. (eds). Published: IGES, Japan.

MASE, several years. Bilancio Energetico Nazionale (BEN). Ministero dell'Ambiente e della Sicurezza Energetica. <u>https://dgsaie.mise.gov.it/ben.php</u>.

TERNA, several years. Dati statistici sull'energia elettrica in Italia. Rete Elettrica Nazionale.

9.9 ANNEX 4

EC/1099/2008. Regulation (EC) No 1099/2008 of the European Parliament and of the Council of 22 October 2008 on energy statistics.

ENEA, 2002 [a]. Calcolo delle emissioni di CO₂ dal settore energetico, metodo di riferimento IPCC. Contaldi M., La Motta S.

ENEA, 2002 [b]. Calcolo delle emissioni di CO₂, reference approach - manuale d'uso per la compilazione del foglio elettronico 1a(b) e 1a(d) del common reference framework (CRF). La Motta S. and Ancona P., Ente per le Nuove tecnologie, l'Energia e l'Ambiente.

ENEA/MAP/APAT, 2004. Energy data harmonization for CO₂ emission calculations: the Italian case. Rome 23/02/04. EUROSTAT file n. 200245501004.

ENEL, several years. Environmental Report. ENEL. www.enel.it.

IPCC, 2006. 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme, Eggleston H.S., Buendia L., Miwa K., Ngara T. and Tanabe K. (eds). Published: IGES, Japan.

MASE, several years [a]. Bilancio Energetico Nazionale (BEN). Ministero dell'Ambiente e della Sicurezza Energetica. <u>https://dgsaie.mise.gov.it/ben.php</u>.

MASE, several years [b]. Bollettino Petrolifero Trimestrale (BPT). Ministero dell'Ambiente. <u>https://dgsaie.mise.gov.it/bollettino-petrolifero</u>.

9.10 ANNEX 5

MASE, several years. Bilancio Energetico Nazionale (BEN). Ministero dell'Ambiente e della Sicurezza Energetica. <u>https://dgsaie.mise.gov.it/ben.php</u>.

EUROSTAT, 2022. https://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=nrg_bal_c&lang=en.

9.11 ANNEX 6

APAT, 2003. Analisi dei fattori di emissione di CO₂ dal settore dei trasporti. Ilacqua M., Contaldi M., Rapporti n° 28/2003.

EMISIA SA, 2012. COPERT 4 v 10.0, Computer programme to calculate emissions from road transport, November 2012. <u>http://www.emisia.com/copert/</u>.

EMEP/CORINAIR, 2007. Atmospheric Emission Inventory Guidebook. Technical report No 16/2007.

Innovhub, several years. Report on the physico-chemical characterization of fossil fuels used in Italy. Fuel Experimental Station.

IPCC, 1997. Revised 1996 IPCC Guidelines for National Greenhouse Gas Emission Inventories. Three volumes: Reference Manual, Reporting Manual, Reporting Guidelines and Workbook. IPCC/OECD/IEA. IPCC WG1 Technical Support Unit, Hadley Centre, Meteorological Centre, Meteorological Office, Bracknell, UK.

IPCC, 2006. 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme, Eggleston H.S., Buendia L., Miwa K., Ngara T. and Tanabe K. (eds). Published: IGES, Japan.

MASE, several years [a]. Bilancio Energetico Nazionale (BEN). Ministero dell'Ambiente e della Sicurezza Energetica. <u>https://dgsaie.mise.gov.it/ben.php</u>.

MASE, several years [b]. Bollettino Petrolifero Trimestrale (BPT). Ministero dell'Ambiente e della Sicurezza Energetica. <u>https://dgsaie.mise.gov.it/bollettino-petrolifero</u>

Snam Rete Gas, several years. Bilancio di sostenibilità.

TERNA, several years. Dati statistici sull'energia elettrica in Italia. Rete Elettrica Nazionale.

9.12 ANNEX 7

ANABORAPI, 2011. Associazione degli Allevatori della Razza Bovina Piemontese. Provincia di Torino e APA Torino. Come allevare la piemontese -

https://www.anaborapi.it/images/media/pdf/ComeAllevareLaPiemontese.pdf

Bittante G., Gallo L., Schiavon S., Contiero B., Fracasso A., 2004. Bilancio dell'azoto negli allevamenti di vacche da latte e vitelloni. In (Xiccato *et al.*, 2004) Bilancio dell'azoto in allevamenti di bovini, suini e conigli – Progetto interregionale - Legge 23/12/1999 n. 499, art. 2 - report finale, Regione Veneto.

Borgioli E., 1981. Nutrizione e alimentazione degli animali domestici. Edagricole, p. 464.

CESTAAT, 1988. Impieghi dei sottoprodotti agricoli ed agroindustriali, Vol. 1. Centro Studi sull'Agricoltura, l'Ambiente e il Territorio, p. 311.

Cevolani D. et al, 2022. "Alimenti per la vacca da latte e il bovino da carne", pp 453-466. Edagricole, Milano, 2022.

Cozzi G., 2007. Present situation and future challenges of beef cattle production in Italy and the role of research. Italian Journal of Animal Science, 6, (suppl 1), 389-396.

CRPA, 1997[a]. Piani Regionali di Risanamento e tutela della qualità dell'aria. Quadro delle azioni degli enti locali per il settore zootecnico delle aree padane. Allegato 2. Relazione di dettaglio sulla metodologia adottata per la quantificazione delle emissioni di metano. Febbraio 1997.

CRPA, 1997[b]. Piani Regionali di Risanamento e tutela della qualità dell'aria. Quadro delle azioni degli enti locali per il settore zootecnico delle aree padane. Relazione di dettaglio sulla metodologia adottata per la quantificazione delle emissioni di protossido di azoto. Settembre 1997.

CRPA, 2006[a]. Progetto MeditAlRaneo: settore Agricoltura. Relazione finale. Technical report on the framework of the MeditAlRaneo project for the Agriculture sector, Reggio Emilia – Italia.

CRPA, 2008[a]. Le scelte politiche energetico-ambientali lanciano il biogas. L'Informatore Agrario 3/2008, p.28-32 (with annex).

CRPA, 2008[b]. "Biogas: l'analisi di fattibilità tecnico-economica". Opuscolo CRPA n. 4/2008.

CRPA, 2011[a]. "Il biogas accelera la corsa verso gli obiettivi 2020". Supplemento a L'Informatore Agrario n. 26/2011.

CRPA, 2011[b]. "Carne bovina: l'impatto della Pac dopo il 2013", analisi del CRPA realizzata su incarico di INTERCARNEPRO, 2011 - <u>https://agriregionieuropa.univpm.it/it/content/article/31/27/effetti-della-riforma-pac-sugli-allevamenti-di-carne-bovina-italia</u>.

CRPA, 2012. "Bovini da latte e biogas – Linee guida per la costruzione e la gestione degli impianti".

CRPA, 2013. "Biogas, il settore è strutturato e continua a crescere". Supplemento a L'Informatore Agrario n. 11/2013.

CRPA, 2016[a]. Personal communication - experts Nicola Labartino and Laura Valli from the Research Centre on Animal Production (expert consultation on N excretion and national production systems). Reggio Emilia, Italy.

CRPA, 2018. Studio per la valutazione degli effetti sulle emissioni delle trasformazioni in corso nel settore degli allevamenti. Report. Reggio Emilia – Italy

CRPA/AIEL, 2008. Energia dal biogas prodotto da effluenti zootecnici, biomasse dedicate e di scarto. Ed. Associazione Italiana Energie Ambientali (AIEL).

CRPA/CNR, 1992. Indagine sugli scarti organici in Emilia Romagna.

Ellis J. L., Kebreab E., Odongo N. E., McBride B. W., Okine E. K., France J., 2007. Prediction of Methane Production from Dairy and Beef Cattle. Article in Journal of Dairy Science - August 2007.

EMEP/EEA, 2019. Air Pollutant Emission Inventory Guidebook. Technical report n. 13/2019.

ENAMA, 2011. "Biomasse ed Energia - Censimento impianti, biocarburanti di seconda generazione e casi studio".

ENEA, 1994. Personal communication, expert in agriculture sector. Ente nazionale per l'energia, l'ambiente e le nuove tecnologie (ENEA), Andrea Sonnino.

Fabbri C., Shams-Eddin S., Bondi F., Piccinini S., 2011. "Efficienza e problematiche di un impianto a digestione anaerobica a colture dedicate". IA – Ingegneria Ambientale, Vol. XL n.1 Gennaio-Febbraio 2011.

Grossi S., Massa V., Giorgino A., Rossi L., Dell'Anno M., Pinotti L., Avidano F., Compiani R., Sgoifo Rossi C. A., 2022. "Feeding Bakery Former Foodstuffs and Wheat Distiller's as Partial Replacement for Corn and Soybean Enhances the Environmental Sustainability and Circularity of Beef Cattle Farming." Sustainability.

IPCC, 1997. Revised 1996 IPCC Guidelines for National Greenhouse Gas Emission Inventories. Three volumes: Reference Manual, Reporting Manual, Reporting Guidelines and Workbook. IPCC/OECD/IEA. IPCC WG1 Technical Support Unit, Hadley Centre, Meteorological Centre, Meteorological Office, Bracknell, UK.

IPCC, 2006. 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme, Eggleston H.S., Buendia L., Miwa K., Ngara T. and Tanabe K. (eds). Published: IGES, Japan.

ISMEA, 2022. Bovino da carne. ISMEA, Febbraio 2022.

MATTM, 2014. Personal communication with Marco Porrega: E-mail request for sewage sludge applied to agricultural soils in Italy. *Ministero dell'Ambiente e della Tutela del Territorio e del Mare*, Roma –Italia.

Mazzenga A., Brscic M., Cozzi G., 2007. The use of corn silage in diets for beef cattle of different genotype. Italian Journal of Animal Science, 6 (suppl. 1), 321-323.

Pacchioli M.T., Bortolazzo E., Franzoni A., Carteri F., Balestra R., Di Pasquale F., 2023. Alimentare "precisamente" il bovino da carne. Tecnica bovini. Allevatori Top, n° 03 | marzo 2023.

Regione Veneto, 2008. Allegato A del Decreto della Direzione Agroambiente e Servizi per l'Agricoltura n. 308 del 7.8.2008. Dipartimento di Scienze Animali, Università degli Studi di Padova - Relazione sui modelli di bilancio dell'azoto e del fosforo proposti nell'allegato D del DGR del Veneto n. 2439 del 7 Agosto 2007.

UBA, 2014. National Inventory Report for the German Greenhouse Gas Inventory 1990 – 2012.

Xiccato G., Bailoni L., Bittante G., Gallo L., Gottardo F. Mantovani R., Schiavon S., 2004. "Bilancio dell'azoto in allevamenti di bovini, suini e conigli" Progetto interregionale - Legge 23/12/1999 n. 499, art. 2 - report finale, Regione Veneto, Italia.

Xiccato G., Schiavon S., Gallo L., Bailoni L., Bittante G., 2005. Nitrogen excretion in dairy cow, beef and veal cattle, pig, and rabbit farms in Northern Italy. Italian Journal of Animal Science. vol. 4n (suppl. 3), 103-111.

9.13 ANNEX 9

European Commission, 2009[a]. Impact Assessment Guidelines, 15 January 2009 (SEC(2009)92). <u>http://ec.europa.eu/governance/impact/commission_guidelines/docs/iag_2009_en.pdf</u>.

European Commission, 2009[b]. Fifth national communication from the European Community under the UN Framework Convention on Climate Change. <u>http://unfccc.int/resource/docs/natc/ec_nc5.pdf</u>.

European Commission, 2010. Annual European Community Greenhouse Gas Inventory 1990–2008 and Inventory Report 2010 Submission to the UNFCCC Secretariat.

European Commission, 2021. List of impact assessments. <u>https://ec.europa.eu/info/law-making-process/planning-and-proposing-law/impact-assessments_en</u>. (last access 02/03/2021)

IEA, 2008. World Energy Outlook 2008. <u>http://www.worldenergyoutlook.org/media/weowebsite/2008-1994/weo2008.pdf</u>.

IGES, 2022. JI database. <u>http://www.iges.or.jp/en/climate-energy/mm/publication.html</u>. (last access 01/03/2022).

OECD, 2023. Statistical Annex of the Development Co-operation Report. http://www.oecd.org/dac/financing-sustainable-development/development-financedata/statisticsonresourceflowstodevelopingcountries.htm.

UNFCCC, 2023[a]. CDM Project Search Database. <u>http://cdm.unfccc.int/Projects/projsearch.html</u>

UNFCCC, 2023[b]. CDM Project activities. <u>https://cdm.unfccc.int/Statistics/Public/CDMinsights/index.html</u>

UNFCCC, 2023[c]. CDM Tools. https://cdm.unfccc.int/Reference/tools/index.html

9.14 ANNEX 13

APAT - ARPA Lombardia, 2007. Stima dei consumi di legna da ardere per riscaldamento ed uso domestico in Italia, Rapporto Finale.

Corona P, Giuliarelli D, Lamonaca A, Mattioli W, Tonti D, Chirici G, Marchetti M, 2007. Confronto sperimentale tra superfici a ceduo tagliate a raso osservate mediante immagini satellitari ad alta

risoluzione e tagliate riscontrate amministrativamente. Forest@ 4 (3): 324-332. URL: <u>http://www.sisef.it/forest@/show.php?id=468</u>.

Di Cosmo L., Gasparini P., Paletto A., Nocetti M., 2013. Deadwood basic density values for national-level carbon stock estimates in Italy. Forest Ecology and Management 295 (2013) 51–58.

Federici S, Vitullo M, Tulipano S, De Lauretis R, Seufert G, 2008. An approach to estimate carbon stocks change in forest carbon pools under the UNFCCC: the Italian case. iForest 1: 86-95 URL: <u>http://www.sisef.it/forest@/show.php?id=466</u>.

Giordano G., 1980. Tecnologia del legno. Hoepli. Milano.

ISAFA, 2004. RiselvItalia Project, Personal communication.

ISPRA, 2018. National Greenhouse Gas Inventory System in Italy.

MAF/ISAFA, 1988. Inventario Forestale Nazionale. Sintesi metodologica e risultati. Ministero dell'Agricoltura e delle foreste. Istituto Sperimentale per l'assestamento forestale e per l'Alpicoltura, Trento.

Tabacchi G., De Natale F., Gasperini P., 2010. Coerenza ed entità delle statistiche forestali - Stime degli assorbimenti netti di carbonio nelle foreste italiane, Sherwood n.165/2010.

UNECE – FAO, Timber Committee, 2008 - Italian statement on potential wood supply, communication by national correspondent, March 2008.

9.15 ANNEX 14

Bovio G., 2007. Method for forest fire damage level assessment based on detectable effects. In 'Evaluation of Forest Fire Damages in Italy'. Eds Ciancio O., Corona P., Marinelli M., Pettenella D., Accademia Italiana di Scienze Forestali: Florence, Italy, pp. 55–60.

Chiriacò M.V., Perugini L., Cimini D., D'Amato E., Valentini R., Bovio G., Corona P., Barbati A., 2013 Comparison of approaches for reporting forest fire-related biomass loss and greenhouse gas emissions in southern Europe. International Journal of Wildland Fire 22(6) 730-738.

EMEP/EEA, 2009. Air Pollutant Emission Inventory Guidebook. Technical report N. 9/2009.

EMEP/EEA, 2013. Air Pollutant Emission Inventory Guidebook. Technical report N. 12/2013

IPCC, 2006. Guidelines for National Greenhouse Gas Inventories. IPCC Technical Support Unit, Kanagawa, Japan.

ISTAT, several years [a]. Statistiche forestali. Istituto Nazionale di statistica, Roma.

Tabacchi G., De Natale F., Di Cosmo L., Floris A., Gagliano C., Gasparini P., Genchi L., Scrinzi G., Tosi V., 2007. Le stime di superficie 2005 – Parte 1. Inventario Nazionale delle Foreste e dei Serbatoi Forestali di Carbonio. MiPAF - Corpo Forestale dello Stato - Ispettorato Generale, CRA - ISAFA, TN.: 1-413, vers. 2.

ANNEX 1: KEY CATEGORIES AND UNCERTAINTY

A1.1 Introduction

The 2006 IPCC Guidelines (IPCC, 2006) recommends as good practice the identification of *key categories* in national GHG inventories. A *key category* is defined as an emission source that has a significant influence on a country's GHG inventory in terms either of the absolute/relative level of emissions or the trend in emissions, or both. In this document whenever the term *category* is used, it includes both sources and sinks. Two different approaches are reported in the guidelines according to whether or not a country has performed an uncertainty analysis of the inventory: Approach 1 and Approach 2.

When using Approach 1, key categories are identified by means of a pre-determined cumulative emissions threshold, usually fixed at 95% of the total. If an uncertainty analysis is carried out at category level for the inventory, Approach 2 can be used to identify key categories. Approach 2 is a more detailed analysis that builds on Approach 1; in fact, the results of Approach 1 are multiplied by the relative uncertainty of each source/sink category. Key categories are those that represent 90% of the uncertainty contribution. So the factors which make a source or a sink a key category have a high contribution to the trend and a high uncertainty. If both the approaches are applied, it is good practice to use the results of the Approach 2 analysis.

For the Italian inventory, a key category analysis has been carried out according to both the methods, excluding and including the LULUCF sector. National emissions have been disaggregated, as far as possible, into the categories proposed in the IPCC guidelines; other categories have been added to reflect specific national circumstances. Both level and trend analysis have been applied. For the base year, the level assessment has been carried out.

Summary of the results of the key category analysis, for the base year and 2021, is reported in Tables 1.3– 1.6 of chapter 1. The tables indicate whether a key category derives from the level assessment or the trend assessment, according to Approach 1, Approach 2 or both.

For the base year, 27 categories were individuated according to Approach 1, whereas 29 categories were carried out by Approach 2. Including the LULUCF sector in the analysis, 33 categories were selected according to Approach 1 and 33 with Approach 2.

For the year 2021, 26 categories were individuated by the Approach 1 accounting for 95% of the total emissions, without LULUCF; for the trend 26 key categories were also selected. Repeating the key category analysis for the full inventory, including the LULUCF sector, 31 categories were individuated accounting for 95% of the total emissions and removals in 2021, and 34 key categories in trend assessment.

The application of the Approach 2 to the 2021 emission levels gives as a result 26 key categories accounting for the 90% of the total levels with uncertainty, when applying the trend analysis the number of the key categories is equal to 32. The application of the Approach 2 including the LULUCF categories results in 30 key categories, for the year 2021, accounting for the 90% of the total levels with uncertainty; for the trend analysis including LULUCF categories, the results were 36 key categories.

A1.2 Approach 1 key category assessment

As described in the 2006 IPCC Guidelines (IPCC, 2006), the Approach 1 for identifying key categories assesses the impact of various categories on the level and on the trend of the national emission inventory. Both level and trend assessments should be applied to an emission GHG inventory.

As regards the level assessment, the contribution of each source or sink category to the total national inventory level is calculated as follows:

Category Level Assessment = $\frac{| \text{Source or Sink Category Estimate} |}{\text{Total Contribution}}$

$$L_{x,t} = \frac{\left|E_{x,t}\right|}{\sum_{y} \left|E_{y,t}\right|}$$

where

 $L_{x,t}$ = level assessment for source or sink x in year t;

 $|E_{x,t}|$ = absolute value of emission and removal estimate of source or sink category x in year t;

 $\sum |E_{y,t}|$ = total contribution, which is the sum of the absolute values of emissions and removals in year t.

The contribution of all categories (including the LULUCF sector) is entered as absolute values.

Therefore, key categories are those which, when summed in descending order of magnitude, add up to over 95% of the total emissions.

As far as the trend assessment is concerned, the contribution of each source and sink category's trend can be assessed by the following equation:

Category Trend Assessment = Category Level Assessment * | Category Trend - Total Trend |

$$T_{x,t} = |E_{x,0}| / \sum_{y} |E_{y,0}| \cdot \left| \left[(E_{x,t} - E_{x,0}) / |E_{x,0}| \right] - \left[(E_{t} - E_{0}) / \sum_{y} |E_{y,0}| \right] \right]$$

where

 $T_{x,t}$ = trend assessment, which is the contribution of the category trend to the overall inventory trend; $|E_{x,0}|$ = absolute value of emission and removal estimate of category *x* in the base year (year *0*); $\sum_{y} |E_{y,0}|$ = total contribution, which is the sum of the absolute values of emissions and removals in year *0*;

 $E_{x,t}$ and $E_{x,0}$ = real values of estimates of category x in years t and 0, respectively;

$$E_t$$
 and $E_0 = \sum_{y} E_{y,t}$ and $\sum_{y} E_{y,0}$ = total inventory estimates in years *t* and 0, respectively.

The source or sink category trend is the change in the category emissions over time, computed by subtracting the base year estimate for a generic category from the latest inventory year estimate and dividing by the absolute value of the latest inventory year estimate; the total trend is the change in the total inventory emissions over time, computed by subtracting the base year estimate for the total inventory from the current year estimate and dividing by the current year estimate.

In circumstances where the base year emissions for a given category are zero, the expression is reformulated to avoid zero in the denominator:

$$T_{x,t} = \left| E_{x,t} \middle/ \left| E_{x,0} \right| \right|$$

As differences in trend are more significant to the overall inventory level for larger categories, the results of the trend difference is multiplied by the results of the level assessment to provide appropriate weighting.

Thus, key categories will be those for which the category trend diverges significantly from the total trend, weighted by the emission level of the category.

Both level and trend assessments have been carried out for the Italian GHG inventory. For the base year, a level assessment is computed.

In this section, detailed results are reported for the last year inventory.

The results of Approach 1 are shown in Table A1.1 and Table A1.2, level and trend assessments without LULUCF categories. Results of the key category analysis with the LULUCF are reported in Table A1.3 and Table A1.4.

Table A1.1 Results of the key category analysis without LULUCF. Approach 1 Level assessment, year 2021

CATEGORIES	2021 kt CO ₂ eq	Level assessment	Cumulative Percentage
Transport - CO2 Road transportation	94,996	0.227	0.23
Other sectors - CO2 commercial, residential, agriculture gaseous fuels	59,085	0.141	0.37
Energy industries - CO2 gaseous fuels	54,652	0.131	0.50
Manufacturing industries and construction - CO2 gaseous fuels	33,943	0.081	0.58
Energy industries - CO2 solid fuels	16,666	0.040	0.62
Solid waste disposal - CH4	15,674	0.038	0.66
Enteric Fermentation- CH4	14,671	0.035	0.69
Energy industries - CO2 liquid fuels	14,545	0.035	0.73
Other sectors - CO2 commercial, residential, agriculture liquid fuels Product uses as substitutes for ozone depleting substances - HFCs Refrigeration	13,636	0.033	0.76
and Air conditioning	13,105	0.031	0.79
Manufacturing industries and construction - CO2 liquid fuels	12,546	0.030	0.82
Mineral industry- CO2 Cement production	7,919	0.019	0.84
Direct N2O Emissions from Managed soils	7,218	0.017	0.86
Manufacturing industries and construction - CO2 solid fuels	5,894	0.014	0.87
Other sectors - CO2 commercial, residential, agriculture other fossil fuels	5,627	0.013	0.89
Manure Management - CH4	4,782	0.011	0.90
Transport - CO2 Waterborne navigation	4,532	0.011	0.91
Fugitive - CH4 Oil and natural gas - Natural gas	3,104	0.007	0.92
Wastewater treatment and discharge - CH4	2,686	0.006	0.92
Other sectors - CH4 commercial, residential, agriculture biomass	2,614	0.006	0.93
Indirect N2O Emissions from Managed soils	2,010	0.005	0.93
Mineral industry- CO2 Lime production	2,003	0.005	0.94
Manure Management - N2O	1,800	0.004	0.94
Rice cultivations - CH4	1,756	0.004	0.95
Transport - CO2 Civil Aviation	1,703	0.004	0.951
Product uses as substitutes for ozone depleting substances - HFCs Fire protection	1,656	0.004	0.955
Metal industry- CO2 Iron and steel production	1,423	0.003	0.96
Fugitive - CO2 Oil and natural gas - Oil	1,316	0.003	0.96

Table A1.2 Results of the key category analysis without LULUCF. Approach 1 Trend assessment base year-2021

CATEGORIES	Contribution to trend (%)	Cumulative Percentage
Energy industries - CO2 liquid fuels	0.186	0.19
Energy industries - CO2 induit dels Energy industries - CO2 gaseous fuels	0.150	0.34
Other sectors - CO2 commercial, residential, agriculture gaseous fuels	0.110	0.34
Transport - CO2 Road transportation	0.078	0.45
Other sectors - CO2 commercial, residential, agriculture liquid fuels	0.061	0.52
Manufacturing industries and construction - CO2 solid fuels	0.054	0.64
Energy industries - CO2 solid fuels	0.053	0.69
Manufacturing industries and construction - CO2 liquid fuels	0.050	0.74
Product uses as substitutes for ozone depleting substances - HFCs	0.050	0.14
Refrigeration and Air conditioning	0.048	0.79
Manufacturing industries and construction - CO2 gaseous fuels	0.030	0.82
Other sectors - CO2 commercial, residential, agriculture other fossil fuels	0.019	0.84
Mineral industry- CO2 Cement production	0.018	0.86
Solid waste disposal - CH4	0.017	0.87
Fugitive - CH4 Oil and natural gas - Natural gas	0.016	0.89
Chemical industry- N2O Adipic acid production	0.011	0.90
Other sectors - CH4 commercial, residential, agriculture biomass	0.006	0.91
Product uses as substitutes for ozone depleting substances - HFCs Fire		
protection	0.006	0.91
Mineral industry- CO2 Other processes uses of carbonates	0.005	0.92
Metal industry- PFCs Aluminium production	0.005	0.92
Chemical industry- N2O Nitric acid production	0.005	0.93
Metal industry- CO2 Iron and steel production	0.004	0.93
Direct N2O Emissions from Managed soils	0.004	0.94
Enteric Fermentation- CH4	0.004	0.94
Chemical industry- CO2 Ammonia production	0.003	0.94
Other sectors - N2O commercial, residential, agriculture biomass	0.003	0.947
Other sectors - CO2 commercial, residential, agriculture solid fuels	0.003	0.950
Fugitive - CO2 Oil and natural gas - Oil	0.002	0.95
Transport - CH4 Road transportation	0.002	0.95

Table A1.3 Results of the key category analysis with LULUCF. Approach 1 Level assessment, year 2021

CATEGORIES	2021 kt CO ₂ eq	Level assessment	Cumulative Percentage
Transport - CO2 Road transportation	94,996	0.206	0.21
Other sectors - CO2 commercial, residential,			
agriculture gaseous fuels	59,085	0.128	0.33
Energy industries - CO2 gaseous fuels	54,652	0.118	0.45
Manufacturing industries and construction - CO2			
gaseous fuels	33,943	0.073	0.53
Forest Land remaining Forest Land - CO2	-23,893	0.052	0.58
Energy industries - CO2 solid fuels	16,666	0.036	0.61
Solid waste disposal - CH4	15,674	0.034	0.65
Enteric Fermentation- CH4	14,671	0.032	0.68
Energy industries - CO2 liquid fuels	14,545	0.031	0.71
Other sectors - CO2 commercial, residential,			
agriculture liquid fuels	13,636	0.030	0.74
Product uses as substitutes for ozone depleting			
substances - HFCs Refrigeration and Air			
conditioning	13,105	0.028	0.77
Manufacturing industries and construction - CO2			
liquid fuels	12,546	0.027	0.79
Mineral industry- CO2 Cement production	7,919	0.017	0.81
Direct N2O Emissions from Managed soils	7,218	0.016	0.83
Manufacturing industries and construction - CO2			
solid fuels	5,894	0.013	0.84
Other sectors - CO2 commercial, residential,			
agriculture other fossil fuels	5,627	0.012	0.85

407

-5,429	0.012	0.86
4,782	0.010	0.87
4,532	0.010	0.88
-4,505	0.010	0.89
4,492	0.010	0.90
3,104	0.007	0.91
2,686	0.006	0.92
2,614	0.006	0.92
-2,035	0.004	0.93
2,010	0.004	0.93
2,003	0.004	0.94
1,800	0.004	0.94
1,756	0.004	0.94
1,703	0.004	0.95
1,656	0.004	0.950
1,429	0.003	0.95
1,423	0.003	0.96
	4,782 4,532 -4,505 4,492 3,104 2,686 2,614 -2,035 2,010 2,003 1,800 1,756 1,703 1,656 7,429	4,782 0.010 4,532 0.010 -4,505 0.010 4,492 0.010 3,104 0.007 2,686 0.006 2,614 0.006 -2,035 0.004 2,010 0.004 2,003 0.004 1,800 0.004 1,756 0.004 1,703 0.004 1,656 0.004 1,429 0.003

Table A1.4 Results of the key category analysis with LULUCF. Approach 1 Trend assessment, base year-2021

CATEGORIES	% Contribution to trend	Cumulative Percentage
Energy industries - CO2 liquid fuels	0.162	0.16
Energy industries - CO2 gaseous fuels	0.146	0.31
Other sectors - CO2 commercial, residential, agriculture gaseous fuels	0.110	0.42
Transport - CO2 Road transportation	0.088	0.51
Other sectors - CO2 commercial, residential, agriculture liquid fuels	0.051	0.56
Product uses as substitutes for ozone depleting substances - HFCs Refrigeration and Air conditioning	0.049	0.61
Manufacturing industries and construction - CO2 solid fuels	0.047	0.65
Energy industries - CO2 solid fuels	0.043	0.70
Manufacturing industries and construction - CO2 liquid fuels Manufacturing industries and construction - CO2 gaseous	0.042	0.74
fuels	0.034	0.77
Solid waste disposal - CH4	0.019	0.79
Other sectors - CO2 commercial, residential, agriculture other fossil fuels	0.018	0.81
Forest Land remaining Forest Land - CO2	0.018	0.83
Mineral industry- CO2 Cement production	0.014	0.84
Land Converted to Grassland - CO2	0.014	0.85
Fugitive - CH4 Oil and natural gas - Natural gas	0.013	0.87
Chemical industry- N2O Adipic acid production	0.010	0.88
Grassland Remaining Grassland - CO2	0.009	0.89
Enteric Fermentation- CH4	0.006	0.89
Product uses as substitutes for ozone depleting substances - HFCs Fire protection Other sectors - CH4 commercial, residential, agriculture	0.006	0.90
biomass	0.006	0.91
Harvest Wood Products - CO2	0.005	0.91
Direct N2O Emissions from Managed soils	0.005	0.92
Metal industry- PFCs Aluminium production	0.005	0.92
Chemical industry- N2O Nitric acid production	0.005	0.93
Mineral industry- CO2 Other processes uses of carbonates	0.005	0.93
Land Converted to Forest Land - CO2	0.003	0.93

CATEGORIES	% Contribution to trend	Cumulative Percentage
Metal industry- CO2 Iron and steel production	0.003	0.94
Cropland Remaining Cropland - CO2	0.003	0.94
Chemical industry- CO2 Ammonia production Other sectors - N2O commercial, residential, agriculture	0.003	0.94
biomass	0.003	0.94
Manure Management - CH4 Other sectors - CO2 commercial, residential, agriculture solid	0.002	0.947
fuels	0.002	0.949
Mineral industry- CO2 Lime production	0.002	0.951
Transport - CO2 Civil Aviation	0.002	0.95
Transport - CO2 Other transportation - pipelines	0.002	0.96

The application of Approach 1, excluding LULUCF categories, gives as a result 26 key categories accounting for the 95% of the total levels; when applying the trend analysis, excluding LULUCF categories, the number of key categories is also equal to 26 (Tables A1.1, A1.2). The Approach 1 level assessment repeated for the full inventory, including the LULUCF, results in 31 key categories (sources and sinks), and 34 key categories outcome from the trend analysis (Tables A1.3, A1.4).

For the base year, the results are reported in the following tables, including and excluding LULUCF.

Table A1.5 Results of the key category analysis without LULUCF. Approach 1 Level assessment, base year

CATEGORIES	Base year	Level assessment	Cumulative Percentage
	kt CO₂ eq		
Transport - CO2 Road transportation	92,332	0.18	0.18
Energy industries - CO2 liquid fuels	81,197	0.16	0.33
Energy industries - CO2 solid fuels	38,647	0.07	0.41
Other sectors - CO2 commercial, residential, agriculture			
liquid fuels	37,660	0.07	0.48
Other sectors - CO2 commercial, residential, agriculture gaseous fuels	36,338	0.07	0.55
Manufacturing industries and construction - CO2 liquid	50,550	0.07	0.55
fuels	32,805	0.06	0.61
Manufacturing industries and construction - CO2 gaseous			
fuels	32,234	0.06	0.67
Manufacturing industries and construction - CO2 solid	25 722	0.05	0.72
fuels	25,732	0.05	
Enteric Fermentation- CH4	17,093	0.03	0.76
Energy industries - CO2 gaseous fuels	16,954	0.03	0.79
Mineral industry- CO2 Cement production	15,846	0.03	0.82
Solid waste disposal - CH4	13,671	0.03	0.84
Fugitive - CH4 Oil and natural gas - Natural gas	9,225	0.02	0.86
Direct N2O Emissions from Managed soils	7,755	0.01	0.88
Transport - CO2 Waterborne navigation	5,470	0.01	0.89
Manure Management - CH4	5,424	0.01	0.90
Chemical industry- N2O Adipic acid production	3,914	0.01	0.91
Wastewater treatment and discharge - CH4	3,584	0.01	0.91
Metal industry- CO2 Iron and steel production	3,124	0.01	0.92
Mineral industry- CO2 Other processes uses of carbonates	2,544	0.00	0.92
Manure Management - N2O	2,515	0.00	0.93
Fugitive - CO2 Oil and natural gas - Oil	2,402	0.00	0.93
Indirect N2O Emissions from Managed soils	2,256	0.00	0.94
Rice cultivations - CH4	2,102	0.00	0.94
Chemical industry- CO2 Ammonia production	1,892	0.00	0.94

CATEGORIES	Base year	Level assessment	Cumulative Percentage
Mineral industry- CO2 Lime production	1,877	0.00	0.948
Chemical industry- N2O Nitric acid production	1,783	0.00	0.9517
Metal industry- PFCs Aluminium production	1,778	0.00	0.955
Non-Energy products from Fuels and Solvent Use - CO2	1,681	0.00	0.958

Table A1.6 Results of the key category analysis with LULUCF. Approach 1 Level assessment, base year

	Base year	Level	Cumulative
CATEGORIES	kt CO₂ eq	assessment	Percentage
Transport - CO2 Road transportation	92,332	0.17	0.17
Energy industries - CO2 liquid fuels	81,197	0.15	0.31
Energy industries - CO2 solid fuels	38,647	0.07	0.38
Other sectors - CO2 commercial, residential, agriculture liquid			
fuels	37,660	0.07	0.45
Other sectors - CO2 commercial, residential, agriculture gaseous		0.07	0.54
fuels	36,338	0.07	0.51
Manufacturing industries and construction - CO2 liquid fuels	32,805	0.06	0.57
Manufacturing industries and construction - CO2 gaseous fuels	32,234	0.06	0.63
Manufacturing industries and construction - CO2 solid fuels	25,732	0.05	0.68
Enteric Fermentation- CH4	17,093	0.03	0.71
Energy industries - CO2 gaseous fuels	16,954	0.03	0.74
Mineral industry- CO2 Cement production	15,846	0.03	0.77
Forest Land remaining Forest Land - CO2	-15,002	0.03	0.79
Solid waste disposal - CH4	13,671	0.02	0.82
Fugitive - CH4 Oil and natural gas - Natural gas	9,225	0.02	0.83
Direct N2O Emissions from Managed soils	7,755	0.01	0.85
Land Converted to Settlements - CO2	6,640	0.01	0.86
Transport - CO2 Waterborne navigation	5,470	0.01	0.87
Manure Management - CH4	5,424	0.01	0.88
Grassland Remaining Grassland - CO2	5,367	0.01	0.89
Chemical industry- N2O Adipic acid production	3,914	0.01	0.90
Wastewater treatment and discharge - CH4	3,584	0.01	0.90
Metal industry- CO2 Iron and steel production	3,124	0.01	0.91
Land Converted to Forest Land - CO2	-2,849	0.01	0.91
Mineral industry- CO2 Other processes uses of carbonates	2,544	0.00	0.92
Manure Management - N2O	2,515	0.00	0.92
Fugitive - CO2 Oil and natural gas - Oil	2,402	0.00	0.93
Indirect N2O Emissions from Managed soils	2,256	0.00	0.93
Rice cultivations - CH4	2,102	0.00	0.93
Chemical industry- CO2 Ammonia production	1,892	0.00	0.94
Mineral industry- CO2 Lime production	1,877	0.00	0.94
Chemical industry- N2O Nitric acid production	1,783	0.00	0.94
Metal industry- PFCs Aluminium production	1,778	0.00	0.948
Non-Energy products from Fuels and Solvent Use - CO2	1,681	0.00	0.9511
Transport - CO2 Civil Aviation	1,493	0.00	0.95
Land Converted to Grassland - CO2	-1,180	0.00	0.96
Wastewater treatment and discharge - N2O	1,120	0.00	0.96

The application of Approach 1 to the base year, excluding LULUCF categories, gives as a result 25 key categories accounting for the 95% of the total levels; when applying the base year assessment, including the LULUCF, the number of key categories increases to 33 (Tables A1.5, A1.6).

A1.3 Uncertainty assessment (IPCC Approach 1)

Approach 2 for the identification of key categories implies the assessment of the uncertainty analysis to an emission inventory. As already mentioned, the IPCC Approach 1 has been applied to the Italian GHG inventory to estimate uncertainties for the base year and the last submitted year. In this section, detailed results are reported for the 2021 inventory. The uncertainty analysis has also been implemented both excluding and including the LULUCF sector in the national totals.

Results are reported in Table A1.7, for the year 2021, excluding the LULUCF sector and in Table A1.8 figures of inventory total uncertainty, including the LULUCF sector, are shown.

Details on the method used for LULUCF are described in chapter 6.

		-				I la contratinat						
		E	missions			Uncertainty		56	ensitivity		ertainty in trer	
IPCC category	Gas	Base year	2021	AD	EF	Combined	Contribution to variance	Туре А	Туре В	introduced by EF uncertainty	introduced by AD uncertainty	in total national emissions
Energy industries - CO2 liquid fuels	CO2	81,197	14,545	3%	3%	0.042	0.000	0.097	0.028	0.003	0.001	0.0000098
Energy industries - CO2 solid fuels	CO2	38,647	16,666	3%	3%	0.042	0.000	0.027	0.032	0.001	0.001	0.0000025
Energy industries - CO2 gaseous fuels	CO2	16,954	54,652	3%	3%	0.042	0.000	0.079	0.105	0.002	0.004	0.0000253
Energy industries - CO2 other fuels	CO2	143	146	3%	3%	0.042	0.000	0.000	0.000	0.000	0.000	0.0000000
Energy industries - N2O liquid fuels	N2O	256	105	3%	50%	0.501	0.000	0.000	0.000	0.000	0.000	0.0000000
Energy industries - N2O solid fuels	N2O	145	64	3%	50%	0.501	0.000	0.000	0.000	0.000	0.000	0.0000000
Energy industries - N2O gaseous fuels	N2O	8	28	3%	50%	0.501	0.000	0.000	0.000	0.000	0.000	0.0000000
Energy industries - N2O other fuels	N2O	1	1	3%	50%	0.501	0.000	0.000	0.000	0.000	0.000	0.0000000
Energy industries - N2O biomass	N20	14	91	20%	50%	0.539	0.000	0.000	0.000	0.000	0.000	0.0000000
Energy industries - CH4 liquid fuels	CH4	82	10	3%	50%	0.501	0.000	0.000	0.000	0.000	0.000	0.0000000
Energy industries - CH4 solid fuels	CH4	147	12	3%	50%	0.501	0.000	0.000	0.000	0.000	0.000	0.0000000
Energy industries - CH4 gaseous fuels	CH4	13	38	3%	50%	0.501	0.000	0.000	0.000	0.000	0.000	0.0000000
Energy industries - CH4 other fuels	CH4	0	0	3%	50%	0.501	0.000	0.000	0.000	0.000	0.000	0.0000000
Energy industries - CH4 biomass	CH4	11	70	20%	50%	0.539	0.000	0.000	0.000	0.000	0.000	0.0000000
Manufacturing industries and construction - CO2	0			2070	0070	0.000	0.000	0.000	0.000	0.000	0.000	0.0000000
liquid fuels	CO2	32,805	12,546	3%	3%	0.042	0.000	0.026	0.024	0.001	0.001	0.0000017
Manufacturing industries and construction - CO2												
solid fuels	CO2	25,732	5,894	3%	3%	0.042	0.000	0.028	0.011	0.001	0.000	0.0000009
Manufacturing industries and construction - CO2												
gaseous fuels	CO2	32,234	33,943	3%	3%	0.042	0.000	0.016	0.065	0.000	0.003	0.000078
Manufacturing industries and construction - CO2	600	0	400	20/	20/	0.040	0.000	0.001	0.004	0.000	0.000	
other fuels	CO2	0	408	3%	3%	0.042	0.000	0.001	0.001	0.000	0.000	0.0000000
Manufacturing industries and construction - N2O liquid fuels	N2O	823	462	3%	50%	0.501	0.000	0.000	0.001	0.000	0.000	0.0000000
Manufacturing industries and construction - N2O	IN2O	025	402	570	5070	0.501	0.000	0.000	0.001	0.000	0.000	0.0000000
solid fuels	N2O	216	40	3%	50%	0.501	0.000	0.000	0.000	0.000	0.000	0.0000000
Manufacturing industries and construction - N2O												
gaseous fuels	N2O	146	160	3%	50%	0.501	0.000	0.000	0.000	0.000	0.000	0.0000000
Manufacturing industries and construction - N2O												
other fuels	N2O	0	20	3%	50%	0.501	0.000	0.000	0.000	0.000	0.000	0.0000000
Manufacturing industries and construction - N2O		_			= 0.07			0.005		0.055		
biomass	N2O	6	66	20%	50%	0.539	0.000	0.000	0.000	0.000	0.000	0.0000000
Manufacturing industries and construction - CH4 liquid fuels	CH4	47	26	3%	50%	0.501	0.000	0.000	0.000	0.000	0.000	0.0000000
	CH4	4/	26	3%	50%	0.501	0.000	0.000	0.000	0.000	0.000	0.0000000

Table A1.7 Results of the uncertainty analysis excluding LULUCF (Approach 1). Year 2021

		Emissions Uncertainty						Se	ensitivity	Uncertainty in trend			
IPCC category	Gas	Base year	2021	AD	EF	Combined	Contribution to variance	Туре А	Туре В	introduced by EF uncertainty	introduced by AD uncertainty	in total national emissions	
Manufacturing industries and construction - CH4	<u> </u>	100		201	500/	0.504	0.000		0.000	0.000	0.000		
solid fuels Manufacturing industries and construction - CH4	CH4	120	44	3%	50%	0.501	0.000	0.000	0.000	0.000	0.000	0.0000000	
gaseous fuels	CH4	16	16	3%	50%	0.501	0.000	0.000	0.000	0.000	0.000	0.0000000	
Manufacturing industries and construction - CH4	CIT	10	10	570	5070	0.501	0.000	0.000	0.000	0.000	0.000	0.0000000	
other fuels	CH4	0	0	3%	50%	0.501	0.000	0.000	0.000	0.000	0.000	0.0000000	
Manufacturing industries and construction - CH4													
biomass	CH4	4	239	20%	50%	0.539	0.000	0.000	0.000	0.000	0.000	0.0000001	
Transport - CO2 Road transportation	CO2	92,332	94,996	3%	3%	0.042	0.000	0.040	0.182	0.001	0.008	0.0000612	
Transport - N2O Road transportation	N2O	745	796	3%	40%	0.401	0.000	0.000	0.002	0.000	0.000	0.0000000	
Transport - CH4 Road transportation	CH4	971	197	3%	40%	0.401	0.000	0.001	0.000	0.000	0.000	0.0000002	
Transport - CO2 Waterborne navigation	CO2	5,470	4,532	3%	3%	0.042	0.000	0.000	0.009	0.000	0.000	0.0000001	
Transport - N2O Waterborne navigation	N2O	34	30	3%	50%	0.501	0.000	0.000	0.000	0.000	0.000	0.0000000	
Transport - CH4 Waterborne navigation	CH4	39	19	3%	50%	0.501	0.000	0.000	0.000	0.000	0.000	0.0000000	
Transport - CO2 Civil Aviation	CO2	1,493	1,703	3%	3%	0.042	0.000	0.001	0.003	0.000	0.000	0.0000000	
Transport - N2O Civil Aviation	N2O	11	13	3%	50%	0.501	0.000	0.000	0.000	0.000	0.000	0.0000000	
Transport - CH4 Civil Aviation	CH4	1	1	3%	50%	0.501	0.000	0.000	0.000	0.000	0.000	0.0000000	
Transport - CO2 Railways	CO2	613	118	3%	5%	0.058	0.000	0.001	0.000	0.000	0.000	0.0000000	
Transport - N2O Railways	N2O	64	12	3%	50%	0.501	0.000	0.000	0.000	0.000	0.000	0.0000000	
Transport - CH4 Railways	CH4	1	0	3%	50%	0.501	0.000	0.000	0.000	0.000	0.000	0.0000000	
Transport - CO2 Other transportation - pipelines	CO2	411	851	3%	3%	0.042	0.000	0.001	0.002	0.000	0.000	0.0000000	
Transport - N2O Other transportation - pipelines	N2O	6	12	3%	50%	0.501	0.000	0.000	0.000	0.000	0.000	0.0000000	
Transport - CH4 Other transportation - pipelines	CH4	1	1	3%	50%	0.501	0.000	0.000	0.000	0.000	0.000	0.0000000	
Other sectors - CO2 commercial, residential,	CIT			370	5070	0.501	0.000	0.000	0.000	0.000	0.000	0.0000000	
agriculture liquid fuels	CO2	37.660	13.636	3%	3%	0.042	0.000	0.032	0.026	0.001	0.001	0.0000021	
Other sectors - CO2 commercial, residential,			-,										
agriculture solid fuels	CO2	899	0	3%	3%	0.042	0.000	0.001	0.000	0.000	0.000	0.0000000	
Other sectors - CO2 commercial, residential,													
agriculture gaseous fuels	CO2	36,338	59,085	3%	3%	0.042	0.000	0.057	0.113	0.002	0.005	0.0000261	
Other sectors - CO2 commercial, residential,													
agriculture other fossil fuels	CO2	530	5,627	3%	3%	0.042	0.000	0.010	0.011	0.000	0.000	0.000003	
Other sectors - N2O commercial, residential,	NICO	001		n 0/	F00/	0 501	0.000	0.000	0.001	0.000	0.000	0.000000	
agriculture liquid fuels	N2O	881	668	3%	50%	0.501	0.000	0.000	0.001	0.000	0.000	0.0000000	
Other sectors - N2O commercial, residential, agriculture solid fuels	N2O	4	0	3%	50%	0.501	0.000	0.000	0.000	0.000	0.000	0.0000000	
Other sectors - N2O commercial, residential,	INCO	-	0	5/0	5070	0.501	0.000	0.000	0.000	0.000	0.000	0.0000000	
agriculture gaseous fuels	N2O	173	268	3%	50%	0.501	0.000	0.000	0.001	0.000	0.000	0.0000000	

IPCC category		Emissions Uncertainty						Se	ensitivity	Uncertainty in trend		
	Gas	Base year	2021	AD	EF	Combined	Contribution to variance	Туре А	Туре В	introduced by EF uncertainty	introduced by AD uncertainty	in total national emissions
Other sectors - N2O commercial, residential, agriculture other fossil fuels	N2O	13	137	3%	50%	0.501	0.000	0.000	0.000	0.000	0.000	0.0000000
Other sectors - N2O commercial, residential, agriculture biomass	N2O	473	1,113	3%	50%	0.501	0.000	0.001	0.002	0.001	0.000	0.0000005
Other sectors - CH4 commercial, residential,			.,									
agriculture liquid fuels	CH4	103	19	3%	50%	0.501	0.000	0.000	0.000	0.000	0.000	0.0000000
Other sectors - CH4 commercial, residential,												
agriculture solid fuels	CH4	11	0	3%	50%	0.501	0.000	0.000	0.000	0.000	0.000	0.0000000
Other sectors - CH4 commercial, residential,												
agriculture gaseous fuels	CH4	46	71	3%	50%	0.501	0.000	0.000	0.000	0.000	0.000	0.0000000
Other sectors - CH4 commercial, residential,												
agriculture other fossil fuels	CH4	1	9	3%	50%	0.501	0.000	0.000	0.000	0.000	0.000	0.0000000
Other sectors - CH4 commercial, residential,	<i></i>					0 = 0 4						
agriculture biomass	CH4	1,116	2,614	3%	50%	0.501	0.000	0.003	0.005	0.002	0.000	0.0000028
Other non specified - CO2 military mobile - liquid	602	1 071	200	20/	F0/	0.050	0.000	0.001	0.001	0.000	0.000	0.0000000
fuels Other non specified - N2O military mobile - liquid	CO2	1,071	299	3%	5%	0.058	0.000	0.001	0.001	0.000	0.000	0.0000000
fuels	N2O	60	7	3%	50%	0.501	0.000	0.000	0.000	0.000	0.000	0.0000000
Other non specified - CH4 military mobile - liquid	1120	00	1	570	50%	0.501	0.000	0.000	0.000	0.000	0.000	0.0000000
fuels	CH4	5	1	3%	50%	0.501	0.000	0.000	0.000	0.000	0.000	0.0000000
Fugitive - CO2 Solid fuels	CO2	0	0	3%	10%	0.104	0.000	0.000	0.000	0.000	0.000	0.0000000
Fugitive - CH4 Solid fuels	CH4	148	28	3%	50%	0.104	0.000	0.000	0.000	0.000	0.000	0.0000000
Fugitive - CO2 Oil and natural gas - Oil	CO2	2,402	1,316	3%	10%	0.301	0.000	0.000	0.000	0.000	0.000	0.0000000
5	CO2 CH4	2,402 347	95	3%	50%	0.104	0.000	0.001	0.003	0.000	0.000	0.0000000
Fugitive - CH4 Oil and natural gas - Oil												
Fugitive - N2O Oil and natural gas - Oil	N2O	0	0	3%	50%	0.501	0.000	0.000	0.000	0.000	0.000	0.0000000
Fugitive - CO2 Oil and natural gas - Natural gas	CO2	9	4	3%	10%	0.104	0.000	0.000	0.000	0.000	0.000	0.0000000
Fugitive - CH4 Oil and natural gas - Natural gas	CH4	9,225	3,104	3%	50%	0.501	0.000	0.008	0.006	0.004	0.000	0.0000169
Fugitive - CO2 Oil and natural gas - venting and	600	050	250	E 00/	100/	0 5 1 0	0.000	0.001	0.001	0.000	0.000	0.0000000
flaring	CO2	956	356	50%	10%	0.510	0.000	0.001	0.001	0.000	0.000	0.000002
Fugitive - N2O Oil and natural gas - venting and flaring	N2O	1	1	50%	50%	0.707	0.000	0.000	0.000	0.000	0.000	0.0000000
Fugitive - CH4 Oil and natural gas - venting and	1120	I	I	JU /0	5070	0.707	0.000	0.000	0.000	0.000	0.000	0.0000000
flaring	CH4	199	91	50%	50%	0.707	0.000	0.000	0.000	0.000	0.000	0.0000000
Fugitive - CO2 Oil and natural gas - Other - flaring	CIT	155	51	2070	2070	0.707	0.000	5.000	0.000	0.000	0.000	0.0000000
in refineries	CO2	681	140	50%	10%	0.510	0.000	0.001	0.000	0.000	0.000	0.0000000
Fugitive - N2O Oil and natural gas - Other - flaring										0		
in refineries	N2O	10	7	50%	50%	0.707	0.000	0.000	0.000	0.000	0.000	0.0000000

		Er	missions			Uncertainty		Se	ensitivity	Unc	ertainty in trer	nd
IPCC category	Gas	Base year	2021	AD	EF	Combined	Contribution to variance	Туре А	Туре В	introduced by EF uncertainty	introduced by AD uncertainty	in total national emissions
Fugitive - CH4 Oil and natural gas - Other - flaring												
in refineries	CH4	226	567	50%	50%	0.707	0.000	0.001	0.001	0.000	0.001	0.0000007
Mineral industry- CO2 Cement production	CO2	15,846	7,919	3%	10%	0.104	0.000	0.009	0.015	0.001	0.001	0.0000013
Mineral industry- CO2 Lime production	CO2	1,877	2,003	3%	10%	0.104	0.000	0.001	0.004	0.000	0.000	0.0000000
Mineral industry- CO2 Glass production Mineral industry- CO2 Other processes uses of	CO2	453	614	3%	10%	0.104	0.000	0.000	0.001	0.000	0.000	0.0000000
carbonates	CO2	2,544	609	3%	10%	0.104	0.000	0.003	0.001	0.000	0.000	0.0000001
Chemical industry- CO2 Ammonia production	CO2	1,892	631	3%	10%	0.104	0.000	0.002	0.001	0.000	0.000	0.0000000
Chemical industry- N2O Nitric acid production	N2O	1,783	23	3%	10%	0.104	0.000	0.003	0.000	0.000	0.000	0.0000001
Chemical industry - CO2 Adipic acid production	CO2	1	2	3%	10%	0.104	0.000	0.000	0.000	0.000	0.000	0.0000000
Chemical industry- N2O Adipic acid production Chemical industry- Caprolactam, Glyoxal and	N2O	3,914	35	3%	10%	0.104	0.000	0.006	0.000	0.001	0.000	0.0000004
Glyoxylic Acid production -N2O	N2O	10	0	3%	10%	0.104	0.000	0.000	0.000	0.000	0.000	0.0000000
Chemical industry- CO2 Carbide production Chemical industry- CO2 Titanium dioxide	CO2	26	5	3%	10%	0.104	0.000	0.000	0.000	0.000	0.000	0.0000000
production	CO2	0	0	3%	10%	0.104	0.000	0.000	0.000	0.000	0.000	0.0000000
Chemical industry- CO2 Soda ash production Chemical industry - CO2 Petrochemical and carbon	CO2	183	278	3%	10%	0.104	0.000	0.000	0.001	0.000	0.000	0.0000000
black production Chemical industry - CH4 Petrochemical and carbon	CO2	422	487	3%	10%	0.104	0.000	0.000	0.001	0.000	0.000	0.0000000
black production Chemical industry- HFCs Fluorochemical	CH4	69	4	3%	10%	0.104	0.000	0.000	0.000	0.000	0.000	0.0000000
production Chemical industry- PFCs Fluorochemical	HFCs	372	1	5%	50%	0.502	0.000	0.001	0.000	0.000	0.000	0.0000001
production	PFCs	837	261	5%	50%	0.502	0.000	0.001	0.001	0.000	0.000	0.0000002
Chemical industry- SF6 Fluorochemical production	SF6	118	0	5%	50%	0.502	0.000	0.000	0.000	0.000	0.000	0.0000000
Metal industry- CO2 Iron and steel production	CO2	3,124	1,423	3%	10%	0.104	0.000	0.002	0.003	0.000	0.000	0.0000001
Metal industry- CH4 Iron and steel production	CH4	76	41	3%	10%	0.104	0.000	0.000	0.000	0.000	0.000	0.0000000
Metal industry- CO2 Ferroalloys production	CO2	395	0	3%	10%	0.104	0.000	0.001	0.000	0.000	0.000	0.0000000
Metal industry- CO2 Aluminium production	CO2	359	0	3%	20%	0.202	0.000	0.001	0.000	0.000	0.000	0.0000000
Metal industry- PFCs Aluminium production	PFCs	1,778	0	3%	20%	0.202	0.000	0.003	0.000	0.001	0.000	0.000003
Metal industry- HFCs Magnesium production	HFCs	0	4	3%	20%	0.202	0.000	0.000	0.000	0.000	0.000	0.0000000
Metal industry- CO2 Zinc production	CO2	500	245	3%	10%	0.104	0.000	0.000	0.000	0.000	0.000	0.0000000
Non-Energy products from Fuels and Solvent Use	600	1.004	4.00.	2004	500/	0.500	0.000	0.001	0.000	0.000	0.001	
- CO2	CO2	1,681	1,004	30%	50%	0.583	0.000	0.001	0.002	0.000	0.001	0.0000008
Electronics Industry - HFCs	HFCs	0	33	5%	20%	0.206	0.000	0.000	0.000	0.000	0.000	0.0000000

			Emissions			Uncertainty		Se	nsitivity	Und	ertainty in tren	d
IPCC category	Gas	Base year	2021	AD	EF	Combined	Contribution to variance	Туре А	Туре В	introduced by EF uncertainty	introduced by AD uncertainty	in total national emissions
Electronics Industry - PFCs	PFCs	0	134	5%	20%	0.206	0.000	0.000	0.000	0.000	0.000	0.0000000
Electronics Industry - SF6	SF6	0	41	5%	20%	0.206	0.000	0.000	0.000	0.000	0.000	0.0000000
Electronics Industry - NF3 Product uses as substitutes for ozone depleting substances - HFCs Refrigeration and Air	NF3	77	15	5%	20%	0.206	0.000	0.000	0.000	0.000	0.000	0.0000000
conditioning Product uses as substitutes for ozone depleting	HFCs	0	13,105	30%	50%	0.583	0.000	0.025	0.025	0.013	0.011	0.0002715
substances - HFCs Foam blowing agents Product uses as substitutes for ozone depleting	HFCs	0	429	30%	50%	0.583	0.000	0.001	0.001	0.000	0.000	0.0000003
substances - HFCs Fire protection Product uses as substitutes for ozone depleting	HFCs	0	1,656	30%	50%	0.583	0.000	0.003	0.003	0.002	0.001	0.0000043
substances - HFCs Aerosols	HFCs	0	185	30%	50%	0.583	0.000	0.000	0.000	0.000	0.000	0.0000001
Other Product Manufacture and Use - SF6	SF6	303	217	5%	20%	0.206	0.000	0.000	0.000	0.000	0.000	0.0000000
Other Product Manufacture and Use - N2O	N2O	694	446	5%	10%	0.112	0.000	0.000	0.001	0.000	0.000	0.0000000
Enteric Fermentation- CH4	CH4	17,093	14,671	3%	20%	0.202	0.000	0.002	0.028	0.000	0.001	0.0000016
Manure Management - CH4	CH4	5,424	4,782	5%	20%	0.206	0.000	0.001	0.009	0.000	0.001	0.0000004
Manure Management - N2O	N2O	2,515	1,800	5%	20%	0.206	0.000	0.000	0.003	0.000	0.000	0.0000001
Field burning of agricultural residues - CH4	CH4	16	16	30%	50%	0.583	0.000	0.000	0.000	0.000	0.000	0.0000000
Field burning of agricultural residues - N2O Liming and other carbon containing fertilisers -	N2O	3	3	30%	50%	0.583	0.000	0.000	0.000	0.000	0.000	0.0000000
CO2	CO2	45	48	10%	20%	0.224	0.000	0.000	0.000	0.000	0.000	0.0000000
Urea application - CO2	CO2	465	414	10%	20%	0.224	0.000	0.000	0.001	0.000	0.000	0.0000000
Direct N2O Emissions from Managed soils	N2O	7,755	7,218	20%	50%	0.539	0.000	0.002	0.014	0.001	0.004	0.0000163
Indirect N2O Emissions from Managed soils	N2O	2,256	2,010	20%	50%	0.539	0.000	0.000	0.004	0.000	0.001	0.0000012
Indirect N2O Emissions from Manure Management	N2O	3	0	5%	50%	0.502	0.000	0.000	0.000	0.000	0.000	0.0000000
Rice cultivations - CH4	CH4	2,102	1,756	5%	10%	0.112	0.000	0.000	0.003	0.000	0.000	0.0000001
Solid waste disposal - CH4	CH4	13,671	15,674	10%	20%	0.224	0.000	0.009	0.030	0.002	0.004	0.0000213
Biological treatment of Solid waste - CH4	CH4	5	126	20%	100%	1.020	0.000	0.000	0.000	0.000	0.000	0.0000001
Biological treatment of Solid waste - N2O	N2O	18	432	20%	100%	1.020	0.000	0.001	0.001	0.001	0.000	0.0000007
Incineration and open burning of waste - CO2	CO2	512	86	10%	20%	0.224	0.000	0.001	0.000	0.000	0.000	0.0000000
Incineration and open burning of waste - CH4	CH4	57	60	10%	20%	0.224	0.000	0.000	0.000	0.000	0.000	0.0000000
Incineration and open burning of waste - N2O	N2O	33	18	10%	20%	0.224	0.000	0.000	0.000	0.000	0.000	0.0000000
Wastewater treatment and discharge - CH4	CH4	3,584	2,686	20%	100%	1.020	0.000	0.000	0.005	0.000	0.001	0.0000022
Wastewater treatment and discharge - N2O	N2O	1,120	1,109	20%	100%	1.020	0.000	0.000	0.002	0.000	0.001	0.0000005
TOTAL		521,557	417,591				0.001					0.0005

		Emissions			Uncertainty				nsitivity	Und	d	
IPCC category	Gas	Base year	2021	AD	EF	Combined	Contribution to variance	Туре А	Туре В	introduced by EF uncertainty	introduced by AD uncertainty	in total national emissions
					uncer	Percertage rtainty in total inventory	2.9%				Trend uncertainty	2.2 %

		Emiss	ions		Uncert	ainty		Sensi	tivity	Unc	ertainty in tren	d
IPCC category	Gas	Base year	2021	AD	EF	Combined	Contribution to variance	Type A	Туре В	introduced by EF uncertainty	introduced by AD uncertainty	in total national emissions
Energy industries - CO2 liquid fuels	CO2	81,197	14,545	3%	3%	0.042	0.000	0.090	0.028	0.003	0.001	0.000
Energy industries - CO2 solid fuels	CO2	38,647	16,666	3%	3%	0.042	0.000	0.024	0.032	0.001	0.001	0.000
Energy industries - CO2 gaseous fuels	CO2	16,954	54,652	3%	3%	0.042	0.000	0.081	0.105	0.002	0.004	0.000
Energy industries - CO2 other fuels	CO2	143	146	3%	3%	0.042	0.000	0.000	0.000	0.000	0.000	0.000
Energy industries - N2O liquid fuels	N2O	256	105	3%	50%	0.501	0.000	0.000	0.000	0.000	0.000	0.000
Energy industries - N2O solid fuels	N2O	145	64	3%	50%	0.501	0.000	0.000	0.000	0.000	0.000	0.000
Energy industries - N2O gaseous fuels	N2O	8	28	3%	50%	0.501	0.000	0.000	0.000	0.000	0.000	0.000
Energy industries - N2O other fuels	N2O	1	1	3%	50%	0.501	0.000	0.000	0.000	0.000	0.000	0.000
Energy industries - N2O biomass	N2O	14	91	20%	50%	0.539	0.000	0.000	0.000	0.000	0.000	0.000
Energy industries - CH4 liquid fuels	CH4	82	10	3%	50%	0.501	0.000	0.000	0.000	0.000	0.000	0.000
Energy industries - CH4 solid fuels	CH4	147	12	3%	50%	0.501	0.000	0.000	0.000	0.000	0.000	0.000
Energy industries - CH4 gaseous fuels	CH4	13	38	3%	50%	0.501	0.000	0.000	0.000	0.000	0.000	0.000
Energy industries - CH4 other fuels	CH4	0	0	3%	50%	0.501	0.000	0.000	0.000	0.000	0.000	0.000
Energy industries - CH4 biomass	CH4	11	70	20%	50%	0.539	0.000	0.000	0.000	0.000	0.000	0.000
Manufacturing industries and construction - CO2												
liquid fuels	CO2	32,805	12,546	3%	3%	0.042	0.000	0.023	0.024	0.001	0.001	0.000
Manufacturing industries and construction - CO2												
solid fuels	CO2	25,732	5,894	3%	3%	0.042	0.000	0.026	0.011	0.001	0.000	0.000
Manufacturing industries and construction - CO2 gaseous fuels	CO2	22.224	33,943	3%	3%	0.042	0.000	0.019	0.066	0.001	0.003	0.000
Manufacturing industries and construction - CO2	02	32,234	33,943	3%	370	0.042	0.000	0.019	0.066	0.001	0.003	0.000
other fuels	CO2	0	408	3%	3%	0.042	0.000	0.001	0.001	0.000	0.000	0.000
Manufacturing industries and construction - N2O	COL	Ū	100	370	370	0.012	0.000	0.001	0.001	0.000	0.000	0.000
liquid fuels	N2O	823	462	3%	50%	0.501	0.000	0.000	0.001	0.000	0.000	0.000
Manufacturing industries and construction - N2O												
solid fuels	N2O	216	40	3%	50%	0.501	0.000	0.000	0.000	0.000	0.000	0.000
Manufacturing industries and construction - N2O												
gaseous fuels	N2O	146	160	3%	50%	0.501	0.000	0.000	0.000	0.000	0.000	0.000
Manufacturing industries and construction - N2O other fuels	N2O	0	20	3%	50%	0.501	0.000	0.000	0.000	0.000	0.000	0.000
Manufacturing industries and construction - N2O	INZU	U	20	570	50%	0.501	0.000	0.000	0.000	0.000	0.000	0.000
biomass	N2O	6	66	20%	50%	0.539	0.000	0.000	0.000	0.000	0.000	0.000
Manufacturing industries and construction - CH4		Ũ	20		22.0							
liquid fuels	CH4	47	26	3%	50%	0.501	0.000	0.000	0.000	0.000	0.000	0.000

Table A1.8 Results of the uncertainty analysis including LULUCF (Approach 1). Year 2021

		Emiss	ions		Uncert	ainty		Sensi	tivity	Unc	ertainty in tren	d
IPCC category	Gas	Base year	2021	AD	EF	Combined	Contribution to variance	Type A	Type B	introduced by EF uncertainty	introduced by AD uncertainty	in total national emissions
Manufacturing industries and construction - CH4	CLIA	120		20/	F 00/	0 501	0.000	0.000	0.000	0.000	0.000	0.000
solid fuels Manufacturing industries and construction - CH4	CH4	120	44	3%	50%	0.501	0.000	0.000	0.000	0.000	0.000	0.000
gaseous fuels	CH4	16	16	3%	50%	0.501	0.000	0.000	0.000	0.000	0.000	0.000
Manufacturing industries and construction - CH4	CIT	10	10	570	5070	0.501	0.000	0.000	0.000	0.000	0.000	0.000
other fuels	CH4	0	0	3%	50%	0.501	0.000	0.000	0.000	0.000	0.000	0.000
Manufacturing industries and construction - CH4												
biomass	CH4	4	239	20%	50%	0.539	0.000	0.000	0.000	0.000	0.000	0.000
Transport - CO2 Road transportation	CO2	92,332	94,996	3%	3%	0.042	0.000	0.049	0.183	0.001	0.008	0.000
Transport - N2O Road transportation	N2O	745	796	3%	40%	0.401	0.000	0.000	0.002	0.000	0.000	0.000
Transport - CH4 Road transportation	CH4	971	197	3%	40%	0.401	0.000	0.001	0.000	0.000	0.000	0.000
Transport - CO2 Waterborne navigation	CO2	5,470	4,532	3%	3%	0.042	0.000	0.001	0.009	0.000	0.000	0.000
Transport - N2O Waterborne navigation	N2O	34	30	3%	50%	0.501	0.000	0.000	0.000	0.000	0.000	0.000
Transport - CH4 Waterborne navigation	CH4	39	19	3%	50%	0.501	0.000	0.000	0.000	0.000	0.000	0.000
Transport - CO2 Civil Aviation	CO2	1,493	1,703	3%	3%	0.042	0.000	0.001	0.003	0.000	0.000	0.000
Transport - N2O Civil Aviation	N2O	11	13	3%	50%	0.501	0.000	0.000	0.000	0.000	0.000	0.000
Transport - CH4 Civil Aviation	CH4	1	1	3%	50%	0.501	0.000	0.000	0.000	0.000	0.000	0.000
Transport - CO2 Railways	CO2	613	118	3%	5%	0.058	0.000	0.001	0.000	0.000	0.000	0.000
Transport - N2O Railways	N2O	64	12	3%	50%	0.501	0.000	0.000	0.000	0.000	0.000	0.000
Transport - CH4 Railways	CH4	1	0	3%	50%	0.501	0.000	0.000	0.000	0.000	0.000	0.000
Transport - CO2 Other transportation - pipelines	CO2	411	851	3%	3%	0.042	0.000	0.001	0.002	0.000	0.000	0.000
Transport - N2O Other transportation - pipelines	N2O	6	12	3%	50%	0.501	0.000	0.000	0.000	0.000	0.000	0.000
Transport - CH4 Other transportation - pipelines	CH4	1	1	3%	50%	0.501	0.000	0.000	0.000	0.000	0.000	0.000
Other sectors - CO2 commercial, residential,	CIT		I	570	5070	0.501	0.000	0.000	0.000	0.000	0.000	0.000
agriculture liquid fuels	CO2	37,660	13,636	3%	3%	0.042	0.000	0.028	0.026	0.001	0.001	0.000
Other sectors - CO2 commercial, residential,												
agriculture solid fuels	CO2	899	0	3%	3%	0.042	0.000	0.001	0.000	0.000	0.000	0.000
Other sectors - CO2 commercial, residential,												
agriculture gaseous fuels	CO2	36,338	59,085	3%	3%	0.042	0.000	0.061	0.114	0.002	0.005	0.000
Other sectors - CO2 commercial, residential,	600	500	F 607	20/	20/	0.040	0.000	0.010	0.011	0.000	0.000	0.000
agriculture other fossil fuels	CO2	530	5,627	3%	3%	0.042	0.000	0.010	0.011	0.000	0.000	0.000
Other sectors - N2O commercial, residential, agriculture liquid fuels	N2O	881	668	3%	50%	0.501	0.000	0.000	0.001	0.000	0.000	0.000
Other sectors - N2O commercial, residential,	INZU	001	000	570	30%	0.501	0.000	0.000	0.001	0.000	0.000	0.000
agriculture solid fuels	N2O	4	0	3%	50%	0.501	0.000	0.000	0.000	0.000	0.000	0.000
Other sectors - N2O commercial, residential,	0	,	5	270	20/0	0.501	0.000	2.000	0.000	0.000	0.000	0.000
agriculture gaseous fuels	N2O	173	268	3%	50%	0.501	0.000	0.000	0.001	0.000	0.000	0.000

		Emiss	ions		Uncert	ainty		Sensi	tivity	Unc	ertainty in tren	d
IPCC category	Gas	Base year	2021	AD	EF	Combined	Contribution to variance	Type A	Туре В	introduced by EF uncertainty	introduced by AD uncertainty	in total national emissions
Other sectors - N2O commercial, residential, agriculture other fossil fuels	N2O	13	137	3%	50%	0.501	0.000	0.000	0.000	0.000	0.000	0.000
Other sectors - N2O commercial, residential,	1120	15	157	570	3078	0.301	0.000	0.000	0.000	0.000	0.000	0.000
agriculture biomass	N2O	473	1,113	3%	50%	0.501	0.000	0.001	0.002	0.001	0.000	0.000
Other sectors - CH4 commercial, residential,												
agriculture liquid fuels	CH4	103	19	3%	50%	0.501	0.000	0.000	0.000	0.000	0.000	0.000
Other sectors - CH4 commercial, residential,												
agriculture solid fuels	CH4	11	0	3%	50%	0.501	0.000	0.000	0.000	0.000	0.000	0.000
Other sectors - CH4 commercial, residential,	CH4	46	71	3%	50%	0 5 0 1	0.000	0.000	0.000	0.000	0.000	0.000
agriculture gaseous fuels Other sectors - CH4 commercial, residential,	CH4	40	/ 1	3%	50%	0.501	0.000	0.000	0.000	0.000	0.000	0.000
agriculture other fossil fuels	CH4	1	9	3%	50%	0.501	0.000	0.000	0.000	0.000	0.000	0.000
Other sectors - CH4 commercial, residential,			-									
agriculture biomass	CH4	1,116	2,614	3%	50%	0.501	0.000	0.003	0.005	0.002	0.000	0.000
Other non specified - CO2 military mobile - liquid												
fuels	CO2	1,071	299	3%	5%	0.058	0.000	0.001	0.001	0.000	0.000	0.000
Other non specified - N2O military mobile - liquid	NICO	60	7	20/	E 00/	0 501	0.000	0.000	0.000	0.000	0.000	0.000
fuels Other non specified - CH4 military mobile - liquid	N2O	60	7	3%	50%	0.501	0.000	0.000	0.000	0.000	0.000	0.000
fuels	CH4	5	1	3%	50%	0.501	0.000	0.000	0.000	0.000	0.000	0.000
Fugitive - CO2 Solid fuels	CO2	0	0	3%	10%	0.104	0.000	0.000	0.000	0.000	0.000	0.000
Fugitive - CH4 Solid fuels	CH4	148	28	3%	50%	0.501	0.000	0.000	0.000	0.000	0.000	0.000
Fugitive - CO2 Oil and natural gas - Oil	CO2	2,402	1,316	3%	10%	0.104	0.000	0.001	0.003	0.000	0.000	0.000
Fugitive - CH4 Oil and natural gas - Oil	CH4	347	95	3%	50%	0.501	0.000	0.000	0.000	0.000	0.000	0.000
Fugitive - N2O Oil and natural gas - Oil	N2O	0	0	3%	50%	0.501	0.000	0.000	0.000	0.000	0.000	0.000
Fugitive - CO2 Oil and natural gas - Natural gas	CO2	9	4	3%	10%	0.104	0.000	0.000	0.000	0.000	0.000	0.000
Fugitive - CH4 Oil and natural gas - Natural gas	CH4	9,225	3,104	3%	50%	0.501	0.000	0.007	0.006	0.004	0.000	0.000
Fugitive - CO2 Oil and natural gas - venting and	CITI	5,225	5,101	370	5070	0.501	0.000	0.007	0.000	0.001	0.000	0.000
flaring	CO2	956	356	50%	10%	0.510	0.000	0.001	0.001	0.000	0.000	0.000
Fugitive - N2O Oil and natural gas - venting and												
flaring	N2O	1	1	50%	50%	0.707	0.000	0.000	0.000	0.000	0.000	0.000
Fugitive - CH4 Oil and natural gas - venting and			- ·									
flaring	CH4	199	91	50%	50%	0.707	0.000	0.000	0.000	0.000	0.000	0.000
Fugitive - CO2 Oil and natural gas - Other - flaring in refineries	CO2	681	140	50%	10%	0.510	0.000	0.001	0.000	0.000	0.000	0.000
Fugitive - N2O Oil and natural gas - Other - flaring	02	001	140	20%	1070	0.510	0.000	0.001	0.000	0.000	0.000	0.000
in refineries	N2O	10	7	50%	50%	0.707	0.000	0.000	0.000	0.000	0.000	0.000

		Emiss	ions		Uncert	ainty		Sensi	tivity	Unc	ertainty in tren	d
IPCC category	Gas	Base year	2021	AD	EF	Combined	Contribution to variance	Type A	Type B	introduced by EF uncertainty	introduced by AD uncertainty	in total national emissions
Fugitive - CH4 Oil and natural gas - Other - flaring in												
refineries	CH4	226	567	50%	50%	0.707	0.000	0.001	0.001	0.000	0.001	0.000
Mineral industry- CO2 Cement production	CO2	15,846	7,919	3%	10%	0.104	0.000	0.008	0.015	0.001	0.001	0.000
Mineral industry- CO2 Lime production	CO2	1,877	2,003	3%	10%	0.104	0.000	0.001	0.004	0.000	0.000	0.000
Mineral industry- CO2 Glass production Mineral industry- CO2 Other processes uses of	CO2	453	614	3%	10%	0.104	0.000	0.001	0.001	0.000	0.000	0.000
carbonates	CO2	2,544	609	3%	10%	0.104	0.000	0.003	0.001	0.000	0.000	0.000
Chemical industry- CO2 Ammonia production	CO2	1,892	631	3%	10%	0.104	0.000	0.002	0.001	0.000	0.000	0.000
Chemical industry- N2O Nitric acid production	N2O	1,783	23	3%	10%	0.104	0.000	0.003	0.000	0.000	0.000	0.000
Chemical industry - CO2 Adipic acid production	CO2	1	2	3%	10%	0.104	0.000	0.000	0.000	0.000	0.000	0.000
Chemical industry- N2O Adipic acid production Chemical industry- Caprolactam, Glyoxal and	N2O	3,914	35	3%	10%	0.104	0.000	0.006	0.000	0.001	0.000	0.000
Glyoxylic Acid production -N2O	N2O	10	0	3%	10%	0.104	0.000	0.000	0.000	0.000	0.000	0.000
Chemical industry- CO2 Carbide production	CO2	26	5	3%	10%	0.104	0.000	0.000	0.000	0.000	0.000	0.000
Chemical industry- CO2 Titanium dioxide production	CO2	0	0	3%	10%	0.104	0.000	0.000	0.000	0.000	0.000	0.000
Chemical industry- CO2 Soda ash production Chemical industry - CO2 Petrochemical and carbon	CO2	183	278	3%	10%	0.104	0.000	0.000	0.001	0.000	0.000	0.000
black production Chemical industry - N2O Petrochemical and carbon	CO2	422	487	3%	10%	0.104	0.000	0.000	0.001	0.000	0.000	0.000
black production	N2O	69	4	3%	10%	0.104	0.000	0.000	0.000	0.000	0.000	0.000
Chemical industry- HFCs Fluorochemical production	HFCs	372	1	5%	50%	0.502	0.000	0.001	0.000	0.000	0.000	0.000
Chemical industry- PFCs Fluorochemical production	PFCs	837	261	5%	50%	0.502	0.000	0.001	0.001	0.000	0.000	0.000
Chemical industry- SF6 Fluorochemical production	SF6	118	0	5%	50%	0.502	0.000	0.000	0.000	0.000	0.000	0.000
Metal industry- CO2 Iron and steel production	CO2	3,124	1,423	3%	10%	0.104	0.000	0.002	0.003	0.000	0.000	0.000
Metal industry- CH4 Iron and steel production	CH4	76	41	3%	10%	0.104	0.000	0.000	0.000	0.000	0.000	0.000
Metal industry- CO2 Ferroalloys production	CO2	395	0	3%	10%	0.104	0.000	0.001	0.000	0.000	0.000	0.000
Metal industry- CO2 Aluminium production	CO2	359	0	3%	20%	0.202	0.000	0.001	0.000	0.000	0.000	0.000
Metal industry- PFCs Aluminium production	PFCs	1,778	0	3%	20%	0.202	0.000	0.003	0.000	0.001	0.000	0.000
Metal industry- HFCs Magnesium production	HFCs	0	4	3%	20%	0.202	0.000	0.000	0.000	0.000	0.000	0.000
Metal industry- CO2 Zinc production	CO2	500	245	3%	10%	0.104	0.000	0.000	0.000	0.000	0.000	0.000
Non-Energy products from Fuels and Solvent Use - CO2	CO2	1,681	1,004	30%	50%	0.583	0.000	0.001	0.002	0.000	0.001	0.000
Electronics Industry - HFCs	HFCs	0	33	5%	20%	0.206	0.000	0.000	0.000	0.000	0.000	0.000
Electronics Industry - PFCs	PFCs	0	134	5%	20%	0.206	0.000	0.000	0.000	0.000	0.000	0.000
Electronics Industry - SF6	SF6	0	41	5%	20%	0.206	0.000	0.000	0.000	0.000	0.000	0.000
Electronics Industry - NF3	NF3	77	15	5%	20%	0.206	0.000	0.000	0.000	0.000	0.000	0.000

		Emissions Uncertainty			ainty		Sensi	tivity	Unc	ertainty in tren	d	
IPCC category	Gas	Base year	2021	AD	EF	Combined	Contribution to variance	Туре А	Type B	introduced by EF uncertainty	introduced by AD uncertainty	in total national emissions
Product uses as substitutes for ozone depleting substances - HFCs Refrigeration and Air conditioning Product uses as substitutes for ozone depleting	HFCs	0	13,105	30%	50%	0.583	0.000	0.025	0.025	0.013	0.011	0.000
substances - HFCs Foam blowing agents Product uses as substitutes for ozone depleting	HFCs	0	429	30%	50%	0.583	0.000	0.001	0.001	0.000	0.000	0.000
substances - HFCs Fire protection Product uses as substitutes for ozone depleting	HFCs	0	1,656	30%	50%	0.583	0.000	0.003	0.003	0.002	0.001	0.000
substances - HFCs Aerosols	HFCs	0	185	30%	50%	0.583	0.000	0.000	0.000	0.000	0.000	0.000
Other Product Manufacture and Use - SF6	SF6	303	217	5%	20%	0.206	0.000	0.000	0.000	0.000	0.000	0.000
Other Product Manufacture and Use - N2O	N2O	694	446	5%	10%	0.112	0.000	0.000	0.001	0.000	0.000	0.000
Enteric Fermentation- CH4	CH4	17,093	14,671	3%	20%	0.202	0.000	0.003	0.028	0.001	0.001	0.000
Manure Management - CH4	CH4	5,424	4,782	5%	20%	0.206	0.000	0.001	0.009	0.000	0.001	0.000
Manure Management - N2O	N2O	2,515	1,800	5%	20%	0.206	0.000	0.000	0.003	0.000	0.000	0.000
Field burning of agricultural residues - CH4	CH4	16	16	30%	50%	0.583	0.000	0.000	0.000	0.000	0.000	0.000
Field burning of agricultural residues - N2O	N2O	3	3	30%	50%	0.583	0.000	0.000	0.000	0.000	0.000	0.000
Liming - CO2	CO2	45	48	10%	20%	0.224	0.000	0.000	0.000	0.000	0.000	0.000
Urea application - CO2	CO2	465	414	10%	20%	0.224	0.000	0.000	0.001	0.000	0.000	0.000
Direct N2O Emissions from Managed soils	N2O	7,755	7,218	20%	50%	0.539	0.000	0.003	0.014	0.001	0.004	0.000
Indirect N2O Emissions from Managed soils	N2O	2,256	2,010	20%	50%	0.539	0.000	0.001	0.004	0.000	0.001	0.000
Indirect N2O Emissions from Manure Management	N2O	3	0	5%	50%	0.502	0.000	0.000	0.000	0.000	0.000	0.000
Rice cultivations - CH4	CH4	2,102	1,756	5%	10%	0.112	0.000	0.000	0.003	0.000	0.000	0.000
Solid waste disposal - CH4	CH4	13,671	15,674	10%	20%	0.224	0.000	0.010	0.030	0.002	0.004	0.000
Biological treatment of Solid waste - CH4	CH4	5	126	20%	100%	1.020	0.000	0.000	0.000	0.000	0.000	0.000
Biological treatment of Solid waste - N2O	N2O	18	432	20%	100%	1.020	0.000	0.001	0.001	0.001	0.000	0.000
Incineration and open burning of waste - CO2	CO2	512	86	10%	20%	0.224	0.000	0.001	0.000	0.000	0.000	0.000
Incineration and open burning of waste - CH4	CH4	57	60	10%	20%	0.224	0.000	0.000	0.000	0.000	0.000	0.000
Incineration and open burning of waste - N2O	N2O	33	18	10%	20%	0.224	0.000	0.000	0.000	0.000	0.000	0.000
Wastewater treatment and discharge - CH4	CH4	3,584	2,686	20%	100%	1.020	0.000	0.000	0.005	0.000	0.001	0.000
Wastewater treatment and discharge - N2O	N2O	1,120	1,109	20%	100%	1.020	0.000	0.001	0.002	0.001	0.001	0.000
Forest Land remaining Forest Land - CO2	CO2	-15,002	-23,893	18%	18%	0.251	0.000	0.024	0.046	0.004	0.012	0.000
Forest Land remaining Forest Land - CH4	CH4	605	554	18%	18%	0.251	0.000	0.000	0.001	0.000	0.000	0.000
Forest Land remaining Forest Land - N2O	N2O	2	2	18%	18%	0.251	0.000	0.000	0.000	0.000	0.000	0.000
Land Converted to Forest Land - CO2	CO2	-2,849	-4,505	18%	75%	0.771	0.000	0.005	0.009	0.003	0.002	0.000
Land Converted to Forest Land - CH4	CH4	60	75	18%	75%	0.771	0.000	0.000	0.000	0.000	0.000	0.000
Land Converted to Forest Land - N2O	N2O	0	0	18%	75%	0.771	0.000	0.000	0.000	0.000	0.000	0.000

		Emiss	sions		Uncert	ainty		Sensi	tivity	Unc	ertainty in tren	d
IPCC category	Gas	Base year	2021	AD	EF	Combined	Contribution to variance	Type A	Type B	introduced by EF uncertainty	introduced by AD uncertainty	in total national emissions
Cropland Remaining Cropland - CO2	CO2	865	-162	30%	61%	0.680	0.000	0.002	0.000	0.001	0.000	0.000
Cropland Remaining Cropland - CH4	CH4	6	7	30%	61%	0.680	0.000	0.000	0.000	0.000	0.000	0.000
Cropland Remaining Cropland - N2O	N2O	2	2	30%	61%	0.680	0.000	0.000	0.000	0.000	0.000	0.000
Land Converted to Cropland - CO2	CO2	857	1,180	30%	61%	0.680	0.000	0.001	0.002	0.001	0.001	0.000
Land Converted to Cropland - N2O	N2O	65	89	30%	61%	0.680	0.000	0.000	0.000	0.000	0.000	0.000
Grassland Remaining Grassland - CO2	CO2	5,367	1,429	15%	23%	0.271	0.000	0.005	0.003	0.001	0.001	0.000
Grassland Remaining Grassland - CH4	CH4	769	342	15%	23%	0.271	0.000	0.000	0.001	0.000	0.000	0.000
Grassland Remaining Grassland - N2O	N2O	229	102	15%	23%	0.271	0.000	0.000	0.000	0.000	0.000	0.000
Land Converted to Grassland - CO2	CO2	-1,180	-5,429	15%	23%	0.271	0.000	0.009	0.010	0.002	0.002	0.000
Land Converted to Wetland - CO2	CO2	0	0	75%	75%	1.061	0.000	0.000	0.000	0.000	0.000	0.000
Land Converted to Settlements - CO2	CO2	6,640	4,492	75%	75%	1.061	0.000	0.001	0.009	0.001	0.009	0.000
Land Converted to Settlements - N2O	N2O	449	257	75%	75%	1.061	0.000	0.000	0.000	0.000	0.001	0.000
Harvest Wood Products - CO2	CO2	-388	-2,035	25%	50%	0.559	0.000	0.003	0.004	0.002	0.001	0.000
Indirect N2O from Managed soils - LULUCF	N2O	15	20	75%	75%	1.061	0.000	0.000	0.000	0.000	0.000	0.000
TOTAL		518,068	390,118				0.001					0.001
		-	-			Percertage uncertainty in total inventory	3.8%				Trend uncertainty	2.8%

Emission sources of the Italian inventory are disaggregated into a detailed level, 127 sources, according to the IPCC list in the guidelines and taking into account national circumstances and importance. Considering also the LULUCF sector, sources and sinks of the Italian inventory are disaggregated into 147 categories. Uncertainties are therefore estimated for these categories. To estimate uncertainty for both activity data and emission factors, information provided in the IPCC Guidelines, as well as expert judgement have been used; standard deviations have also been considered whenever measurements were available.

The assumptions on which uncertainty estimations are based on are documented for each category. Figures to draw up uncertainty are checked with the relevant analyst experts and literature references and they are consistent with the IPCC Good Practice Guidance and the 2006 IPCC Guidelines (IPCC, 2000; IPCC, 2006).

The general approach followed for quantifying a level of uncertainty to activity data and emission factors is to set values within a range low, medium and high according to the confidence the expert relies on the value. For instance, a low value (e.g. 3-5%) has been attributed to activity data derived from the energy balance and statistical yearbooks, medium-high values within a range of 20-50% for all the data which are not directly or only partially derived from census or sample surveys or data which are simple estimations. For emission factors, the uncertainties set are usually higher than those for activity data; figures suggested by the IPCC good practice guidance and guidelines (IPCC, 2000; IPCC, 2006) are used when the emission factor is a default value or when appropriate, low values are attributed to measured data whereas the uncertainty values are high in all other cases.

For the base year, the uncertainty estimated by Approach 1 is equal to 2.1%; if considering the LULUCF sector the overall uncertainty increases to 2.7%.

In 2021, the results of Approach 1 suggest an uncertainty of 2.9% in the combined GWP total emissions. The analysis also estimates an uncertainty of 2.2% in the trend.

Including the LULUCF sector in the total uncertainty assessment, Approach 1 shows an uncertainty of 3.8% in the combined GWP total emissions for the year 2021, whereas the uncertainty in the trend is equal to 2.8%. Results are shown in Table A1.8

Further investigation is needed to better quantify the uncertainty values for some specific source, nevertheless it should be noted that a conservative approach has been followed.

A1.4 Approach 2 key category assessment

Approach 2 can be used to identify key categories when an uncertainty analysis has been carried out on the inventory. It is helpful in prioritizing activities to improve inventory quality and to reduce overall uncertainty. Under Approach 2, the source or sink category uncertainties are incorporated by weighting the Approach 1 level and trend assessment results with the source category's relative uncertainty.

Therefore, the following equations:

Level Assessment, with Uncertainty = Approach 1 Level Assessment · Relative Category Uncertainty

Trend Assessment, with Uncertainty = Approach 1 Trend Assessment · Relative Category Uncertainty

Approach 2 has been applied both to the base and the current year submission.

The results of the Approach 2 key category analysis, without LULUCF categories, are provided in Table A1.11, for 2021, while in Table A1.12 results, including LULUCF categories, are shown. For the base year, results of the analysis excluding and including LULUCF categories are reported in Table A1.13 and Table A1.14.

The application of Approach 2 to the base year gives as a result 29 key categories accounting for the 90% of the total levels uncertainty. Including the LULUCF categories, 35 key categories result accounting for 90% of the total uncertainty levels.

For the year 2021, 26 key categories accounting for the 90% of the total uncertainty levels were identified; when applying the trend analysis the key categories increased to 32.

The application of Approach 2 to the inventory, including the LULUCF categories, results in 30 key categories which account for the 90% of the total levels uncertainty; for the trend analysis, with LULUCF, the number of key categories is 32.

CATEGORIES	Share	Uncertainty	L*U	Level assessment with uncertainty	Cumulative Percentage
Product uses as substitutes for ozone depleting substances - HFCs					
Refrigeration and Air conditioning	0.03	0.5831	0.0183	0.1572	0.16
Transport - CO2 Road transportation	0.23	0.0424	0.0097	0.0829	0.24
Direct N2O Emissions from Managed soils	0.02	0.5385	0.0093	0.0800	0.32
Solid waste disposal - CH4	0.04	0.2236	0.0084	0.0721	0.39
Enteric Fermentation- CH4	0.04	0.2022	0.0071	0.0610	0.45
Wastewater treatment and discharge - CH4 Other sectors - CO2 commercial, residential, agriculture gaseous	0.01	1.0198	0.0066	0.0563	0.51
fuels	0.14	0.0424	0.0060	0.0516	0.56
Energy industries - CO2 gaseous fuels	0.13	0.0424	0.0056	0.0477	0.61
Fugitive - CH4 Oil and natural gas - Natural gas	0.01	0.5009	0.0037	0.0320	0.64
Manufacturing industries and construction - CO2 gaseous fuels	0.08	0.0424	0.0034	0.0296	0.67
Other sectors - CH4 commercial, residential, agriculture biomass	0.01	0.5009	0.0031	0.0269	0.70
Wastewater treatment and discharge - N2O	0.00	1.0198	0.0027	0.0233	0.72
Indirect N2O Emissions from Managed soils	0.00	0.5385	0.0026	0.0223	0.74
Manure Management - CH4 Product uses as substitutes for ozone depleting substances - HFCs	0.01	0.2062	0.0024	0.0203	0.76
Fire protection	0.00	0.5831	0.0023	0.0199	0.78
Mineral industry- CO2 Cement production	0.02	0.1044	0.0020	0.0170	0.80
Energy industries - CO2 solid fuels	0.04	0.0424	0.0017	0.0145	0.81
Energy industries - CO2 liquid fuels	0.03	0.0424	0.0015	0.0127	0.83
Non-Energy products from Fuels and Solvent Use - CO2	0.00	0.5831	0.0014	0.0120	0.84
Other sectors - CO2 commercial, residential, agriculture liquid fuels	0.03	0.0424	0.0014	0.0119	0.85
Other sectors - N2O commercial, residential, agriculture biomass	0.00	0.5009	0.0013	0.0115	0.86
Manufacturing industries and construction - CO2 liquid fuels	0.03	0.0424	0.0013	0.0109	0.87
Biological treatment of Solid waste - N2O	0.00	1.0198	0.0011	0.0091	0.88
Fugitive - CH4 Oil and natural gas - Other - flaring in refineries	0.00	0.7071	0.0010	0.0082	0.89
Manure Management - N2O	0.00	0.2062	0.0009	0.0076	0.90
Other sectors - N2O commercial, residential, agriculture liquid fuels	0.00	0.5009	0.0008	0.0069	0.9054
Transport - N2O Road transportation	0.00	0.4011	0.0008	0.0066	0.91
Manufacturing industries and construction - CO2 solid fuels	0.01	0.0424	0.0006	0.0051	0.92
Product uses as substitutes for ozone depleting substances - HFCs Foam blowing agents	0.00	0.5831	0.0006	0.0051	0.92
Other sectors - CO2 commercial, residential, agriculture other fossil fuels	0.01	0.0424	0.0006	0.0049	0.93

Table A1.10 Results of the key category analysis without LULUCF. Approach 2 Trend assessment, base year- 2021

CATEGORIES	Trend assessment with uncertainty	Uncertainty	T*U	Relative trend assessment with uncertainty	Cumulative Percentage
Product uses as substitutes for ozone depleting substances - HFCs Refrigeration and Air conditioning	0.03	0.5831	0.0147	0.260	0.26
Fugitive - CH4 Oil and natural gas - Natural gas	0.01	0.5009	0.0041	0.073	0.33
Energy industries - CO2 liquid fuels	0.10	0.0424	0.0041	0.073	0.41

CATEGORIES	Trend assessment with uncertainty	Uncertainty	T*U	Relative trend assessment with uncertainty	Cumulative Percentage
Energy industries - CO2 gaseous fuels	0.08	0.0424	0.0033	0.059	0.47
Other sectors - CO2 commercial, residential, agriculture	0.00		0.0004	0.040	0.54
gaseous fuels	0.06	0.0424	0.0024	0.043	0.51
Solid waste disposal - CH4	0.01	0.2236	0.0020	0.036	0.54
Product uses as substitutes for ozone depleting substances - HFCs Fire protection	0.00	0.5831	0.0019	0.033	0.58
Transport - CO2 Road transportation	0.04		0.0017	0.030	0.61
Other sectors - CH4 commercial, residential, agriculture	0.01	0.0121	0.0017	0.000	0.01
biomass	0.00	0.5009	0.0017	0.029	0.64
Other sectors - CO2 commercial, residential, agriculture					
liquid fuels	0.03	0.0424	0.0013	0.024	0.66
Manufacturing industries and construction - CO2 solid fuels	0.03	0.0424	0.0012	0.021	0.68
Energy industries - CO2 solid fuels	0.03	0.0424		0.021	0.00
Manufacturing industries and construction - CO2 liquid	0.05	0.0424	0.0012	0.021	0.70
fuels	0.03	0.0424	0.0011	0.020	0.72
Direct N2O Emissions from Managed soils	0.00	0.5385	0.0010	0.018	0.74
Mineral industry- CO2 Cement production	0.01	0.1044	0.0010	0.017	0.76
Biological treatment of Solid waste - N2O	0.00	1.0198	0.0008	0.014	0.77
Other sectors - N2O commercial, residential, agriculture					
biomass	0.00	0.5009	0.0007	0.013	0.78
Manufacturing industries and construction - CO2 gaseous fuels	0.02	0.0424	0.0007	0.012	0.80
Chemical industry- N2O Adipic acid production	0.02	0.1044	0.0006	0.012	0.81
Metal industry- PFCs Aluminium production	0.00		0.0006	0.010	0.82
Fugitive - CH4 Oil and natural gas - Other - flaring in	0.00	0.2022	0.0000	0.010	0.02
refineries	0.00	0.7071	0.0005	0.009	0.83
Product uses as substitutes for ozone depleting substances					
- HFCs Foam blowing agents	0.00	0.5831	0.0005	0.009	0.84
Transport - CH4 Road transportation	0.00	0.4011	0.0004	0.008	0.84
Other sectors - CO2 commercial, residential, agriculture other fossil fuels	0.01	0.0424	0.0004	0.008	0.85
Wastewater treatment and discharge - N2O	0.00	1.0198	0.0004	0.007	0.86
Fugitive - CO2 Oil and natural gas - venting and flaring	0.00	0.5099	0.0004	0.007	0.80
Fugitive - CO2 Oil and natural gas - Other - flaring in	0.00	0.5055	0.0004	0.007	0.07
refineries	0.00	0.5099	0.0004	0.007	0.87
Chemical industry- PFCs Fluorochemical production	0.00	0.5025	0.0004	0.007	0.88
Enteric Fermentation- CH4	0.00	0.2022	0.0004	0.007	0.886
Non-Energy products from Fuels and Solvent Use - CO2	0.00	0.5831	0.0004	0.007	0.893
Wastewater treatment and discharge - CH4	0.00	1.0198	0.0004	0.006	0.899
Chemical industry- HFCs Fluorochemical production	0.00	0.5025	0.0003	0.005	0.904
Mineral industry- CO2 Other processes uses of carbonates	0.00	0.1044	0.0003	0.005	0.91
Chemical industry- N2O Nitric acid production	0.00	0.1044	0.0003	0.005	0.91
Manufacturing industries and construction - CH4 biomass	0.00	0.5385	0.0002	0.004	0.92

Table A1.11 Results of the key category analysis with LULUCF. Approach 2 Level assessment, year 2021

CATEGORIES	Share	Uncertainty	L*U	Level assessment with uncertainty	
Product uses as substitutes for ozone depleting substances - HFCs					
Refrigeration and Air conditioning	0.03	0.5831	0.0165	0.1133	0.11
Forest Land remaining Forest Land - CO2	0.05	0.2511	0.0130	0.0890	0.20
Land Converted to Settlements - CO2	0.01	1.0607	0.0103	0.0706	0.27
Transport - CO2 Road transportation	0.21	0.0424	0.0087	0.0598	0.33
Direct N2O Emissions from Managed soils	0.02	0.5385	0.0084	0.0576	0.39

CATEGORIES	Share	Uncertainty	L*U	Level assessment with uncertainty	Cumulative Percentage
Solid waste disposal - CH4	0.03	0.2236	0.0076	0.0520	0.44
Land Converted to Forest Land - CO2	0.01	0.7713	0.0075	0.0515	0.49
Enteric Fermentation- CH4	0.03	0.2022	0.0064	0.0440	0.54
Wastewater treatment and discharge - CH4 Other sectors - CO2 commercial, residential, agriculture gaseous	0.01	1.0198	0.0059	0.0406	0.58
fuels	0.13	0.0424	0.0054	0.0372	0.62
Energy industries - CO2 gaseous fuels	0.12	0.0424	0.0050	0.0344	0.65
Fugitive - CH4 Oil and natural gas - Natural gas	0.01	0.5009	0.0034	0.0231	0.67
Land Converted to Grassland - CO2	0.01	0.2715	0.0032	0.0219	0.69
Manufacturing industries and construction - CO2 gaseous fuels	0.07	0.0424	0.0031	0.0214	0.72
Other sectors - CH4 commercial, residential, agriculture biomass	0.01	0.5009	0.0028	0.0194	0.74
Harvest Wood Products - CO2	0.00	0.5590	0.0025	0.0169	0.75
Wastewater treatment and discharge - N2O	0.00	1.0198	0.0024	0.0168	0.77
Indirect N2O Emissions from Managed soils	0.00	0.5385	0.0023	0.0160	0.79
Manure Management - CH4 Product uses as substitutes for ozone depleting substances - HFCs	0.01	0.2062	0.0021	0.0146	0.80
Fire protection	0.00	0.5831	0.0021	0.0143	0.81
Mineral industry- CO2 Cement production	0.02	0.1044	0.0018	0.0123	0.83
Land Converted to Cropland - CO2	0.00	0.6798	0.0017	0.0119	0.84
Energy industries - CO2 solid fuels	0.04	0.0424	0.0015	0.0105	0.85
Energy industries - CO2 liquid fuels	0.03	0.0424	0.0013	0.0091	0.86
Non-Energy products from Fuels and Solvent Use - CO2	0.00	0.5831	0.0013	0.0087	0.87
Other sectors - CO2 commercial, residential, agriculture liquid fuels	0.03	0.0424	0.0013	0.0086	0.88
Other sectors - N2O commercial, residential, agriculture biomass	0.00	0.5009	0.0012	0.0083	0.88
Manufacturing industries and construction - CO2 liquid fuels	0.03	0.0424	0.0012	0.0079	0.89
Biological treatment of Solid waste - N2O	0.00	1.0198	0.0010	0.0065	0.90
Fugitive - CH4 Oil and natural gas - Other - flaring in refineries	0.00	0.7071	0.0009	0.0059	0.904
Grassland Remaining Grassland - CO2	0.00	0.2715	0.0008	0.0058	0.91
Manure Management - N2O	0.00	0.2062	0.0008	0.0055	0.92
Other sectors - N2O commercial, residential, agriculture liquid fuels	0.00	0.5009	0.0007	0.0050	0.92

Table A1.12 Results of the key category analysis with LULUCF. Approach 2 Trend assessment, base year-2021

	-			Relative trend		
	Trend	Uncenteint	T*U	assessment	Cumulative	
CATEGORIES	assessment	Uncertainty	I^U	with uncertainty	Percentage	
Product uses as substitutes for ozone depleting substances -						
HFCs Refrigeration and Air conditioning	0.03	0.5831	0.0148	0.23	0.23	
Energy industries - CO2 liquid fuels	0.08	0.0424	0.0035	0.05	0.28	
Fugitive - CH4 Oil and natural gas - Natural gas	0.01	0.5009	0.0035	0.05	0.33	
Energy industries - CO2 gaseous fuels	0.08	0.0424	0.0032	0.05	0.38	
Other sectors - CO2 commercial, residential, agriculture	0.00		0 0 0 0 1		0.40	
gaseous fuels	0.06		0.0024	0.04	0.42	
Forest Land remaining Forest Land - CO2	0.01	0.2511		0.04	0.46	
Solid waste disposal - CH4	0.01	0.2236		0.03	0.49	
Transport - CO2 Road transportation	0.05		0.0019	0.03	0.52	
Land Converted to Grassland - CO2	0.01	0.2715	0.0019	0.03	0.55	
Product uses as substitutes for ozone depleting substances - HFCs Fire protection	0.00	0.5831	0.0019	0.03	0.58	
Other sectors - CH4 commercial, residential, agriculture	0.00	0 5000	0.001.0	0.00	0.00	
biomass	0.00	0.5009	0.0016	0.02	0.60	
Harvest Wood Products - CO2	0.00	0.5590	0.0016	0.02	0.62	
Direct N2O Emissions from Managed soils	0.00		0.0013	0.02	0.64	
Land Converted to Forest Land - CO2	0.00		0.0013	0.02	0.67	
Grassland Remaining Grassland - CO2 Other sectors - CO2 commercial, residential, agriculture liquid	0.00	0.2715	0.0013	0.02	0.68	
fuels	0.03	0.0424	0.0011	0.02	0.70	
Manufacturing industries and construction - CO2 solid fuels	0.02	0.0424	0.0010	0.02	0.72	
Cropland Remaining Cropland - CO2	0.00	0.6798	0.0010	0.02	0.73	
Land Converted to Settlements - CO2	0.00	1.0607	0.0010	0.01	0.75	
Energy industries - CO2 solid fuels	0.02	0.0424	0.0009	0.01	0.76	
Manufacturing industries and construction - CO2 liquid fuels	0.02	0.0424	0.0009	0.01	0.78	
Biological treatment of Solid waste - N2O	0.00	1.0198	0.0008	0.01	0.79	
Mineral industry- CO2 Cement production	0.01		0.0008	0.01	0.80	
Manufacturing industries and construction - CO2 gaseous fuels	0.02	0.0424	0.0007	0.01	0.81	
Other sectors - N2O commercial, residential, agriculture						
biomass	0.00	0.5009	0.0007	0.01	0.82	
Enteric Fermentation- CH4	0.00	0.2022	0.0007	0.01	0.83	
Land Converted to Cropland - CO2	0.00	0.6798	0.0007	0.01	0.84	
Chemical industry- N2O Adipic acid production Fugitive - CH4 Oil and natural gas - Other - flaring in	0.01	0.1044	0.0005	0.01	0.85	
refineries	0.00	0.7071	0.0005	0.01	0.86	
Metal industry- PFCs Aluminium production	0.00	0.2022	0.0005	0.01	0.86	
Wastewater treatment and discharge - N2O	0.00	1.0198	0.0005	0.01	0.87	
Product uses as substitutes for ozone depleting substances -						
HFCs Foam blowing agents Other sectors - CO2 commercial, residential, agriculture other	0.00	0.5831	0.0005	0.01	0.88	
fossil fuels	0.01	0.0424	0.0004	0.01	0.89	
Transport - CH4 Road transportation	0.00	0.4011	0.0004	0.01	0.89	
Fugitive - CO2 Oil and natural gas - Other - flaring in	0.00	0 5000	0.0000		0.00	
refineries	0.00	0.5099	0.0003	0.01	0.90	
Fugitive - CO2 Oil and natural gas - venting and flaring	0.00	0.5099	0.0003	0.01	0.902	
Chemical industry- PFCs Fluorochemical production	0.00		0.0003	0.01	0.91	
Indirect N2O Emissions from Managed soils	0.00		0.0003	0.00	0.91	
Non-Energy products from Fuels and Solvent Use - CO2	0.00	0.5831	0.0003	0.00	0.92	

CATEGORIES	Share	Uncertainty	L*U	Level assessment with uncertainty	Cumulative Percentage
Fugitive - CH4 Oil and natural gas - Natural gas	0.02	0.5009	0.0089	0.0902	0.09
Direct N2O Emissions from Managed soils	0.01	0.5385	0.0080	0.0815	0.17
Transport - CO2 Road transportation	0.18	0.0424	0.0075	0.0764	0.25
Wastewater treatment and discharge - CH4	0.01	1.0198	0.0070	0.0713	0.32
Enteric Fermentation- CH4	0.03	0.2022	0.0066	0.0675	0.39
Energy industries - CO2 liquid fuels	0.16	0.0424	0.0066	0.0672	0.45
Solid waste disposal - CH4	0.03	0.2236	0.0059	0.0597	0.51
Mineral industry- CO2 Cement production	0.03	0.1044	0.0032	0.0323	0.55
Energy industries - CO2 solid fuels Other sectors - CO2 commercial, residential, agriculture	0.07	0.0424	0.0031	0.0320	0.58
liquid fuels Other sectors - CO2 commercial, residential, agriculture gaseous fuels	0.07	0.0424	0.0031	0.0312	0.61
Manufacturing industries and construction - CO2 liquid fuels Manufacturing industries and construction - CO2 gaseous	0.06	0.0424	0.0027	0.0272	0.67
fuels	0.06	0.0424	0.0026	0.0267	0.69
Indirect N2O Emissions from Managed soils	0.00	0.5385	0.0023	0.0237	0.72
Wastewater treatment and discharge - N2O	0.00	1.0198	0.0022	0.0223	0.74
Manure Management - CH4	0.01	0.2062	0.0021	0.0218	0.76
Manufacturing industries and construction - CO2 solid fuels	0.05	0.0424	0.0021	0.0213	0.78
Non-Energy products from Fuels and Solvent Use - CO2	0.00	0.5831	0.0019	0.0191	0.80
Energy industries - CO2 gaseous fuels Other sectors - CH4 commercial, residential, agriculture	0.03	0.0424	0.0014	0.0140	0.82
biomass	0.00	0.5009	0.0011	0.0109	0.83
Manure Management - N2O	0.00	0.2062	0.0010	0.0101	0.84
Fugitive - CO2 Oil and natural gas - venting and flaring Other sectors - N2O commercial, residential, agriculture	0.00	0.5099	0.0009	0.0095	0.85
liquid fuels	0.00	0.5009	0.0008	0.0086	0.85
Chemical industry- PFCs Fluorochemical production	0.00	0.5025	0.0008	0.0082	0.86
Manufacturing industries and construction - N2O liquid fuels	0.00	0.5009	0.0008	0.0080	0.87
Chemical industry- N2O Adipic acid production	0.01	0.1044	0.0008	0.0080	0.88
Transport - CH4 Road transportation	0.00	0.4011	0.0007	0.0076	0.89
Metal industry- PFCs Aluminium production Fugitive - CO2 Oil and natural gas - Other - flaring in refineries	0.00	0.2022	0.0007	0.0070	0.89
Metal industry- CO2 Iron and steel production	0.00	0.3033	0.0007	0.0064	0.9002
Transport - N2O Road transportation	0.07	0.1044	0.0006	0.0058	0.91
Mineral industry- CO2 Other processes uses of carbonates	0.00	0.4011 0.1044	0.0008	0.0052	0.97
Fugitive - CO2 Oil and natural gas - Oil	0.00	0.1044		0.0032	0.92

Table A1.14 Results of the key category analysis with LULUCF. Approach 2 Level assessment, base year

CATEGORIES	Share	Uncertainty	L*U	Level assessment with uncertainty	Cumulative Percentage
Land Converted to Settlements - CO2	0.0119	1.0607	0.0126	0.1029	0.10
Fugitive - CH4 Oil and natural gas - Natural gas	0.0166	0.5009	0.0083	0.0675	0.17
Direct N2O Emissions from Managed soils	0.0139	0.5385	0.0075	0.0610	0.23
Transport - CO2 Road transportation	0.1658	0.0424	0.0070	0.0572	0.29
Forest Land remaining Forest Land - CO2	0.0269	0.2511	0.0068	0.0551	0.34
Wastewater treatment and discharge - CH4	0.0064	1.0198	0.0066	0.0534	0.40
Enteric Fermentation- CH4	0.0307	0.2022	0.0062	0.0505	0.45

CATEGORIES	Share	Uncertainty	L*U	Level assessment with uncertainty	Cumulative Percentage
Energy industries - CO2 liquid fuels	0.1458	0.0424	0.0062	0.0503	0.50
Solid waste disposal - CH4	0.0245	0.2236	0.0055	0.0447	0.54
Land Converted to Forest Land - CO2	0.0051	0.7713	0.0039	0.0321	0.57
Mineral industry- CO2 Cement production	0.0285	0.1044	0.0030	0.0242	0.60
Energy industries - CO2 solid fuels	0.0694	0.0424	0.0029	0.0240	0.62
Other sectors - CO2 commercial, residential, agriculture liquid fuels Other sectors - CO2 commercial, residential, agriculture	0.0676	0.0424	0.0029	0.0233	0.65
gaseous fuels	0.0653	0.0424	0.0028	0.0225	0.67
Grassland Remaining Grassland - CO2 Manufacturing industries and construction - CO2 liquid	0.0096	0.2715	0.0026	0.0213	0.69
fuels Manufacturing industries and construction - CO2 gaseous	0.0589	0.0424	0.0025	0.0203	0.71
fuels	0.0579	0.0424	0.0025	0.0200	0.73
Indirect N2O Emissions from Managed soils	0.0041	0.5385	0.0022	0.0178	0.75
Wastewater treatment and discharge - N2O	0.0020	1.0198	0.0021	0.0167	0.76
Manure Management - CH4	0.0097	0.2062	0.0020	0.0163	0.78
Manufacturing industries and construction - CO2 solid fuels	0.0462	0.0424	0.0020	0.0160	0.80
Non-Energy products from Fuels and Solvent Use - CO2	0.0030	0.5831	0.0018	0.0143	0.81
Energy industries - CO2 gaseous fuels	0.0304	0.0424	0.0013	0.0105	0.82
Cropland Remaining Cropland - CO2	0.0016	0.6798	0.0011	0.0086	0.83
Land Converted to Cropland - CO2 Other sectors - CH4 commercial, residential, agriculture	0.0015	0.6798	0.0010	0.0085	0.84
biomass	0.0020	0.5009	0.0010	0.0082	0.85
Manure Management - N2O	0.0045	0.2062	0.0009	0.0076	0.85
Fugitive - CO2 Oil and natural gas - venting and flaring	0.0017	0.5099	0.0009	0.0071	0.86
Land Converted to Settlements - N2O Other sectors - N2O commercial, residential, agriculture	0.0008	1.0607	0.0009	0.0070	0.87
liquid fuels	0.0016	0.5009	0.0008	0.0064	0.88
Chemical industry- PFCs Fluorochemical production Manufacturing industries and construction - N2O liquid	0.0015	0.5025	0.0008	0.0061	0.88
fuels	0.0015	0.5009	0.0007	0.0060	0.89
Chemical industry- N2O Adipic acid production	0.0070	0.1044	0.0007	0.0060	0.89
Transport - CH4 Road transportation	0.0017	0.4011	0.0007	0.0057	0.90
Metal industry- PFCs Aluminium production	0.0032	0.2022	0.0006	0.0053	0.905
Fugitive - CO2 Oil and natural gas - Other - flaring in refineries	0.0012	0.5099	0.0006	0.0051	0.91
Metal industry- CO2 Iron and steel production	0.0056	0.1044	0.0006	0.0048	0.91

ANNEX 2: ENERGY CONSUMPTION FOR POWER GENERATION

A2.1 Source category description

The main source of data on fuel consumption for electricity production is the annual report "Statistical data on electricity production and power plants in Italy" ("Dati statistici sugli impianti e la produzione di energia elettrica in Italia"), edited from 1999 by the Italian Independent System Operator (TERNA, several years), a public company that runs the high voltage transmission grid. For the period 1990-1998 the same data were published by ENEL (ENEL, several years), former monopolist of electricity distribution. The time series is available since 1963. In these publications, consumptions of all power plants are reported, either public or privately owned.

Detailed data are collected at plant level, on monthly basis. They include electricity production and estimation of physical quantities of fuels and the related energy content; for the largest installations, the energy content is based on laboratory tests. Only the fuel used for electricity production is reported. Up to 1999, the fuel consumption was reported at a very detailed level, 17 different fuels, allowing a quite precise estimation of the carbon content. From 2000 onward, the published data aggregate all fuels in five groups that do not allow for a precise evaluation of the carbon content. In Table A2.1, the time series of fuel consumptions for power sector production is reported.

	1990	1995	2000	2005	2010	2015	2018	2019	2020	2021
national coal	58	-								
imported coal	10,724	8,216	Solids 9,633	Solids 16,253	Solids 14,998	Solids 16,245	Solids 10,633	Solids 7,175	Solids 5,274	Solids 5,590
lignite	1,501	380								
Natural gas, Mm ³	9,731	11,277	22,334	30,544	29,630	20,365	23,592	26,065	24,689	26,356
BOF (steel converter) gas, Mm ³	509	633	Coal	Coal	Coal	Coal	Coal	Coal	Coal	Coal
Blast furnace gas, Mm ³	6,804	6,428	Gases 8,690	Gases 12,104	Gases 8,822	Gases 3,658	Gases 4,772	Gases 3,801	Gases 2,527	Gases 3,624
Coke gas, Mm ³	693	540								
Light distillate	5	6								
Diesel oil	303	184	Oil	Oil	Oil	Oil	Oil	Oil	Oil	Oil
Heavy fuel oil	21,798	25,355	product 19,352	product 7,941	product 2,152	product 1,133	product 585	product 617	product 549	product 761
Refinery gas	211	378								
Petroleum coke	186	189								
Gases from chemical processes	444	803	Others	Others	Others	Others	Others	Others	Others	Others
				Mm ³ = 978	Mm ³ = 1,501	Mm ³ = 3,509	Mm ³ = 3,496	Mm ³ = 3,568	Mm ³ = 3,478	Mm ³ = 3,449
Other fuels	344		5,153 Gg= 15,460	Gg=	Gg= 18,160	Gg= 16,257	Gg= 16,718	Gg= 16,012	Gg= 15,884	Gg= 14,632
Tar	2	-	-							
Heat recovered from Pyrite	146	3	-							

Source: TERNA, several years

Figures reported in the table show that natural gas has substituted oil products, from 1990 to 2021, becoming the main fuel for electricity production while coal consumption has decreased in the last years.

For the purpose of calculating GHG emissions, a detailed list of 25 fuels was delivered to ISPRA by TERNA for the years from 2000 to 2007. From 2008 the list of the fuels used to estimate emissions was expanded by TERNA, up to 40 different types in 2012. The list includes different variety of renewable sources according to their composition and origin, useful to estimate the percentage of renewable sources for electricity generation and to comply with national regulations of waste derived fuels. A list of different quantities of fuel oils used according to the sulphur content was also added. Energy data of previous years have not changed (see previous reports). These figures include also amount of fuels used to cogenerate heat and electricity in some power plants.

The detailed information is confidential and only the elaboration applied to calculate emissions at an aggregated level is reported in Table A2.2 and Table A2.3. The consumption of municipal solid waste (MSW) / industrial wastes is separated from the biomass consumption, and reported under other fuels, since the use of this fuel for electricity generation is expanding and emission factors are different.

At national level, other statistics on the fuel used for electricity production exist, the most remarkable being the national energy balance (BEN), published annually (MASE, several years) and those published by Unione Petrolifera, the Oil companies association (UP, several years). In the past, also the association of the industrial electricity producers (UNAPACE, several years) up to the year 1998, and ENI, the former national oil company up to the year 2000, published production data with the associated fuel consumptions (ENI, several years).

A2.2 Methodological issues

Both BEN and TERNA publications could be used for the inventory preparation, as they are part of the national statistical system and published regularly. The preference, up to date, for TERNA data arises from the following reasons:

- BEN data are prepared on the basis of TERNA reports to IEA and EUROSTAT, so both data sets come from the same source;
- before publication in the BEN, TERNA data are revised to be adapted to the reporting methodology: balance is done on the energy content of fuels and the physical quantities of fuels are converted to energy using standard conversion factors; so the total energy content of the fuels is the "right" information extracted from the TERNA reports and the physical quantities are changed to avoid discrepancies; the resulting information cannot be cross checked with detailed plant data (point source evaluation) based on the physical quantities;
- the used fuel types are much more detailed in TERNA database, 40 fuels as above mentioned, whereas in BEN all fuels are added up (using energy content) and reported together in 12 categories: emission factors for certain fuels (coal gases or refinery by-products) are quite different and essential information is lost with this process;
- finally, the two data sets usually differ, even considering the total energy values of fuels or the produced electricity, there are always small differences, usually less than 1%, that increase the already sizable discrepancy between the reference approach and the detailed approach; the BEN adjust the physical quantities according to fixed low heating values and this process combined with the reduction of fuel types adds rounding errors and this may cause the small difference between the production of electricity of the two sources.

The other two statistical publications quoted before, UP (UP, several years) and ENI (ENI, several years), have direct access to fuel consumption data from the associated companies, but both rely on TERNA data for the complete picture. Data from those two sources are used for cross checking and estimation of point source emissions.

For verification purposes, an estimate of CO₂, N₂O and CH₄ emissions, with a rather complex calculation sheet has been used (APAT, 2003). The data sheet summarizes all plants existing in Italy divided by technology, about 60 typologies, and type of fuel used; the calculation sheet can be considered a model of the national power system. The main scope of the model has been to estimate the emissions of

pollutants different from CO₂ that are technology dependent. For each year, a run estimated the fuel consumed by each plant type, the pollutant emissions and GHG emissions.

The model has many possible outputs; same of which are built up in such a way to reproduce the data available from statistical source. The model has been revised every year, till 2017, to mirror the changes occurred in the power plants. Moreover, the model is also able to estimate the energy/emissions data related to the electricity produced and used on site by the main industrial producers. Those data are reported in the other energy industries, Tables 1.A.1.b and 1.A.1.c of the CRF, and in the industrial sector section, Table 1.A.2 of the CRF.

Table A2.2 reports the differences between the model and TERNA data for 2017.

For each source, three types of data are presented: electricity production, physical quantities of fuel consumptions and amount of energy used.

Fuels		TERNA			Model	
	GWe, gross	Gg / Mm ³	Рj	GWe, gross	Gg/ Mm ³	Рj
Coal	32,627.4	12,054	302.4	32,623.6	11,555	302.2
Coke oven gas	870.1	411	7.4	834.9	400	7.1
Blast furnace gas	1,473.3	3,713	14.5	1,474.4	3,279	12.3
Oxi converter gas	157.9	239	1.5	0.0		0.0
Total derived gases	2,501.3	4,362	23.4	2,309.3	3,679	19.5
Coal	35,128.7		325.8	34,932.9		321.6
Light distillates	0.1	0	0.00	0.0	0	0.0
Light fuel oil	468.3	105	4.5	474.4	111	18,748.6
Fuel oil - high sulfur content	1,696.0	416	17.1	8,683.7	1,343	235,539.0
Fuel oil - low sulfur content	0.0		0.0	444.2	576	12,008.9
Refinery gas	1,918.1	251	11.7	1,897.7	226	48,735.8
Petroleum coke	0.0	0	0.0	0.0	0	0.0
Oriemulsion	0.0	0	0.0			
total fuel oil	4,082.6		33.3	11,500.0	2,256	75.3
Gas from chemical proc.	429.7	679	3.8	0.0	0	0.0
Heavy residuals/ tar	6,862.2	4,991	42.1			
Others	85.6		0.8			
total residual	7,377.5		46.7	0.0		0.0
Oil+residuals	11,460.1		80.0	11,500.0		75.3
Natural gas	140,349.3	25,785	897.5	140,344.2	26,166	896.6
					-,	
Biofuels	4,463.5	925	33.9			33.9
Biogas	8,299.1	3,481	66.7			66.7
Biomass	4,193.2	4,213	50.0	3,972.9	4,731	49.9
Municipal waste	4,930.1	5,348	61.5	4,135.0	5,749	60.2
Grand total	208,824		1,515.4	207,648		1,504.3
TERNA /BEN differences	-		-	0.6%		0.7%

Table A2.2 Energy consumption for electricity production, year 2017

Source: ISPRA elaborations

Table A2.3 shows all energy and emissions summarized by fuel and split in two main categories of producers: public services and industrial producers for the year 2021, according to the reporting in the CRF. Since 1998, expansion of industrial cogeneration of electricity and split of national monopoly has transformed many industrial producers into "independent producers", regularly supplying the national grid. So, part of the energy/emissions of the industrial producers are added to Table 1.A.1.a of the CRF,

according to the best information available, including those available at plant level from the EU ETS scheme.

	LΤ	CO ₂ , Gg
Public Electricity and Heat Production - Tabl	e 1.A.1a	
Liquid fuels	21,507	1,662
Solid fuels	139,885	13,020
Natural gas	856,767	50,124
Refinery gases		
Coal gases		
Biomass	102,559	9,004
Other fuels (incl.waste)		
Total	1,120,719	64,806
Industrial producers and auto-producers -		
Tables 1.A.1b, 1.A.1c and 1.A.2		
Liquid fuels	11,890	815
Solid fuels	936	97
Natural gas	221,746	12,973
Refinery gases	25,099	1,406
Other refinery products	25,876	2,237
Coal gases	19,996	3,282
Biomass	109,884	9,651
Other fuels (incl.waste)	43,958	4,001
Total	459,385	24,811
General total	1,580,104	89,617

Table A2.3 Power sector, Energy/CO₂ emissions in CRF format, year 2021

Source: ISPRA elaborations

In conclusion, the main question of the accuracy of the underlying energy data of key sources is connected to the discrepancies between BEN and TERNA in the estimates of electricity produced and of the energy content of the used fuels. The difference is small, but it should not occur because both data sets derive from the same source. On the basis of this consideration, the inventory has been based on TERNA data that are expected to be more reliable. In particular because the emission factors used are based on the energy content of the fuel, the model has been used to reproduce with the TERNA energy consumption figures ignoring discrepancies in the electricity production or in the physical quantities of fuel used. Further, in 2020 MASE provided detailed TERNA data for 2018 straight to ISPRA in order to allow the overcoming of discrepancies.

A2.3 Uncertainty and time-series consistency

The combined uncertainty in CO_2 emissions from electricity production is estimated to be about 4.2% in annual emissions; a higher uncertainty, equal to 50.1%, is calculated for CH_4 and N_2O emissions on account of the uncertainty levels attributed to the related emission factors.

For the year 2009, Montecarlo analysis has been carried out to estimate uncertainty of CO_2 emissions from stationary combustion of solid, liquid and gaseous fuels emissions, resulting in 5.1%, 3.3% and 5.8%, respectively. Normal distributions have been assumed for all the parameters. A summary of the results is reported in Annex 1.

Estimates of fuel consumption for electricity generation in 2021 are reported in Table A2.3.

In Table A2.4, the time series of the total CO₂ emissions from electricity generation activities is reported, including total electricity produced and specific indicators of CO₂ emissions for the total energy

production and for the thermoelectric production respectively, expressed in grams of CO₂ per kWh. The emission factors are reported excluding the electricity produced from pumped storage units using water that has previously been pumped uphill, as requested by Directive 2009/28/EC of the European Parliament and of the Council promoting the electricity renewable sources.

The time series clearly shows that although the specific carbon content of the kWh generated in Italy has constantly improved over the years, total emissions have raised till 2006 due to the even bigger increase of electricity production. The decreasing trend starting from 2007 results from an increase in energy production from renewable sources, combined with a further reduction in the use of oil products for electricity production. In the last years the emissions are quite stable notwithstanding the increase of total energy demand and production, as a consequence of the shift from coal to natural gas.

	1990	1995	2000	2005	2010	2015	2016	2017	2018	2019	2020	2021
Total electricity produced (gross), TWh	216.9	241.5	276.6	303.7	302.1	283.0	289.8	295.8	289.7	293.9	280.5	289.1
Total CO ₂ emitted, Mt	126.4	133.5	139.8	144.6	120.9	93.7	92.9	93.3	85.6	81.2	72.4	76.9
g CO ₂ /kwh (gross thermo-electric production)	709	682	636	574	524	489	467	447	446	416	400	407
G CO ₂ /kwh of total gross production*	593	562	518	487	405	333	323	317	297	278	260	268

Table A2.4 Time series of CO₂ emissions from electricity production

* excluding electricity production from pumped storage units using water that has previously been pumped uphill *Source: ISPRA elaborations*

The trend of CO_2 emissions for thermoelectric production is the result of an increase of natural gas share due to the entry into service of more efficient combined cycle plants. The downward trend takes also into account the general increase in efficiency of the power plants.

A2.4 Source-specific QA/QC and verification

Basic activity data to estimate emissions from all operators are annually collected and reported by the national grid administrator (TERNA, several years). Other data are collected directly from operators for plants bigger than 20 MWh, with a yearly survey since 2005 and communicated at international level in the framework of the EU ETS scheme. Activity data and other parameters, as net calorific values, are compared every year at an aggregate level, by fuel; differences and problems have been identified, analysed in detail and solved with sectoral experts.

In addition, time series resulting from the recalculation have been presented to the national experts in the framework of an *ad hoc* working group on air emissions inventories. The group is chaired by ISPRA and includes participants from the local authorities responsible for the preparation of local inventories, sectoral experts, the Ministry of Environment and air quality model experts. Top-down and bottom-up approaches have been compared with the aim to identify the potential problems and future improvements to be addressed.

A2.5 Source-specific recalculations

Recalculations occur for CO_2 and N_2O emissions from 1.A.1.c during the period between 2016-2020 because of the update of coking coal activity data to adapt to changes in the energy balance. Recalculations occur in industry too (1A2) because of the update of the national consumption of fuels due to a variation of losses.

A2.6 Source-specific planned improvements

With the aim to improve the comparison with the international statistics and the relevant definition and classification of fuels we are progressively updating the emission inventory adopting the energy balance activity data provided by the Ministry of Environment to the international organization after verification that these time series data reflect the relevant emission inventory categories.

A revision of biomass and waste fuel consumption time series is planned for the next submission on the basis of energy data communicated by the Ministry of the Environment to the Joint Questionnaire OECD/IEA/EUROSTAT, after a verification and comparison with data up to now used and available in the National Energy Balance reports (MASE, several years). National Energy Balances are available in Italy from 1970 with the same format and comparable data. The submissions to the international questionnaire in some cases follow different rules and different allocation of fuel consumptions. The comparison is oriented to avoid that the use of international statistics results in a loss of information already used for the emission inventory. Moreover, we will check where along the time series changes occurred and for which matter (simple updates of annual data or something related to the different reporting rules).

ANNEX 3: ESTIMATION OF CARBON CONTENT OF COALS USED IN INDUSTRY

The preliminary use of the CRF software in 2001 underlined an unbalance of emissions in the solid fuel rows above 20%. A detailed verification pointed out to an already known issue for Italy: the combined use of standard IPCC emission factors for coals, national emission factors for coal gases and CORINAIR methodology emission factors for steel works processes produces double counting of emissions.

The main reason for this is the specific national circumstance of extensive recovery of coal gases from blast furnaces, coke ovens and oxygen converters for electricity generation. The emissions from those gases are separately accounted for and reported in the electricity generation sector.

Another specific national circumstance is the concentration of steel works in two sites, since the year 2005, with integrated steel plants, coke ovens and electricity self-production and just in one site since 2015. Only pig iron has been produced also in one additional location up to 2020. This has allowed for careful check of the processes involved and the emissions estimates at site level and, with reference to other countries, may or may not have exacerbated the unbalances in carbon emissions due to the use of standard emission factor developed for other industrial sites.

To avoid the double counting a specific methodology has been developed: it balances energy and carbon content of coking coals used by steelworks, industry, for non-energy purposes and coal gasses used for electricity generation.

A balance is made between the coal used for coke production and the quantities of derived fuels used in various sectors. The iron and steel sector gets the resulting quantities of energy and carbon after subtraction of what is used for electricity generation, non-energy purposes and other industrial sectors. According to the 2006 IPCC Guidelines (IPCC, 2006), the use of reductants is also included in this balance because no sufficient information to detail emissions between the energy and industrial processes sectors is available. The carbon balance methodology does not imply to separate off input between the energy and industrial sectors but ensures no double counting occurs.

Until the 2016 submission, the base statistical data are all reported in the BEN (MASE, several years) (with one exception) and the methodology starts with a verification of the energy balance reported in the BEN that seldom presents problems, and then apply the emission factors to the energy carriers, trying to balance the carbon inputs with emissions. The exception mentioned refers to the recovered gases of BOFs (Basic Oxygen Furnace) that are used to produce electricity but were not accounted for by BEN from the year 1990 up to 1999. From the year 2000 those gases are (partially, only in one plant) included in the estimate of blast furnace gas. The data used to estimate the emissions from 1990 to 1999 are reported by GRTN – ENEL (TERNA, several years). The consideration of the BOF gases does not change the following discussion, because its contribution to the total emissions is quite limited.

Starting from the 2017 submission, data submitted by the Ministry of Environment to the Joint Questionnaire IEA/OECD/EUROSTAT have been used and this required specific meetings and additional verification activities in order to make the transition to the new data format, so in 2017 submission it was not yet possible to reconstruct the entire time series and only 2015 data were used. In the 2018 submission the complete time series, from 1990, of solid fuel consumptions and relevant calorific values have been updated on the basis of figures submitted by the Ministry of Environment to the Joint Questionnaire IEA/OECD/EUROSTAT. This required a considerable amount of work for the comprehension and reconstruction of trends. Consequently, this process involved significant changes, especially in the nineties, some of which are still under investigation thanks to the collaboration with the Ministry of Environment.

Table A3.1 summarizes the quantities of coal and coal by-products used by the energy system in the year 2021; all the data mentioned are those provided by the Ministry of Environment to the Joint Questionnaire IEA/OECD/EUROSTAT for the same year.

In Table A3.1 the quantities of coke, coke gas and blast furnace gas used by the different sectors are detailed as well as the quantities of the same energy carriers that are self-used, used to produce coke or wasted. Inputs are indicated in the blue cells while outputs are reported in the orange ones.

	TJ input	TJ output	
steam coal	168,800	761	clinker/industry
		148,156	thermoelectric power plants
		19,883	blast furnace
anthracite	2,661	2,661	steel plants
sub bituminous and lignite	14	14	clinker/industry
coking coal	50,635	0	coking coal consumption
		0	Non-energy use in other sectors
Coke import/export/stock change	11,196		
coke		0	other industry and domestic
			ferroalloys
		10,766	blast furnace consumption
coke oven gas		306	coke oven gas in coke oven and blast furnace
		3,146	coke oven gas reheating
		6,523	coke oven gas thermoelectric
blast furnace gas		0	BF gas in coke oven
		13,385	BF gas thermoelectric
		0	BF gas reheating
BOF gas		88	coal gasses in thermoelectric + reheating
			carbon stored in products
tot	233,305	205,688	Input – output= 27,617 TJ → 13.4%

Table A3.1 Energy balance, 2021, TJ

In Table A3.2, the same energy data of Table A3.1 valuated for their carbon content are reported, according to the emission factors reported in Table 3.12 of the NIR.

The balance is the resulting quantity of emissions after subtraction of carbon emissions estimated for coke ovens, electricity production, other coal uses and non-energy uses.

The low implied emission factors in CRF and annual variations in the average CO₂ emission factor for solid fuel are due to the fact that both activity data and emissions reported under this category include the results of the carbon balance.

All main installations of the iron and steel sector are included in EU ETS, but not all sources of emission. Only part of the processes of integrated steel making is subject to EU ETS, in particular the manufacturing process after the production of row steel was excluded up to 2007 and only the lamination processes have been included from 2008 onwards. Additional information from the operators on fuel consumptions and average emission factors is used to verify our calculation and CO₂ emissions at plant level and to calculate average CO₂ emission factors for coal and derived gases from 2005; obviously from the 2015 submission emission factors have been updated on the basis of 2006 IPCC Guidelines, see Annex 6 for further details.

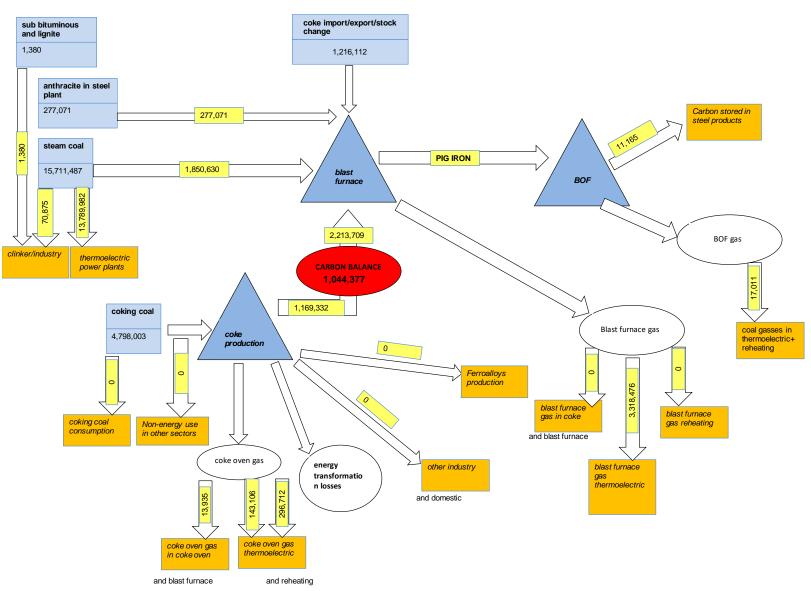

	input	output	
steam coal	15,711,487	70,875	clinker/industry
		13,789,982	thermoelectric power plants
		1,850,630	blast furnace
anthracite	277,071	277,071	steel plants
sub bituminous and lignite	1,380	1,380	clinker/industry
coking coal	4,798,003	0	coking coal consumption
		0	Non-energy use in other sectors
coke import/export/stock change	1,216,112		
coke		0	other industry and domestic
		0	ferroalloys
		1,169,332	blast furnace consumption
coke oven gas		13,935	coke oven gas in coke oven and blast furnace
	-	438	3

Table A3.2	Carbon	balance	2021	Ga CO ₂
Tuble AS.E	Curbon	bulunce,	LVL 1,	ug coz

	input	output	
		143,106	coke oven gas reheating
		296,712	coke oven gas thermoelectric
blast furnace gas		0	BF gas in coke oven
-		3,318,476	BF gas thermoelectric
		0	BF gas reheating
BOF gas		17,011	coal gasses in thermoelectric + reheating
-		11,165	carbon stored in products
tot	22,004,052	20,959,675	Input-output=1,044 Gg CO ₂ unbalance 4.98%

In 2021 the unbalance in terms of CO₂ is equal to 1,044 Gg; this amount has been subtracted from the total to avoid double counting of carbon. The flowchart of carbon - cycle for the year 2021 is reported below. CO₂ emissions from primary input fuels and from final fuel consumptions are compared. Emissions related to fuel input data are enhanced in light-blue whereas emissions estimated from final fuel consumptions are highlighted in orange. Emissions from the use of coke in blast furnaces result from differences between emissions from final consumption of coke and the value of the carbon balance for 2021. The amount of carbon stored in steel produced was estimated and subtracted from the balance to avoid the subsequent overestimation of CO₂. The amount of coke used for ferroalloys production has also been subtracted to avoid a double counting of emissions already estimated and reported in the industrial processes sector.

CO₂ emission calculation (Gg) Year 2021

ANNEX 4: CO₂ REFERENCE APPROACH

A4.1 Introduction

The IPCC Reference Approach is a 'top down' inventory based on data on production, imports, exports and stock changes of crude oils, feedstock, natural gas and solid fuels. Estimates are made of the carbon stored in manufactured products, the carbon consumed as international bunker fuels and the emissions from biomass combustion.

The methodology follows the IPCC Guidelines (IPCC, 2006); table 1.A(b) of the Common Reporting Format "Sectoral background data for energy - CO₂ from Fuel Combustion Activities - Reference Approach" is a self-sustaining explanation of the methodology.

However, it was necessary to make a few adaptations to allow full use of the Italian energy and emission factor data (ENEA, 2002 [a]), and these are described in the following. The BEN (MASE, several years [a]) reports the energy balances for all primary and secondary fuels, with data on imports, exports and production. See Annex 5, for an example of the year 2021 and the web site of the Ministry of Environment for the whole time series <u>https://dgsaie.mise.gov.it/ben.php</u>. For the reference approach, as for the inventory, data submitted by the Ministry of Environment to the Joint Questionnaire IEA/OECD/EUROSTAT have been used for solid fuels, natural gas, liquid fuels and the update is ongoing for other fuels. Starting with the 2021 submission IEA/OECD/EUROSTAT data have been utilized since 1990.

Starting from those data and using the emission factors reported in chapter 3, Table 3.12, it is possible to estimate the total carbon entering in the national energy system. It has been developed a direct connection between relevant cells of the CRF tables and the BEN tables and a procedure to insert some additional activity data needed.

The 'missing' data refer to import – export of petrol additives, asphalt, other chemical products with energy content, energy use of exhausted lubricants and the evaluation of marine and aviation bunkers fuels used for national traffic.

Those 'missing' data are in fact reported in the BEN, but all mixed up together with other substances as sulphur and petrochemicals. The aggregate data do not allow the use of the proper emission factor so inventory is based on more detailed statistics from foreign trade surveys.

The carbon stored in products is estimated according to the procedure illustrated in paragraph 3.8 and directly subtracted to the emission balance. In the cases, as Italy, where those products are not considered in the energy balances this bring to an unbalanced control sheet, as discussed in the following.

With reference to table 1.A(b) of the CRF, we make reference to the BEN tables reported in Annex 5. In particular the following data are reported and used for the *Reference Approach*:

- 1. import-export data of motor oil derive from foreign trade statistics, estimated by an ENEA consultant for the period 1990-1998. BPT data (MASE, several years [b]) are used from 1999 onwards;
- 2. all other liquid fuels as available in the Joint Questionnaire IEA/OECD/EUROSTAT;
- 3. all coal data as available in the Joint Questionnaire IEA/OECD/EUROSTAT;
- 4. natural gas data as available in the Joint Questionnaire IEA/OECD/EUROSTAT;
- 5. waste production data;
- 6. biomass fuel data.

The following additional information is needed to complete table 1.A(b) of CRF and it is found in other sources:

1) Orimulsion, this fuel is mixed up with imported fuel oil (on the base of the energy content), the quantities used for electricity generation are reported by ENEL (ENEL, several years), the former

electricity monopoly, presently the only user of this fuel, in their environmental report. This fuel is not used any more since 2004.

- 2) Motor oils and bitumen.
 - a) Data on those materials are mixed up in the no energy use by BEN, while detailed data are available in BPT (MASE, several years [b]). The quantities of those materials are quite relevant for the no energy use of oil.
 - b) In the BEN those materials are estimated in bulk with other products to have an energy content of about 5100 kcal/kg. Average OECD data are equal to 9000 kcal/kg for bitumen and 9800 kcal/kg for motor oils. In the CRF those products are estimated with the OECD energy content and this could explain part of the unbalance between imported oil and used products.

For further information see the paper by ENEA (ENEA, 2002 [b]) in Italian.

A4.2 Comparison of the sectoral approach with the reference approach

The detailed inventory contains sources not accounted for in the IPCC Reference Approach, as offshore flaring and well testing and non-fuel industrial processes, and so gives a higher estimate of CO₂ emissions.

First of all, the IPCC Reference total CO_2 can be compared with the CRF Table 1A total. Results show the IPCC Reference totals are between -1.25 and -4.0 percent with respect to the comparable 'bottom up' totals.

Differences are observed both for energy and emissions. Quality control activities have been done and a detail explanation of them will require specific meetings and additional verification activities with the energy experts responsible for the official communication of the energy statistics in order to make the transition to the new data format for the whole time series.

As above mentioned, sectoral approach considers sources not considered in the Reference approach, so negative differences occur between CO₂ emissions from reference approach and the sectoral one. The highest difference is observed for 1999.

Differences between emissions estimated by the reference and sectoral approach are reported in Table A4.1.

	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
Sectoral approach	404.5	417.1	440.7	470.3	411.9	343.8	341.1	335.5	331.7	322.1	287.0
Reference approach	396.6	408.4	423.6	458.7	400.8	330.4	332.6	329.3	319.7	314.3	282.2
Δ %	-1.95	-2.09	-3.87	-2.45	-2.71	-3.90	-2.49	-1.83	-3.61	-2.42	-1.65

Table A4.1 Reference and sectoral approach CO ₂ emission estimates 1990-2021 (Mt) and	percentage differences
Tuble A4.1 Reference and sectoral approach co2 emission estimates 1550 2021 (Mr) and	percentage anterences

There are a number of reasons why the totals differ, and these arise from differences in the methodologies and the statistics used.

Explanations for the discrepancies:

- The IPCC Reference Approach is based on statistics of production, imports, exports and stock changes of fuels whilst the 'bottom-up' approach uses fuel consumption data. The two sets of statistics can be related using mass balances (MASE, several years [a]), but these show that some fuel is unaccounted for. This fuel is reported under 'statistical differences' which consist of measurement errors and losses. A significant proportion of the discrepancy between the IPCC Reference approach and the 'bottom up' approach arises from these statistical differences particularly with liquid fuels.
- 2. In the power sector, in the detailed approach, statistics from producers are used, whereas for the reference approach the BEN data are used. The two data sets are not connected; in the BEN sections

used, only the row data of imports-exports are contained. But if one considers the process of "balancing" the import – production data with the consumption ones and the differences between the two data sets, a sizable part of the discrepancy may be connected to this reason only. In addition, waste consumption data reported in the BEN were not such accurate from 1990 up to 2002 as the subsequent years.

3. The 'bottom up' approach only includes emissions from the no energy use of fuel where they can be specifically identified and estimated such as with fertilizer production and iron and steel production. The IPCC Reference approach implicitly treats the non-energy use of fuel as if it were combustion. A correction is then applied by deducting an estimate of carbon stored from non-energy fuel use. The carbon stored is estimated from an approximate procedure which does not identify specific processes. The result is that the IPCC Reference approach is based on a higher estimate of non-energy use emissions than the 'bottom-up' approach.

The IPCC Reference Approach uses data on primary fuels such as crude oil and natural gas liquids which are then corrected for imports, exports and stock changes of secondary fuels. Thus, the estimates obtained will be highly dependent on the default carbon contents used for the primary fuels.

The 'bottom-up' approach is based wholly on the consumption of secondary fuels where the carbon contents are known with greater certainty. In particular the carbon contents of the primary liquid fuels are likely to vary more than those of secondary fuels. Carbon content of solid fuels and of natural gas is quite precisely accounted for.

In the 2013 submission, in response to the review process, waste data for energy recovery have been included in the reference approach resulting in a decrease of the differences especially for the last years.

A4.3 Comparison of the sectoral approach with the reference approach and international statistics

A verification of national energy balance and CO₂ emissions with data communicated to the joint EUROSTAT/IEA/UNECE questionnaire was carried out in 2004 and results are reported in the document "Energy data harmonization for CO₂ emission calculations: the Italian case" (ENEA/MAP/APAT, 2004).

The analysis enhanced the main differences and the critical points to harmonize the data and their reporting. The most critical issues concerned the calorific value, EUROSTAT and MASE should apply the same calorific value; the distribution of fuel consumptions to the relevant sectors, e.g., in some cases EUROSTAT assigned "building materials industry" consumptions in "glass, pottery and building materials industry" consumptions, in other cases in "other industries"; the definition of coke, in particular, the distribution of consumptions between the iron and steel sector final consumption and transformation input; the definition of derived gases have to be harmonized, because differences in allocation of steelworks gases and gas from chemical processes were found.

In addition, "exchange and transfers, returns" and "statistical difference" rows were used in the national statistics to balance the energy resources with the energy uses whereas in the international statistics the two items, in some cases, were cancelled.

From 2004 some improvements were implemented both in the national and international statistics also through the revision of the questionnaire but difference in apparent consumptions still occur.

On the basis of the last review, Italy has further investigated the issue regarding refinery feedstock because the ERT has found a big differences with international statistics. Indeed, already in 2010, in the framework of the Monitoring Mechanism Decision jointly with EUROSTAT, a project which compares Eurostat energy data with energy data included in the CRF has been developed. The background of the project is the Energy Statistics Regulation (EC/1099/2008), which is the legal basis of the reporting of energy data to Eurostat, in particular Article 6, paragraph 2, of the regulation stipulating that: "Every reasonable effort shall be undertaken to ensure coherence between energy data declared in the energy statistics regulation, and data declared in accordance with Commission Decision No 280/2004/EC of the

European Parliament and of the Council concerning a mechanism for monitoring Community greenhouse gas emissions and for implementing the Kyoto Protocol". Member States' reference approach data as submitted in CRF Table 1A(b) under the EU GHG Monitoring Mechanism (as available by 15 May 2011) were compared with Eurostat energy data as available in the Eurostat database in April 2011. The comparison was carried out for the years 2009 and 2008. Specifically, for Italy, major discrepancies identified were only related to the consumption of refinery feedstocks which differs considerably between annual Eurostat data and the CRF: annual Eurostat consumption is 30% and 40% lower than the CRF for 2008 and 2009 respectively. The judgment of the energy balance experts indicated the introduction of backflows as a correct allocation with respect to the EUROSTAT balance. From our point of view, the issue regards the allocation of refinery feedstocks which, in addition to production, import and export, also include the item "backflows".

In order to improve transparency and comparability backflows and feedstock are reported in the following table.

	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
Imports	11,553	8,571	6,628	5,855	6,856	6,136	3,700	3,285	2,533	2,704	2,330
Exports	1,706	261	521	805	1,382	545	934	1,408	1,005	952	897
Stock changes	-111	69	-53	399	-479	28	556	-41	18	-755	28
Backflows	3,678	4,410	2,626	2,080	1,732	1,641	1,776	2,039	1,789	1,758	1,804

Table A4.2 Refinery feedstock, data for to the Joint Questionnaire IEA/OECD/EUROSTAT (kt)

ANNEX 5: NATIONAL ENERGY BALANCE, YEAR 2021

The official national energy balance (BEN) from the year 1998 onwards is available, in Italian, on the website of the Italian Ministry of the Environment (MASE): <u>https://dgsaie.mise.gov.it/ben.php</u>. At the same web address data communicated by Italy to the Joint Questionnaire OECD/IEA/EUROSTAT are available in the format revisited by EUROSTAT. Some differences between data communicated to the international organizations and EUROSTAT publication have been observed and are under investigation; they should mainly due to the use of default instead of country specific energy conversion factors and different classification criteria of fuels.

From 2016, data submitted by the Ministry of Environment to the Joint Questionnaire IEA/OECD/EUROSTAT have been used for solid, liquid and gaseous fuel consumptions. At the time it was not possible to reconstruct the entire time series and data from national energy balance (BEN) have been also used; moreover the complete use of the energy data provided by the MASE to the Joint Questionnaire is planned in substitution, as possible, of the national energy balances. Some inconsistencies have been found in data communicated at Eurostat and referring to the ninety years, especially in the sectoral distribution of fuels; in these cases the information already available in the national energy balances has been maintained because of considered more reliable and consistent in the time series.

The national energy balance consists of two "sets" of tables fuel consumptions expressed in physical quantities (Gg or Mm³) and in energy equivalents (TJ). Energy data submitted to the international organisations are provided in different units according to the relevant formats. In the annex, tables reproduce only figures expressed in amount of energy equivalents for the year 2021 (EUROSTAT, 2023).

In general, the reporting methodology of the national energy balance applies the same lower heat value to each primary fuel in various years, to take into account for the variable energy content of each shipment. This means, for example, that the primary fuel quantities of two shipments of imported coal are "adjusted" using their energy content as the main reference (see Table A5.1) and the value reported in physical unit is an "adjusted" quantity of Gg or Mm³. This process is routinely applied to most primary sources, including imported and nationally produced natural gas. For the final uses of energy, the same methodology is applied but it runs the other way: the physical quantities of energy vectors are the only values actually measured on the market and the energy content is actually estimated using fixed average estimates of lower heat value. Measurements of the actual energy content of fuels show minor variations from one year to another, especially for liquid fuels.

In the case of natural gas, the use of a fixed heat value to summarize all transactions was particularly complicated because Italy used fuel from four main different sources: Russia, Netherlands, Algeria and national production. Since 2003-2004 Norway and Libya have also been added to the supply list. The big customers were actually billed according to the measured heat value of the natural gas delivered. After the end of the state monopoly on this market, the system changed. Since 2004, the price refers to the energy content of natural gas and the metered physical quantities of gas delivered to all final customers have been billed according to an energy content variable from site to site and from year to year. The BEN still tries to summarize all production and consumption using only one conventional heat value.

Therefore, the physical quantities are the most reliable data for the estimations of liquid fuels used in the civil and transportation sector. This information is used to calculate emissions, using updated data for the emission factors which are estimated from samples of marketed fuels.

Table A5.1 – National Energy Balance, year 2021, ktoe

	Total	Solid fossil fuels	Natural gas	Oil and petroleum products (excluding biofuel portion)	Industrial waste (non- renewable)	Non- renewable municipal waste	Non- renewable waste	Nuclear heat	Electricity	Heat
NRG_BAL (Labels)										
Primary production	1,535,543.213	0.000	109,186.355	218,889.150	13,061.278	34,743.954	47,805.232	0.000	:	0.000
Recovered and recycled products	0.000	0.000	:	0.000	:	:	:	:	:	:
Imports	6,036,883.499	232,578.793	2,503,016.690	3,013,537.619	0.000	0.000	0.000	:	167,645.898	0.000
Exports	1,228,355.434	7,566.336	52,926.512	1,124,399.590	0.000	0.000	0.000	:	13,614.624	0.000
Change in stock	194,829.023	6,841.333	54,561.356	132,257.282	0.000	0.000	0.000	:	:	:
Gross available energy	6,538,900.301	231,853.790	2,613,837.888	2,240,284.461	13,061.278	34,743.954	47,805.232	0.000	154,031.274	0.000
International maritime bunkers	105,426.109	0.000	0.000	105,426.109	:	:	:	:	:	:
Gross inland consumption	6,433,474.192	231,853.790	2,613,837.888	2,134,858.351	13,061.278	34,743.954	47,805.232	0.000	154,031.274	0.000
International aviation	62,396.526	:	:	62,396.526	:	:	:	:	:	:
Total energy supply	6,371,077.666	231,853.790	2,613,837.888	2,072,461.825	13,061.278	34,743.954	47,805.232	0.000	154,031.274	0.000
Gross inland consumption (Europe 2020-2030)	6,328,867.507	:	:	:	:	:	:	:	:	:
Primary energy consumption (Europe 2020-2030)	6,083,911.218	:	:	:	:	:	:	:	:	:
Final energy consumption (Europe 2020-2030)	4,742,448.353	:	:	:	:	:	:	:	:	:

Transformation input - energy use	5,650,748.474	261,279.151	1,082,668.690	3,407,690.755	1,102.062	34,743.954	35,846.016	0.000	10,498.140	0.000
Transformation input - electricity and heat generation - energy use	2,226,854.774	148,155.552	1,082,668.690	162,515.774	1,102.062	34,743.954	35,846.016	0.000	10,498.140	0.000
Transformation input - electricity and heat generation - main activity producer electricity only - energy use	1,173,283.449	148,155.552	409,944.547	21,276.007	259.363	15,848.972	16,108.335	0.000	:	0.000
Transformation input - electricity and heat generation - main activity producer combined heat and power - energy use	703,311.917	0.000	474,024.274	89,247.611	397.046	18,480.170	18,877.216	0.000	:	0.000
Transformation input - electricity and heat generation - main activity producer heat only - energy use	19,158.762	0.000	11,998.926	202.991	0.000	0.000	0.000	0.000	:	0.000
Transformation input - electricity and heat generation - autoproducer electricity only - energy use	60,348.319	0.000	1,633.268	54.733	285.365	101.673	387.038	0.000	:	0.000
Transformation input - electricity and heat generation - autoproducer combined heat and power - energy use	260,254.188	0.000	185,067.676	51,734.432	160.288	313.139	473.427	0.000	:	0.000
Transformation input - electricity and heat	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	:	0.000

generation - autoproducer heat only - energy use										
Transformation input - electricity and heat generation - electrically driven heat pumps	0.000	:	:	:	:	:	:	:	0.000	:
Transformation input - electricity and heat generation - electric boilers	0.000	:	:	:	:	:	:	:	0.000	:
Transformation input - electricity and heat generation - electricity for pumped storage	10,498.140	:	:	:	:	:	:	:	10,498.140	:
Transformation input - electricity and heat generation - derived heat for electricity production	0.000	:	:	:	:	:	:	:	:	0.000
Transformation input - coke ovens - energy use	52,423.838	52,423.838	0.000	0.000	:	:	:	:	:	:
Transformation input - blast furnaces - energy use	60,699.761	60,699.761	0.000	0.000	:	:	:	:	:	:
Transformation input - gas works - energy use	0.000	0.000	0.000	0.000	:	:	:	:	:	:
Transformation input - refineries and petrochemical industry - energy use	3,245,174.981	:	:	3,245,174.981	:	:	:	:	:	:
Transformation input - refineries and	2,907,175.171	:	:	2,907,175.171	:	:	:	:	:	:

	r	r		1		r	1		1	,,
petrochemical industry - refinery intake - energy use										
Transformation input - refineries and petrochemical industry - backflows from petrochemical industry - energy use	78,909.582	:	:	78,909.582	:	:	:	:	:	:
Transformation input - refineries and petrochemical industry - products transferred - energy use	178,884.519	:	:	178,884.519	:	:	:	:	:	:
Transformation input - refineries and petrochemical industry - interproduct transfers - energy use	0.000	:	:	0.000	:	:	:	:	:	:
Transformation input - refineries and petrochemical industry - direct use - energy use	0.000	:	:	0.000	:	:	:	:	:	:
Transformation input - refineries and petrochemical industry - petrochemical industry intake - energy use	80,205.709	:	:	80,205.709	:	:	:	:	:	:
Transformation input - patent fuel plants - energy use	0.000	0.000	:	0.000	0.000	:	0.000	:	:	:

Transformation input - brown coal briquettes and peat briquettes plants - energy use	0.000	0.000	:	:	0.000	0.000	0.000	:	:	:
Transformation input - coal liquefaction plants - energy use	0.000	0.000	:	:	:	:	:	:	:	:
Transformation input - for blended natural gas - energy use	5,715.747	:	:	0.000	:	:	:	:	:	:
Transformation input - liquid biofuels blended - energy use	59,263.374	:	:	:	:	:	:	:	:	:
Transformation input - charcoal production plants - energy use	616.000	:	:	:	:	:	:	:	:	:
Transformation input - gas-to-liquids plants - energy use	0.000	:	0.000	:	:	:	:	:	:	:
Transformation input - not elsewhere specified - energy use	0.000	0.000	0.000	0.000	0.000	0.000	0.000	:	:	:
Transformation output	4,669,913.042	40,042.333	5,715.747	3,273,673.387	:	:	:	:	1,040,650.315	223,746.443
Transformation output - electricity and heat generation	1,264,396.758	:	:	:	:	:	:	:	1,040,650.315	223,746.443
Transformation output - electricity and heat generation - main activity producer electricity only	607,342.471	:	:	:	:	:	:	:	607,342.471	:

Transformation output -	414,598.246	:	:	:	:	:	:	:	287,068.309	127,529.937
electricity and heat generation - main activity producer combined heat and power										
Transformation output - electricity and heat generation - main activity producer heat only	16,092.501	:	:	:	:	:	:	:	:	16,092.501
Transformation output - electricity and heat generation - autoproducer electricity only	57,978.032	:	:	:	:	:	:	:	57,978.032	:
Transformation output - electricity and heat generation - autoproducer combined heat and power	158,776.942	:	:	:	:	:	:	:	78,652.937	80,124.005
Transformation output - electricity and heat generation - autoproducer heat only	0.000	:	:	:	:	:	:	:	:	0.000
Transformation output - electricity and heat generation - electrically driven heat pumps	0.000	:	:	:	:	:	:	:	:	0.000
Transformation output - electricity and heat generation - electric boilers	0.000	:	:	:	:	:	:	:	:	0.000
Transformation output - electricity and heat	7,524.706	:	:	:	••	:	:	:	7,524.706	

generation - pumped hydro										
Transformation output - electricity and heat generation - other sources	2,083.860	:	:	:	:	:	:	:	2,083.860	0.000
Transformation output - coke ovens	50,757.523	40,042.333	:	:	:	:	:	:	:	:
Transformation output - blast furnaces	15,798.242	0.000	:	:	:	:	:	:	:	:
Transformation output - gas works	0.000	0.000	:	:	:	:	:	:	:	:
Transformation output - refineries and petrochemical industry	3,273,673.387	:	:	3,273,673.387	:	:	:	:	:	:
Transformation output - refineries and petrochemical industry - refinery output	2,939,391.037	:	:	2,939,391.037	:	:	:	:	:	:
Transformation output - refineries and petrochemical industry - backflows	76,675.950	:	:	76,675.950	:	:	:	:	:	:
Transformation output - refineries and petrochemical industry - products transferred	178,696.818	:	:	178,696.818	:	:	:	:	:	:
Transformation output - refineries and petrochemical industry - interproduct transfers	0.000	:	:	0.000	:	:	:	:	:	:

Transformation output - refineries and petrochemical industry - primary product receipts	0.000	:	:	0.000	:	:	:	:	:	:
Transformation output - refineries and petrochemical industry - petrochemical industry returns	78,909.582	:	:	78,909.582	:	:	:	:	:	:
Transformation output - patent fuel plants	0.000	0.000	:	:	:	:	:	:	:	:
Transformation output - brown coal briquettes and peat briquettes plants	0.000	0.000	:	:	:	:	:	:	:	:
Transformation output - coal liquefaction plants	0.000	:	:	0.000	:	:	:	:	:	:
Transformation output - blended in natural gas	5,715.747	:	5,715.747	:	:	:	:	:	:	:
Transformation output - liquid biofuels blended	59,263.385	:	:	:	:	:	:	:	:	:
Transformation output - charcoal production plants	308.000	:	:	:	:	:	:	:	:	:
Transformation output - gas-to-liquids plants	0.000	:	:	0.000	:	:	:	:	:	:
Transformation output - not elsewhere specified	0.000	0.000	:	0.000	:	:	:	:	:	:
Energy sector - energy use	304,734.243	1,346.615	60,736.535	125,969.573	0.000	0.000	0.000	:	63,763.855	52,611.329

Energy sector - electricity and heat generation - energy use	36,678.317	0.000	0.000	0.000	0.000	0.000	0.000		32,487.563	4,190.754
Energy sector - coal mines - energy use	915.833	0.000	0.000	0.000	0.000	0.000	0.000	:	915.833	0.000
Energy sector - oil and natural gas extraction plants - energy use	9,403.971	:	8,923.235	0.000	:	:	:	:	447.095	33.641
Energy sector - patent fuel plants - energy use	0.000	0.000	:	:	0.000	0.000	0.000	:	0.000	0.000
Energy sector - coke ovens - energy use	2,065.966	1,346.615	0.000	0.000	0.000	0.000	0.000	:	136.559	276.456
Energy sector - brown coal briquettes and peat briquettes plants - energy use	0.000	0.000	:	:	0.000	0.000	0.000	÷	0.000	0.000
Energy sector - gas works - energy use	0.000	0.000	0.000	0.000	0.000	0.000	0.000	:	0.000	0.000
Energy sector - blast furnaces - energy use	0.000	0.000	0.000	0.000	0.000	0.000	0.000	:	0.000	0.000
Energy sector - petroleum refineries (oil refineries) - energy use	221,519.493	0.000	48,309.104	125,969.573	0.000	0.000	0.000	:	19,126.645	28,114.171
Energy sector - nuclear industry - energy use	3.136	:	:	:	:	:	:	:	3.136	0.000
Energy sector - coal liquefaction plants - energy use	0.000	0.000	:	:	:	:	:	:	0.000	0.000
Energy sector - liquefaction and	3,504.196	:	3,504.196	:	:	:	:	:	0.000	0.000

regasification plants (LNG) - energy use										
Energy sector - gasification plants for biogas - energy use	0.000	:	:	:	0.000	0.000	0.000	:	0.000	0.000
Energy sector - gas-to- liquids plants - energy use	0.000	:	0.000	:	:	:	:	:	0.000	0.000
Energy sector - charcoal production plants - energy use	0.000	:	:	:	0.000	0.000	0.000	:	0.000	0.000
Energy sector - not elsewhere specified - energy use	30,643.332	0.000	0.000	0.000	0.000	0.000	0.000	:	10,647.025	19,996.307
Distribution losses	116,840.944	0.000	7,770.800	0.000	0.000	0.000	0.000	• •	68,502.470	40,567.674
Available for final consumption	4,968,667.046	9,270.357	1,468,377.610	1,812,474.884	11,959.216	0.000	11,959.216	0.000	1,051,917.124	130,567.440
Final consumption - non- energy use	244,956.288	204.661	27,793.855	216,957.773	:	:	:	:	:	:
Transformation input, energy sector and final consumption in industry sector - non-energy use	234,522.900	204.661	27,793.855	206,524.385	:	:	:	÷	:	:
Transformation input - non-energy use	10.640	:	:	10.640	:	:	:	:	:	:
Energy sector - non- energy use	0.000	:	:	0.000	:	:	:	:	:	:
Final consumption - industry sector - non- energy use	234,307.599	:	27,793.855	206,513.745	:	:	:	:	:	:

Final consumption - transport sector - non- energy use	10,433.388	0.000	0.000	10,433.388	:	:	:	:	:	:
Final consumption - other sectors - non-energy use	0.000	0.000	0.000	0.000	:	:	:	:	:	:
Final consumption - energy use	4,739,756.993	12,655.555	1,440,583.817	1,608,761.177	11,959.216	0.000	11,959.216	:	1,051,917.124	130,567.437
Final consumption - industry sector - energy use	1,058,482.146	12,655.555	371,055.189	93,176.446	11,959.216	0.000	11,959.216	:	459,386.564	85,477.470
Final consumption - industry sector - iron and steel - energy use	136,575.535	10,765.702	45,311.044	4,986.405	0.000	0.000	0.000	:	68,554.253	2,875.594
Final consumption - industry sector - chemical and petrochemical - energy use	160,601.906	0.000	70,781.322	9,316.508	3,176.304	0.000	3,176.304	:	51,369.682	25,673.801
Final consumption - industry sector - non- ferrous metals - energy use	28,601.437	448.322	15,236.794	2,985.455	0.000	0.000	0.000	:	9,870.167	60.699
Final consumption - industry sector - non- metallic minerals - energy use	187,057.685	1,441.531	78,055.819	49,484.714	8,150.312	0.000	8,150.312	:	35,158.403	4,674.936
Final consumption - industry sector - transport equipment - energy use	28,043.767	0.000	10,782.931	0.000	0.000	0.000	0.000	:	15,309.688	1,951.149

Final consumption - industry sector - machinery - energy use	109,163.316	0.000	16,154.934	8,677.635	0.000	0.000	0.000	:	82,768.705	1,417.833
Final consumption - industry sector - mining and quarrying - energy use	3,357.567	0.000	182.323	1,043.693	0.000	0.000	0.000	:	2,088.122	43.134
Final consumption - industry sector - food, beverages and tobacco - energy use	108,803.809	0.000	34,908.194	5,950.660	0.000	0.000	0.000	:	52,508.592	14,165.069
Final consumption - industry sector - paper, pulp and printing - energy use	124,282.176	0.000	55,258.757	7,107.357	0.000	0.000	0.000	:	33,921.382	27,977.067
Final consumption - industry sector - wood and wood products - energy use	24,688.011	0.000	2,580.915	0.000	205.453	0.000	205.453	:	13,562.971	1,279.441
Final consumption - industry sector - construction - energy use	37,704.972	0.000	29,128.736	775.831	0.000	0.000	0.000	:	7,667.582	55.046
Final consumption - industry sector - textile and leather - energy use	30,687.533	0.000	9,884.547	2,138.942	0.000	0.000	0.000	:	17,839.145	815.793
Final consumption - industry sector - not elsewhere specified - energy use	78,903.538	0.000	2,788.874	709.245	427.147	0.000	427.147	:	68,767.873	4,487.908

Final consumption - transport sector - energy use	1,477,535.021	0.000	59,719.614	1,319,352.786	0.000	0.000	0.000	:	39,198.236	:
Final consumption - transport sector - rail - energy use	20,260.155	0.000	:	1,597.031	0.000	0.000	0.000	:	18,663.124	:
Final consumption - transport sector - road - energy use	1,378,348.761	:	47,988.829	1,269,509.800	0.000	0.000	0.000	:	1,585.746	:
Final consumption - transport sector - domestic aviation - energy use	25,718.028	:	:	25,718.028	:	:	:	:	:	:
Final consumption - transport sector - domestic navigation - energy use	22,527.926	0.000	:	22,527.926	0.000	0.000	0.000	:	:	:
Final consumption - transport sector - pipeline transport - energy use	12,441.054	:	11,435.297	0.000	:	:	:	:	1,005.757	:
Final consumption - transport sector - not elsewhere specified - energy use	18,239.098	0.000	295.488	0.000	0.000	0.000	0.000	:	17,943.610	:
Final consumption - other sectors - energy use	2,203,739.826	0.000	1,009,809.014	196,231.945	0.000	0.000	0.000	:	553,332.323	45,089.967
Final consumption - other sectors - commercial and public services - energy use	726,678.749	0.000	297,345.895	23,562.431	0.000	0.000	0.000	:	287,774.622	8,376.345

Final consumption - other	1,340,889.696	0.000	704,953.978	78,631.651	0.000	0.000	0.000	:	241,388.172	29,745.434
sectors - households - energy use										
Final consumption - other sectors - agriculture and forestry - energy use	122,382.622	0.000	7,509.140	83,856.615	0.000	0.000	0.000	:	23,456.423	5,230.415
Final consumption - other sectors - fishing - energy use	8,092.503	0.000	0.000	6,217.981	0.000	0.000	0.000	:	713.106	4.784
Final consumption - other sectors - not elsewhere specified - energy use	5,696.256	0.000	0.000	3,963.267	0.000	0.000	0.000	:	0.000	1,732.989
Statistical differences	-16,046.235	-3,589.860	-0.061	-13,244.065	0.000	0.000	0.000	0.000	0.000	0.003
Gross electricity production	1,038,566.455	50,478.908	518,392.548	27,893.110	256.183	8,309.840	8,566.024	0.000	:	:
Gross electricity production - main activity producer electricity only	614,867.177	50,478.908	220,024.073	7,422.109	72.292	3,906.313	3,978.605	0.000	:	:
Gross electricity production - main activity producer combined heat and power	287,068.309	0.000	230,711.594	16,027.492	61.740	4,293.025	4,354.765	0.000	:	:
Gross electricity production - autoproducer electricity only	57,978.032	0.000	711.860	15.966	76.457	33.494	109.951	0.000	:	:
Gross electricity production - autoproducer combined heat and power	78,652.937	0.000	66,945.020	4,427.543	45.695	77.008	122.702	0.000	:	:
Gross heat production	223,746.443	0.000	156,170.962	24,372.702	232.133	5,152.997	5,385.130	0.000	0.000	:

Gross heat production - main activity producer combined heat and power	127,529.937	0.000	77,779.112	13,977.290	175.980	5,087.108	5,263.088	0.000	0.000	:
Gross heat production - main activity producer heat only	16,092.501	0.000	11,081.697	172.031	0.000	0.000	0.000	0.000	0.000	:
Gross heat production - autoproducer combined heat and power	80,124.005	0.000	67,310.153	10,223.381	56.153	65.889	122.042	0.000	0.000	:
Gross heat production - autoproducer heat only	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	:

ANNEX 6: NATIONAL EMISSION FACTORS

Monitoring of the carbon content of the fuels used nationally is an ongoing activity at ISPRA. The purpose is to analyse regularly the chemical composition of the used fuel or relevant commercial statistics to estimate the carbon content / emission factor (EF) of the fuels. For each primary fuel (natural gas, oil, coal) a specific procedure has been established.

Starting from 2021 submission the updated atomic weights of Carbon and Oxygen (NIST Chemistry WebBook, SRD 69 - National Institute of Standard and Technology, USA) have been used since 2005 (National Institute of Standard and Technology, USA) to convert carbo content to CO₂ content and viceversa.

A6.1 Natural gas

The national market is characterized by the commercialization of gases with different chemical composition in variable quantities from one year to the other. Since 1990 natural gas has been produced in Italy and imported by pipelines from Russia, Algeria and the Netherlands. Moreover, an NGL facility is importing gas from Algeria and Libya. From 2003-2004 onwards Norway and Libya have also been added to the supply list, through new pipeline connections, and from 2008 a new NGL facility has entered into service, using mainly liquefied gas from Oman. There are also sizeable underground storage facilities and additional pipelines/NGL facilities are planned.

The estimation of an average EF for natural gas is the only way to calculate total emissions from this source in Italy, because the origin of the gas used by final consumers cannot be tracked trough the national statistics and it is subject to variations during the year, according to supply. Only the main industrial installations perform routine checks to estimate the average chemical composition / energy content of natural gas used.

Another task connected to the use of natural gases of different origin and composition is linked to the estimation of an average content of methane to estimate fugitive emissions of this gas from the transmission / distribution network. Since the beginning of the inventory estimations, the average EF of the used gas in Italy has been estimated by the inventory team and it changes every year.

From 2008 in the energy balance, BEN 2008, (MASE, several years [a]) some modifications have occurred; a new average lower heat value has been derived from Eurostat methodology. This new conversion factor did imply a methodological revision to estimate the average national EF. Additionally, the IPCC 2006 guidelines, see table A6.1, contain important information to consider: the recognition of a certain variability of the EF for this source; the estimation of a lower and upper bound for the EFs; the link between energy content and EF; the statement that, by converting to energy units all EFs, their variability can be reduced. Moreover default oxidation factor is estimated to be equal to 1 (full oxidation) (IPCC, 2006).

Each of natural gases transmitted by the grid operator is regularly analyzed at import gates, for budgetary reasons. Energy content for cubic meters, percentage of methane and other substances are calculated. For example, methane content can considerably vary: national produced gas sold to the grid is almost 99% methane (% moles), the one coming from Algeria has less than 85% of methane and significant quantities of propane-butane. Also carbon content varies significantly.

Natural gas properties are more stable referring to the country of origin, with small variations in chemical composition from year to year. Speciation of gas from each import manifold is regularly published by national transmission grid operator (Snam Rete Gas, several years). Other information is also available from the main final users (TERNA, several years).

So, for each year, the average methane and carbon content of the natural gas used in Italy are estimated, using international trade statistical data, and a national emission factor is estimated.

The list of factors for the years of interest is reported in Table A6.1.

As shown in the table, the ranges of national EFs are within the lower and upper threshold of the IPCC 2006 guidelines.

With regard the oxidation factors, increasing values have been used from 0.995 in the 1990 to 1.000 in 2005 according to the improvement of combustion efficiency in the nineties.

Table A6.1 Natural gas carbon emission factors	
--	--

	t CO ₂ / TJ	t CO ₂ / TJ	t CO ₂ / 10 ³ std cubic mt	t CO ₂ / toe
	(stechiometric)			
Natural gas (dry) IPCC '96	55.820	55.820	1.928	2.337
Natural gas, IPCC '06 average	56.100	56.100	1.932	2.349
lower	54.300			
upper	58.300			
National Emission Factors				
Natural gas , 1990	56.103	55.822	1.935	2.337
Natural gas, 1995	56.236	55.955	1.947	2.343
Natural gas , 2000	56.415	56.258	1.955	2.355
Natural gas , 2001	56.337	56.212	1.946	2.353
Natural gas , 2002	56.914	56.819	1.985	2.379
Natural gas, 2003	56.483	56.420	1.974	2.362
Natural gas, 2004	56.450	56.418	1.973	2.362
Natural gas, 2005	56.475	56.475	1.978	2.365
Natural gas, 2006	56.553	56.553	1.979	2.368
Natural gas, 2007	56.444	56.444	1.976	2.363
Natural gas, 2008, with 8190 lhv	57.732	57.732	1.980	2.417
Natural gas, 2009, with 8190 lhv	57.914	57.914	1.986	2.425
Natural gas, 2010, with 8190 lhv	57.945	57.945	1.987	2.426
Natural gas, 2011, with 8190 lhv	57.427	57.427	1.969	2.404
Natural gas, 2012, with 8190 lhv	57.702	57.702	1.979	2.416
Natural gas, 2013, with 8190 lhv	57.447	57.447	1.970	2.405
Natural gas, 2014, with 8190 lhv	57.473	57.473	1.971	2.406
Natural gas, 2015, with 8190 lhv	57.633	57.633	1.976	2.413
Natural gas, 2016, with 8190 lhv	58.140	58.140	1.994	2.434
Natural gas, 2017, with 8190 lhv	58.000	58.000	1.989	2.428
Natural gas, 2018, with 8190 lhv	57.846	57.846	1.984	2.422
Natural gas, 2019, with 8190 lhv	57.746	57.746	1.980	2.418
Natural gas, 2020, with 8190 lhv	57.910	57.910	1.986	2.425
Natural gas, 2021, with 8190 lhv	58.504	58.504	2.006	2.449

Source: ISPRA elaborations

The methodology used to estimate the EF is based on the available data. Each year the quantities of natural gas imported or produced in Italy are published on the web by the MASE <u>https://dgsaie.mise.gov.it/bilancio-gas-naturale</u>. Those data are produced by the national grid operator and are concerned on all imported gas by point of entrance in the country and all natural gas produced. To compare quantities of different gases, the physical quantities of imported/produced gas are normalized to a higher heat value (hhv) equal to 9100 kcal/m³ and standard conditions. Other data input used in the estimation are the average chemical composition and the hhv of the gas at each import "gate" and for the national production. Those data are published by Snam in its yearly "Bilancio di Sostenibilità" (Snam Rete Gas, several years) and with them it is possible to estimate the average carbon content of the fuel. Those data are referred to the physical quantities of imported / produced gas.

So the total quantities of imported gas (normalized at the hhv of 9100) published by MASE are transformed back to the physical quantities of actually imported gas using the hhv ratio and then average carbon content of the total gas imported or produced in Italy can be estimated. Those data are then referred back to the normalized quantities of gas used in national statistics.

Data on final consumption of gas refers to the lower heat value (lhv). In particular the electricity production companies regularly estimate the actual lhv of the gas they are using and this figure is published yearly by TERNA. Operator's data are used to verify the calculation results.

As mentioned above, in the BEN 2008 the average lhv has been changed from 8250 kcal/m³ (historical value) to 8190 kcal/m³, to harmonize national data with Eurostat methodology. Eurostat considers the lhv as being 10% less than hhv, regardless of the actual value. This change influences the EF if it is referred to the energy content (lhv) of the fuel, but it has no influence if the EF is referred to cubic meters.

A6.2 Diesel oil, petrol and LPG

ISPRA set periodical investigations on the carbon content of the main transportation fuels sold in Italy, petrol, diesel and LPG, with the aim of testing the average fuels. The goal of this work is the verification of CO₂ emission factors of Italian energy system, with a particular focus on the transportation sector. The results of analysis of fuel samples performed by "Stazione Sperimentale Combustibili" (APAT, 2003; Innovhub, several years) were compared with emission factors used in Reference Approach of the Intergovernmental Panel for Climate Change (IPCC, 1997; IPCC, 2006) and emission factors considered in the COPERT 4 program (EMISIA SA, 2012).

These two methodologies are widely used to prepare data at the international level but, when applied to the Italian data set produce results with significant differences, around 2- 4%. The reason has been traced back to the emission factors that are referred to the energy content of the fuel for IPCC and to the physical quantities for the COPERT methodology.

The results of the study link the chemical composition to the lhv for a series of fuels representative of the national production, allowing for more precise evaluations of the emission factors.

IPCC 1996 emission factors for diesel fuels and IPCC-Europe for LPG are almost identical to the experimental results (less than 1% difference), and it has been decided to use IPCC emission factors for the period 1990-1999 and the measured EF from the year 2000 onwards. The figures from the last surveys have been used for the years 2017-2021.

Concerning petrol, instead, IPCC 1996 emission factors is quite low and it has to be updated, the reason may be linked to the extensive use of additives in recent years to reach a high octane number after the lead has been phased out. For 2000 and the following years the experimental factor are used, for the period 1990-1999 it has been decided to use an interpolate factor between IPCC emission factors and the measured value, using the lhv as the link between the national products and the international database.

The list of emission factors used is reported in Table A6.2.

Table A6.2 Fuels, national production, carbon emission factors

	t CO ₂ / TJ	t CO ₂ / t	t CO ₂ / toe
Petrol, IPCC / OECD	68.559	3.071	2.870
Petrol, IPCC Europe	72.270	3.148	3.026
Petrol (Italian National Energy Balance), interpolated emission factor 1990-1999	71.034	3.123	2.974
Petrol, experimental averages 2000-2011	71.864	3.143	3.009
Petrol, experimental averages 2012-2016	73.338	3.140	3.071
Petrol, experimental averages 2017-2021	73.081	3.152	3.060
Gas oil, IPCC / OECD	73.274	3.175	3.068
Gas oil, IPCC Europe	73.260	3.108	3.067
Gas oil, 1990 – 1999	73.274	3.129	3.068
Gas oil, engines, experimental averages 2000-2011	73.892	3.171	3.094
Gas oil, engines, experimental averages 2012-2016	73.648	3.151	3.084
Gas oil, engines, experimental averages 2017-2021	73.510	3.150	3.078
Gas oil, heating, experimental averages 2000-2011	74.438	3.175	3.117
Gas oil, heating, experimental averages 2012-2016	73.578	3.155	3.081
Gas oil, heating, experimental averages 2017-2021	73.927	3.169	3.095
LPG, IPCC / OECD	62.392	2.952	2.612
LPG, IPCC / Europe	64.350	3.000	2.694
LPG, 1990 – 1999	62.392	2.873	2.612
LPG, experimental averages 2000-2016	65.592	3.026	2.746
LPG, experimental averages 2017-2021	65.984	3.026	2.763
Biodiesel, experimental averages 2017-2021	74.938	2.803	3.137

Source: ISPRA elaborations

A6.3 Fuel oil

The main information available nationally of fuel oil EF is a sizable difference in carbon content between high sulphur and light sulphur brands. The data were elaborated from literature and from an extensive series of samples (more than 400) analysed by ENEL and made available to ISPRA. Carbon content varies to a certain extent also between the medium sulphur content and the very low sulphur products, but the main discrepancies refer to the high sulphur type. According to the available statistical data, it was possible to trace back to the year 1990 the produced and imported quantities of fuel oil divided between high and low sulphur products and to estimate the average carbon emission factor for the years of interest, see Table A6.3 for details.

	t CO ₂ / TJ (stechiometric)	t CO ₂ / TJ	t CO ₂ / t	t CO ₂ / toe
Fuel oil , IPCC, 1996	77.400	76.626	3.154	3.208
Fuel oil , IPCC, 2006 average	77.400	77.400	3.127	3.241
lower	75.500			
upper	78.800			
National emission factors				
Fuel oil, average 1990	77.339	76.565	3.113	3.206
Fuel oil, average 1995	77.425	76.650	3.129	3.209
Fuel oil, average 2000	76.665	76.239	3.140	3.192
Fuel oil, average 2001	76.655	76.315	3.141	3.195
Fuel oil, average 2002	76.709	76.454	3.148	3.201
Fuel oil, average 2003	76.921	76.750	3.158	3.213
Fuel oil, average 2004	76.939	76.853	3.162	3.218
Fuel oil, average 2005	75.877	75.877	3.144	3.177
Fuel oil, average 2006	75.955	75.955	3.144	3.180
Fuel oil, average 2007	76.328	76.328	3.147	3.196
Fuel oil, average 2008	76.682	76.682	3.145	3.211
Fuel oil, average 2009	76.635	76.635	3.145	3.209
Fuel oil, average 2010	76.865	76.865	3.145	3.218

	t CO ₂ / TJ (stechiometric)	t CO ₂ / TJ	t CO ₂ / t	t CO ₂ / toe
Fuel oil, average 2011	77.063	77.063	3.147	3.226
Fuel oil, average 2012	76.507	76.507	3.145	3.203
Fuel oil, average 2013	76.695	76.695	3.145	3.211
Fuel oil, average 2014	76.698	76.698	3.145	3.211
Fuel oil, average 2015	76.606	76.606	3.144	3.207
Fuel oil, average 2016	76.606	76.606	3.144	3.207
Fuel oil, average 2017	76.690	76.690	3.144	3.211
Fuel oil, average 2018	76.692	76.692	3.144	3.211
Fuel oil, average 2019	76.594	76.594	3.143	3.207
Fuel oil, average 2020	76.497	76.497	3.143	3.203
Fuel oil, average 2021	76.501	76.501	3.143	3.203

Source: ISPRA elaborations

Data for all years are within IPCC 2006 ranges, but it can be noticed that are on the lower side from year 2000 onwards. The change from an average to a low EF is due to the harmful emissions limits and fuel regulations introduced in Italy between 1990 and 2000. Most of the fuel used from 2000 onwards is not heavy, high sulphur, fuel oil but light type, low sulphur. With regard the oxidation factors, increasing values have been used from 0.99 in the 1990 to 1.00 in 2005 according to the improvement of combustion efficiency in the nineties.

A6.4 Coal

Italy has only negligible national production of coal; most part is imported from various countries and there are differences in carbon content of coal mined in different parts of the world. The variations in carbon content can be linked to the hydrogen content and to the LHV of the coal.

An additional national circumstance refers to the absence of long term import contracts. The quantities shipped by the main exporters change considerably from year to year. Detailed data are available in BPT (MASE, several years [b]) supplied from the Ministry of Economic Development and reported for the submission year in Table A6.4.

Country	Coaking coal	Coke	Anthracite	Steam coal	Lignite	Total Coal	Petroleum coke/Pitch
GERMANY					1,305	1,305	
GREECE						0	5,250
POLAND	99,183					99,183	
CZECH REPUBLIC	2,486					2,486	
NETHERLANDS						0	2,554
SLOVAKIA			1,588			1,588	
SLOVENIA			49			49	
SPAIN				728,028		728,028	41,350
UNGHERIA	28,662					28,662	
TOTAL EU	130,331	0	1,637	728,028	1,305	861,300	49,154
INDIA	171,068					171,068	
AUSTRALIA		514,124				514,124	
BOSNIA-	8,668					8,668	
ERZEGOVINA							
CANADA	37,026	163,634				200,660	
CHINA	147,646					147,646	
COLOMBIA				215,931		215,931	
ABUDHABI			11,237			11,237	
JAPAN	20,482					20,482	
INDONESIA						0	
RUSSIA	81,429		111,956	4,796,073		4,989,458	
SOUTH AFRICA				280,594		280,594	

Table A6.4 – Coal imported by country in 2021 (Mg)

Country	Coaking coal	Coke	Anthracite	Steam coal	Lignite	Total Coal	Petroleum coke/Pitch
U.S.A.	35,042	949,464		150,638		1,135,144	926,635
TOTAL NON_EU	501,361	1,627,222	123,193	5,443,235	0	7,695,011	926,635
TOTAL	1,627,222	631,692	124,830	6,171,263	1,305	8,556,311	973,235

Source: MASE, several years [b]

Therefore an attempt was made to find out a methodology allowing for a more precise estimation of the carbon content of this fuel. It is possible, using literature data for the coals and detailed statistical records of international trade, to find out the weighted average of carbon content and of the LHV of the fuel imported to Italy each year. The still unresolved problem is how to properly link statistical data, referred to the coal "as it is" without specifying moisture and ash content of the product, to the literature data, referring to sample coals.

The intention is to improve the quality of the collected statistical data including moisture content of coals; currently this obstacle has been overcome with the following procedure:

- using an ample set of experimental data on coals imported in a couple of years on an extensive series of samples, more than 200, analysed by ENEL (the main electricity producing company in Italy) it was possible to correlate "as it is" LHV and carbon content to the average properties of the coals imported in the same period of time and calculated from literature data (EMEP/CORINAIR, 2007);
- for each inventory year, it was possible to calculate the weighted average of LHV and carbon content of imported coals using available literature data;
- using this calculated data and the correlation found out, the estimate of carbon content of the average "as it is" coal reported in the statistics was possible.

Using this methodology and the available statistical data, it was possible to trace back to the year 1990 the average LHV of the imported coal and estimate average carbon EF for each year, see Table A6.4 for detailed data. The results do not show impressive changes yearly; anyway a noticeable difference in the emission factor is highlighted in the table. In Table A6.5 updated coal EFs are reported. National emission factors result in the range given by the lower and upper values for "other bituminous coal" in the IPCC 2006 Guidelines (IPCC, 2006).

From the 2011 submission, with the aim to improve the estimation of the coal CO₂ emission factors an in depth analysis of data reported in the framework of the European emissions trading scheme has been carried out. In consideration that these data referring to emission factors and activity data are validated and the amount of fuel reported accounts for more than 90% of the national coal fuel consumption, the average coal CO₂ emission factors, resulting from ETS data, have been applied from 2005.

With regard the oxidation factors, increasing values have been used from 0.98 in the 1990 to 1.00 in 2005 according to the improvement of combustion efficiency in the nineties.

Table A6.5 – Coal, average carbon emission factors

	t CO ₂ / TJ	t CO ₂ / TJ	t CO ₂ / t	t CO ₂ / toe
	(stechiometric)			
Other bituminous coal, IPCC 1996	94.600	92.708	2.427	3.881
Other Bituminous coal, IPCC 2006, av	94.600	94.600	2.441	3.961
lower	89.500			
upper	99.700			
National emission factors				
Steam coal, 1990	96.512	94.582	2.502	3.960
Steam coal, 1995	95.926	94.007	2.519	3.936
Steam coal, 2000	93.312	92.276	2.427	3.863
Steam coal, 2001	95.304	94.457	2.463	3.955
Steam coal, 2002	94.727	94.096	2.457	3.940
Steam coal, 2003	95.385	94.961	2.476	3.976
Steam coal, 2004	95.382	95.170	2.476	3.985
Steam coal, 2005	94.305	94.305	2.399	3.948
Steam coal, 2006	93.741	93.741	2.346	3.925
Steam coal, 2007	94.078	94.078	2.324	3.939
Steam coal, 2008	93.451	93.451	2.287	3.913
Steam coal, 2009	93.847	93.847	2.325	3.929
Steam coal, 2010	93.697	93.697	2.317	3.923
Steam coal, 2011	93.365	93.365	2.318	3.909
Steam coal, 2012	93.667	93.667	2.346	3.922
Steam coal, 2013	93.645	93.645	2.331	3.921
Steam coal, 2014	94.029	94.029	2.339	3.937
Steam coal, 2015	94.619	94.619	2.335	3.962
Steam coal, 2016	95.092	95.092	2.350	3.981
Steam coal, 2017	93.886	93.886	2.361	3.931
Steam coal, 2018	94.340	94.340	2.345	3.950
Steam coal, 2019	95.278	95.278	2.375	3.989
Steam coal, 2020	94.013	94.013	2.356	3.936
Steam coal, 2021	93.078	94.014	2.334	3.897

Source: ISPRA elaborations

A6.5 Other fuels

Country specific emission factors have been calculated for other fuels and included in the inventory on account of the analysis of data reported by plants in the framework of the European emissions trading scheme. In consideration that these data referring to emission factors and activity data are validated and the amount of fuels reported accounts for more than 90% of the national fuels consumption, the average CO₂ emission factors have been applied from 2005.

In the following, values of CO₂ emission factors are specified for the different fuels. From 2005, figures result from a weighted average of ETS data; before that period, emission factors derive from literature data or other national data collection.

Oxidation factors have been considered equal to 1 for all the fuels (IPCC, 2006) with exception of residual gases of chemical processes where the oxidation factors resulting from ETS data have been used.

Table A6.6 – Refinery gas, average carbon emission factors

Refinery gas	t CO ₂ / TJ (stechiometric)	t CO ₂ / TJ	t CO ₂ / t	t CO_2 / toe
Refinery gas, 1990-2004	57.600	57.600	2.851	2.412
Refinery gas, 2005	58.320	58.320	2.756	2.442
Refinery gas, 2006	57.369	57.369	2.644	2.402
Refinery gas, 2007	57.110	57.110	2.645	2.391
Refinery gas, 2008	58.137	58.137	2.686	2.434
Refinery gas, 2009	57.477	57.477	2.673	2.406
Refinery gas, 2010	56.750	56.750	2.652	2.376
Refinery gas, 2011	57.291	57.291	2.689	2.399
Refinery gas, 2012	57.269	57.269	2.701	2.398
Refinery gas, 2013	57.447	57.447	2.649	2.405
Refinery gas, 2014	57.095	57.095	2.634	2.390
Refinery gas, 2015	56.865	56.865	2.653	2.381
Refinery gas, 2016	58.210	58.210	2.652	2.437
Refinery gas, 2017	58.110	58.110	2.644	2.433
Refinery gas, 2018	58.307	58.307	2.657	2.441
Refinery gas, 2019	56.465	56.465	2.660	2.364
Refinery gas, 2020	56.146	56.146	2.639	2.351
Refinery gas, 2021	56.014	56.014	2.649	2.345

Source: ISPRA elaborations

Table A6.7 – Coke oven gas, average carbon emission factors

Coke oven gas	t CO ₂ / TJ	t CO ₂ / TJ	t CO ₂ / 10 ³ std cubic mt	t CO ₂ / toe
Calua avera ana 1000 2004	(stechiometric)	42 111	0.007	1 702
Coke oven gas, 1990-2004	42.111	42.111	0.807	1.763
Coke oven gas, 2005	42.128	42.128	0.754	1.764
Coke oven gas, 2006	42.678	42.678	0.743	1.787
Coke oven gas, 2007	42.416	42.416	0.714	1.776
Coke oven gas, 2008	42.250	42.250	0.733	1.769
Coke oven gas, 2009	42.980	42.980	0.748	1.799
Coke oven gas, 2010	42.816	42.816	0.735	1.793
Coke oven gas, 2011	43.328	43.328	0.746	1.814
Coke oven gas, 2012	44.046	44.046	0.773	1.844
Coke oven gas, 2013	42.861	42.861	0.760	1.794
Coke oven gas, 2014	43.767	43.767	0.775	1.832
Coke oven gas, 2015	43.314	43.314	0.751	1.813
Coke oven gas, 2016	43.700	43.700	0.758	1.830
Coke oven gas, 2017	43.877	43.877	0.758	1.837
Coke oven gas, 2018	44.008	44.008	0.763	1.843
Coke oven gas, 2019	44.820	44.820	0.792	1.877
Coke oven gas, 2020	45.854	45.854	0.844	1.920
Coke oven gas, 2021	45.490	45.490	0.830	1.905

Source: ISPRA elaborations

Table A6.8 – Blast furnace gas, average carbon emission factors

Blast furnace gas	t CO₂ / TJ (stechiometric)	t CO ₂ / TJ	t CO ₂ / 10 ³ std cubic mt	t CO ₂ / toe
Blast furnace gas, 1990-2004	270.575	270.575	0.954	11.328
Blast furnace gas, 2005	263.653	263.653	0.870	11.039
Blast furnace gas, 2006	255.948	255.948	0.849	10.716
Blast furnace gas, 2007	261.469	261.469	0.835	10.947
Blast furnace gas, 2008	256.133	256.133	0.838	10.724
Blast furnace gas, 2009	259.560	259.560	0.834	10.867
Blast furnace gas, 2010	257.390	257.390	0.863	10.776
Blast furnace gas, 2011	255.351	255.351	0.877	10.691
Blast furnace gas, 2012	252.808	252.808	0.885	10.585
Blast furnace gas, 2013	251.428	251.428	0.929	10.527
Blast furnace gas, 2014	245.964	245.964	0.958	10.298

Blast furnace gas	t CO ₂ / TJ	t CO ₂ / TJ	t CO ₂ / 10 ³ std cubic mt	t CO ₂ / toe
	(stechiometric)			
Blast furnace gas, 2015	250.072	250.072	0.931	10.470
Blast furnace gas, 2016	247.893	247.893	0.952	10.379
Blast furnace gas, 2017	249.927	249.927	0.877	10.464
Blast furnace gas, 2018	250.282	250.282	0.862	10.479
Blast furnace gas, 2019	249.335	249.335	0.877	10.439
Blast furnace gas, 2020	251.043	251.043	0.883	10.511
Blast furnace gas, 2021	247.920	247.920	0.918	10.380

Source: ISPRA elaborations

Table A6.9 – Oxygen furnace gas, average carbon emission factors

Oxygen furnace gas	t CO ₂ / TJ (stechiometric)	t CO ₂ / TJ	t CO ₂ / 10 ³ std cubic mt	t CO ₂ / toe
Oxygen furnace gas, 1990-2004	195.086	195.086	1.504	8.168
Oxygen furnace gas, 2005	197.579	197.579	1.437	8.272
Oxygen furnace gas, 2006	202.372	202.372	1.390	8.473
Oxygen furnace gas, 2007	195.871	195.871	1.320	8.201
Oxygen furnace gas, 2008	196.465	196.465	1.277	8.226
Oxygen furnace gas, 2009	196.970	196.970	1.253	8.247
Oxygen furnace gas, 2010	197.029	197.029	1.216	8.249
Oxygen furnace gas, 2011	198.482	198.482	1.160	8.310
Oxygen furnace gas, 2012	198.199	198.199	1.226	8.298
Oxygen furnace gas, 2013	185.522	185.522	1.068	7.767
Oxygen furnace gas, 2014	200.970	200.970	1.335	8.414
Oxygen furnace gas, 2015	201.532	201.532	1.351	8.438
Oxygen furnace gas, 2016	203.868	203.868	1.309	8.536
Oxygen furnace gas, 2017	199.257	199.257	1.305	8.343
Oxygen furnace gas, 2018	192.862	192.862	1.353	8.075
Oxygen furnace gas, 2019	194.622	194.622	1.387	8.148
Oxygen furnace gas, 2020	195.877	195.877	1.387	8.148
Oxygen furnace gas, 2021	192.710	192.710	1.397	8.068

Source: ISPRA elaborations

Table A6.10 – Heavy residual fuels, average carbon emission factors

Heavy residual fuels	t CO ₂ / TJ (stechiometric)	t CO ₂ / TJ	t CO ₂ / t	t CO ₂ / toe
Heavy residual fuels, 1999-2006	81.817	81.817	3.213	3.426
Heavy residual fuels, 2007	81.823	81.823	3.214	3.426
Heavy residual fuels, 2008	80.350	80.350	3.156	3.364
Heavy residual fuels, 2009	79.612	79.612	3.125	3.333
Heavy residual fuels, 2010	79.036	79.036	3.108	3.309
Heavy residual fuels, 2011	79.160	79.160	3.091	3.314
Heavy residual fuels, 2012	79.359	79.359	3.098	3.323
Heavy residual fuels, 2013	80.756	80.756	3.145	3.381
Heavy residual fuels, 2014	80.499	80.499	3.135	3.370
Heavy residual fuels, 2015	79.738	79.738	3.105	3.338
Heavy residual fuels, 2016	79.700	79.700	3.104	3.337
Heavy residual fuels, 2017	80.104	80.104	3.120	3.354
Heavy residual fuels, 2018	79.824	79.824	3.109	3.342
Heavy residual fuels, 2019	79.929	79.929	3.113	3.346
Heavy residual fuels, 2020	80.466	80.466	3.134	3.369
Heavy residual fuels, 2021	80.466	80.466	3.134	3.369

Source: ISPRA elaborations

Table A6.11 – Synthesis gas, average carbon emission factors

Synthesis gas	t CO ₂ / TJ (stechiometric)	t CO ₂ / TJ	t CO ₂ / t	t CO ₂ / toe
Synthesis gas, 1999-2005	98.103	98.103	0.906	4.107

Synthesis gas, 2006	98.566	98.566	0.982	4.127
Synthesis gas, 2007	98.321	98.321	0.830	4.117
Synthesis gas, 2008	98.860	98.860	0.886	4.139
Synthesis gas, 2009	105.956	105.956	0.956	4.436
Synthesis gas, 2010	110.487	110.487	0.910	4.626
Synthesis gas, 2011	109.188	109.188	0.915	4.571
Synthesis gas, 2012	106.913	106.913	0.881	4.476
Synthesis gas, 2013	100.817	100.817	0.895	4.221
Synthesis gas, 2014	100.596	100.596	0.898	4.212
Synthesis gas, 2015	100.732	100.732	0.930	4.217
Synthesis gas, 2016	103.993	103.993	0.929	4.354
Synthesis gas, 2017	103.043	103.043	0.983	4.314
Synthesis gas, 2018	109.145	109.145	1.009	4.570
Synthesis gas, 2019	104.034	104.034	0.948	4.356
Synthesis gas, 2020	102.912	102.912	0.870	4.309
Synthesis gas, 2021	97.899	97.899	1.196	4.099

Source: ISPRA elaborations

Table A6.12 – Residual gas of chemical processes, average carbon emission factors

Residual gas of chemical processes	t CO ₂ / TJ (stechiometric)	Oxidation factor	t CO ₂ / TJ	t CO ₂ / t	t CO ₂ / toe
Residuals gas of chem. processes, 1990-2007	51.500	0.995	51.243	2.365	2.145
Residuals gas of chem. processes, 2008	51.308	0.995	51.052	2.505	2.137
Residuals gas of chem. processes, 2009	50.588	0.995	50.342	2.502	2.108
Residuals gas of chem. processes, 2010	50.361	0.996	50.151	2.295	2.100
Residuals gas of chem. processes, 2011	50.610	0.995	50.379	2.514	2.109
Residuals gas of chem. processes, 2012	51.246	0.996	51.016	2.252	2.136
Residuals gas of chem. processes, 2013	47.524	1.000	47.524	2.073	1.990
Residuals gas of chem. processes, 2014	42.961	1.000	42.961	2.012	1.799
Residuals gas of chem. processes, 2015	47.850	1.000	47.850	2.165	2.003
Residuals gas of chem. processes, 2016	47.368	1.000	47.368	2.025	1.983
Residuals gas of chem. processes, 2017	47.594	1.000	47.594	1.996	1.993
Residuals gas of chem. processes, 2018	47.279	1.000	47.279	2.024	1.979
Residuals gas of chem. processes, 2019	52.317	1.000	52.317	1.957	2.190
Residuals gas of chem. processes, 2020	48.247	1.000	48.247	1.937	2.020
Residuals gas of chem. processes, 2021	47.640	1.000	47.640	1.940	1.995

Source: ISPRA elaborations

Table A6.13 – Petroleum coke for no refinery plants, average carbon emission factors

Petroleum coke	t CO ₂ / TJ (stechiometric)	t CO ₂ / TJ	t CO ₂ / t	t CO ₂ / toe
Petroleum coke, 1990-2004	97.500	97.500	3.169	4.082
Petroleum coke, 2005	92.957	92.957	3.097	3.892
Petroleum coke, 2006	93.295	93.295	3.125	3.906
Petroleum coke, 2007	93.427	93.427	3.193	3.912
Petroleum coke, 2008	93.525	93.525	3.203	3.916
Petroleum coke, 2009	94.106	94.106	3.227	3.940
Petroleum coke, 2010	93.679	93.679	3.160	3.922
Petroleum coke, 2011	93.715	93.715	3.219	3.924
Petroleum coke, 2012	93.303	93.303	3.207	3.906
Petroleum coke, 2013	93.178	93.178	3.128	3.901
Petroleum coke, 2014	93.513	93.513	3.122	3.915
Petroleum coke, 2015	93.771	93.771	3.132	3.926
Petroleum coke, 2016	93.459	93.459	3.121	3.913
Petroleum coke, 2017	93.465	93.465	3.129	3.913
Petroleum coke, 2018	93.680	93.680	3.122	3.922
Petroleum coke, 2019	93.498	93.498	3.117	3.915
Petroleum coke, 2020	93.368	93.368	3.126	3.909
Petroleum coke, 2021	93.331	93.331	3.126	3.908

Source: ISPRA elaborations

Table A6.14 – Petroleum coke for refinery plants, average carbon emission factors

Petroleum coke	t CO ₂ / TJ (stechiometric)	t CO ₂ / TJ	t CO ₂ / t	t CO ₂ / toe
Petroleum coke, 2010	100.684	100.684	3.428	4.215
Petroleum coke, 2011	99.331	99.331	3.413	4.159
Petroleum coke, 2012	100.081	100.081	3.435	4.190
Petroleum coke, 2013	99.336	99.336	3.415	4.159
Petroleum coke, 2014	95.879	95.879	3.400	4.014
Petroleum coke, 2015	96.778	96.778	3.432	4.052
Petroleum coke, 2016	101.995	101.995	3.416	4.270
Petroleum coke, 2017	96.734	96.734	3.430	4.050
Petroleum coke, 2018	97.295	97.295	3.422	4.074
Petroleum coke, 2019	96.929	96.929	3.437	4.058
Petroleum coke, 2020	97.082	97.082	3.442	4.065
Petroleum coke, 2021	96.536	96.536	3.423	4.042

Source: ISPRA elaborations

Table A6.15 – Coke, average carbon emission factors

Coke	t CO ₂ / TJ	t CO ₂ / TJ	t CO ₂ / t	t CO ₂ / toe
	(stechiometric)	100.101	0.470	
Coke, 1990-2004	110.368	108.161	3.170	4.528
Coke, 2005	110.916	110.916	3.246	4.644
Coke, 2006	111.049	111.049	3.181	4.649
Coke, 2007	111.814	111.814	3.191	4.681
Coke, 2008	111.649	111.649	3.187	4.675
Coke, 2009	111.303	111.303	3.161	4.660
Coke, 2010	109.079	109.079	3.125	4.567
Coke, 2011	110.380	110.380	3.188	4.621
Coke, 2012	112.969	112.969	3.309	4.730
Coke, 2013	111.113	111.113	3.172	4.652
Coke, 2014	109.195	109.195	3.198	4.572
Coke, 2015	109.728	109.728	3.206	4.594
Coke, 2016	109.533	109.533	3.217	4.586
Coke, 2017	108.755	108.755	3.237	4.553
Coke, 2018	108.864	108.864	3.218	4.558
Coke, 2019	108.590	108.590	3.169	4.546
Coke, 2020	107.471	107.471	3.181	4.500
Coke, 2021	108.616	108.616	3.155	4.548

Source: ISPRA elaborations

Table A6.16 – Coking coal, average carbon emission factors

Coking coal	t CO ₂ / TJ (stechiometric)	t CO ₂ / TJ	t CO ₂ / t	t CO ₂ / toe
Coking coal, 1990-2004	94.600	94.600	2.668	3.961
Coking coal, 2005	92.466	92.466	2.971	3.871
Coking coal, 2006	94.058	94.058	2.968	3.938
Coking coal, 2007	94.479	94.479	2.971	3.956
Coking coal, 2008	94.869	94.869	2.961	3.972
Coking coal, 2009	94.718	94.718	2.970	3.966
Coking coal, 2010	94.627	94.627	3.007	3.962
Coking coal, 2011	95.459	95.459	2.999	3.997
Coking coal, 2012	95.380	95.380	3.014	3.993
Coking coal, 2013	94.381	94.381	2.982	3.952
Coking coal, 2014	93.983	93.983	2.991	3.935
Coking coal, 2015	94.457	94.457	2.995	3.955
Coking coal, 2016	94.171	94.171	2.967	3.943
Coking coal, 2017	94.004	94.004	2.967	3.936
Coking coal, 2018	95.361	95.361	2.974	3.993
Coking coal, 2019	94.676	94.676	2.948	3.964
Coking coal, 2020	94.947	94.947	2.966	3.975
Coking coal, 2021	94.757	94.757	2.938	3.967

Source: ISPRA elaborations

Table A6.17 – Anthracite, average carbon emission factors

Anthracite	t CO ₂ / TJ (stechiometric)	t CO ₂ / TJ	t CO ₂ / t	t CO_2 / toe
Anthracite, 1990-2004	98.300	98.300	2.625	4.116
Anthracite, 2005	93.035	93.035	2.856	3.895
Anthracite, 2006	95.127	95.127	2.817	3.983
Anthracite, 2007	97.722	97.722	2.796	4.091
Anthracite, 2008	97.183	97.183	2.764	4.069
Anthracite, 2009	98.335	98.335	2.861	4.117
Anthracite, 2010	97.416	97.416	2.844	4.079
Anthracite, 2011	99.465	99.465	2.911	4.164
Anthracite, 2012	98.717	98.717	2.870	4.133
Anthracite, 2013	98.348	98.348	2.886	4.118
Anthracite, 2014	97.960	97.960	2.877	4.101
Anthracite, 2015	101.373	101.373	2.906	4.244
Anthracite, 2016	101.630	101.630	2.924	4.255
Anthracite, 2017	103.107	103.107	3.027	4.317
Anthracite, 2018	100.405	100.405	3.005	4.204
Anthracite, 2019	105.114	105.114	3.033	4.401
Anthracite, 2020	104.757	104.757	2.964	4.386
Anthracite, 2021	104.131	104.131	3.021	4.360

Source: ISPRA elaborations

Table A6.18 –Industrial waste (fossil), average carbon emission factors

Industrial waste	t CO ₂ / TJ (stechiometric)	t CO ₂ / TJ	t CO ₂ / t	t CO_2 / toe
Industrial waste, 2005-2012	79.968	79.968	1.924	3.348
Industrial waste, 2013	79.076	79.076	1.853	3.311
Industrial waste, 2014	81.851	81.851	1.931	3.427
Industrial waste, 2015	78.976	78.976	1.988	3.307
Industrial waste, 2016	78.592	78.592	2.019	3.291
Industrial waste, 2017	82.164	82.164	2.090	3.440
Industrial waste, 2018	80.019	80.019	2.034	3.350
Industrial waste, 2019	81.243	81.243	2.093	3.401
Industrial waste, 2020	79.915	79.915	2.070	3.346
Industrial waste, 2021	81.473	81.473	2.027	3.411

Source: ISPRA elaborations

ANNEX 7: AGRICULTURE SECTOR

Additional information used for estimating categories 3A, 3B and 3D from the agriculture sector is reported in this section.

A7.1 Enteric fermentation (3A)

The time series of the parameters used for estimating the Dairy Cattle EF using the Tier 2 approach, are reported in Table A.7.1. Information on the equations used for estimating the different net energy (NE_m , NE_g , etc.) is described in the 2006 IPCC Guidelines (IPCC, 2006).

	NE _m (MJ/day)	NE _a (MJ/day)	NE _g (MJ/day)	NE _l (MJ/day)	NE _w (MJ/day)	NE _p (MJ/day)	REM	REG	DE (%)	GE (MJ/day)	Ү _М (%)
1990	46.95	0.40	0.97	33.52	0.000	4.57	0.514	0.308	65.00	260.66	6.50%
1995	46.95	0.40	0.97	43.38	0.000	4.45	0.514	0.308	65.00	289.83	6.50%
2000	46.95	0.40	0.97	44.31	0.000	4.35	0.514	0.308	65.00	292.33	6.50%
2005	46.95	0.40	0.97	50.84	0.000	4.27	0.519	0.316	66.45	301.97	6.18%
2010	46.95	0.40	0.97	55.54	0.000	4.23	0.522	0.322	67.68	307.49	6.08%
2015	46.95	0.40	0.97	56.89	0.000	4.18	0.522	0.321	67.51	312.24	6.09%
2017	46.95	0.40	0.97	61.89	0.000	4.26	0.523	0.324	68.02	323.31	6.05%
2018	46.95	0.40	0.97	65.46	0.000	4.26	0.524	0.325	68.33	331.20	6.02%
2019	46.95	0.40	0.97	67.67	0.000	4.26	0.525	0.327	68.63	335.36	6.00%
2020	46.95	0.40	0.97	71.74	0.000	4.30	0.525	0.327	68.77	345.77	5.98%
2021	46.95	0.40	0.97	74.94	0.000	4.34	0.525	0.327	68.69	355.27	5.99%

Table A.7.1 Parameters used for the Tier 2 approach - dairy cattle

Source: ISPRA elaborations.

For non-dairy cattle, data on nitrogen excreted are derived by the Nitrogen Balance Inter-regional Project that involved Emilia Romagna, Lombardy, Piedmont and Veneto regions, where animal breeding is concentrated and for that they have been assumed representative of the national level.

The project was aimed to develop models to calculate the nitrogen balance for different types of breeding, including cattle. The following information was collected: the movement of the heads and feed at farm level, animal nutrition plans, feed consumption per animal category and bred, management techniques, reproductive phase and the productive results, mortality, age, weight at different growth and fattening phases, number and type of stable places in the herd, the type of simple feed or compound feed used, the estimated nitrogen content, the composition of the feed ration, average levels daily consumption per animal category and stage of breeding cycle (Xiccato et al., 2004).

The survey data related to replacement heifers and other non-dairy cattle are described below.

Replacement heifers

Breeding performance

In Table A.7.2 the national average values of the main characteristics of the replacement heifers breeding are reported. Friesian, Brown and Red-spotted livestock breeds have been considered.

The national value is the average of the result of the survey carried out in Veneto, Emilia Romagna, Lombardy and Piedmont which monitors the feed consumption, the composition of the rations and the numeric movements and weight of livestock in the period between 2002 and 2003. For Veneto, specifically, data from 89 representative farms, for a total of 8,466 heads, were collected (Regione Veneto, 2008; Bittante et al., 2004).

Table A.7.2 Main characteristics of the replacement heifers breeding

Type of feed over the years	Unit of measure	Average value	Sd (2)
Age at weaning	day	85	23
Age at first calving	month	28.5	

Type of feed over the years	Unit of measure	Average value	Sd (2)
Live weight at birth	kg/head	39	
Average live weight at weaning	kg/head	101	19
Average live weight at first calving	kg/head	540	
Feed ration distribution			
Traditional	%	25	
Unifeed	%	38	
Mixed	%	37	
Intake of dry matter from weaning at first calving	kg/head/period	6473	1459
Daily dry matter intake	kg/d	8.24	1.89
Average crude protein ration (Nx6,25)	kg/kg	0.121	0.018
Nitrogen balance			
N consumed from birth to weaning	kg/head/period	5.3	2.7
N consumed from weaning to calving	kg/head/period	123.9	29.7
N retention in products from birth to calving	kg/head/period	14.41	
N excreted from birth to calving	kg/head/period	114.8	29.6
N annually excreted	kg/head/year	48.3 (1)	12.5

(1) the value was divided by the average weight and used to calculate the annual average nitrogen excretion for females from breeding between 1 and 2 years and more than 2 years (reported in CRPA, 2006[a]); (2) Standard deviation.

Feed consumption and composition of rations

Average value of dry matter intake from weaning at first calving is 6473 kg/head/period (8.24 kg of dry matter intake per day).

Animals receive rations based, even in summer, on hay fodder, corn silage and fibrous products with minimal additions of feed concentrates.

The protein content of these rations is on average 12% of dry matter intake. The use of fresh grass is generally avoided, the best fodder is normally reserved for dairy cows and the inferior fodder for the replacement heifers.

Digestibility

The feed ration is rich in fiber (as described above) and therefore less digestible than the ration of fattening animals. Methane conversion factors were estimated with the formula proposed by Ellis et al (Ellis et al, 2007) based on daily DMI and forages proportion (FP) in the diet (see section below CH₄ conversion factors for non-dairy cattle category).

Other cattle

Breeding performance

A revision of the feeding plan, diets and slaughtering categories were made on the bases of an up-dated literature and research results. The review also takes in account the development that beef cattle breeding has undergone since the early 2000s, when alongside the breeding of animals of specialised breeds (mainly imported calves), the practice of using dairy females fertilised with beef bull semen to obtain cross-breeds for slaughter was widely introduced. Based on the information gathered by CRPA in the bibliography and field experiences, the dry matter intake values were updated. In addition, the Ym values in use were recalculated with the Ellis formula based on the updated results of the composition of the diets.

In Italy there are different types of beef cattle breeding, which can be traced back to 3 main cases (CRPA, 2011[b]):

- farms oriented to the fattening phase only, widespread in particular in regions of the Po Valley. This production model mainly uses calves over 6 months old, whose final growing-fattening phase is carried out in confinement farms ("ristallo"). This type of breeding in the northern Italian plain guarantees the largest physical flow of product to the beef supply chain in Italy;
- farms with suckler cows that wean calves that are then fattened. Placed mainly in the regions of Central-Southern Italy and in Piedmont. Cows are from specialized breeds for the production of meat, mostly of national origin (Marchigiana, Chianina, Piemontese), French breeds like Limousine and double purpose breeds;

- extensive breeding with national rustic breeds, followed in particular in southern Italy and islands, generally located in the internal hilly and mountainous areas; these farms are now marginal in terms of meat quantity, but provide niche products.

The concentration of other cattle is in the northern area of Italy, and more specifically in Piedmont (21%) Veneto (19%), and Lombardy (14%) more than half of the beef cattle of the national herd (ISMEA, 2022).

Today less than 10% of the animals in the meat supply chain belong to local meat breeds, and 26% of the herd is made up of crossbreeds. Meat supply is mainly represented by cattle between 1 and 2 years of age (57%), "late-career" cattle over two years of age account for about 20% of the national supply, and cattle slaughtered before one year of age are the 23% (ISMEA, 2022).

Feed consumption and composition of rations

Since the beginning of the sixties, the intensive farming under confinement, the most prevalent in the Po valley, has been closely linked to the development of the cultivation of maize, as the main energy source, and the availability of flour from imported soybean, as a protein source (Regione Veneto, 2008). In the same years, in agricultural areas in Northern Italy a substantial abandonment of the cattle from traditional meat, based on a wide use of permanent and/or temporary fodder was recorded. This process has developed as a result of the development of the product ensiling technique obtained by chopping of the whole plant, harvested in the milky-wax ripeness phase of kernels (corn silage). The use of corn silage increases by about 50% the amount of energy per hectare, reducing, consequently, the cost of the unit forage (Regione Veneto, 2008). The use of corn silage and concentrated feed, suitably integrated, in diets for cattle, increases the speed of growth of animals, improving the energy efficiency of the ration, reducing the duration of the production cycle and raising the yields of slaughter and the qualitative level of carcasses and meat (Regione Veneto, 2008).

A recent manual on ruminant feeding in Italy (Cevolani D. *et al*, 2021; 2022) provides useful information on the diet of beef cattle.

Ration feed	Growing kg/head/day	Fattening kg/head/day	Growing kg/head/d	Fattening kg/head/d
			ay	ay
Corn silage	7	9	0	0
Straw	0.5	0.5	1	1
Corn flour	3.5	5	5	6.2
Soibean meal	1	0.8	0.8	0.8
Sugar beet pulp, dehydrated	1	0.7	1.5	1.5
Sunflouwer meal	0.5	0.5	0.5	0.5
Oils/fats	0.2	0.3	0.2	0.3
Supplement	0.2	0.2	0.2	0.2
Forages total	7.5	9.5	1	1
Concentrate total	6.4	7.5	8.2	9.5
DMI intake	13.9	17	9.2	10.5
% Forages	53.96	55.88	10.87	9.52
% Concentrate	46.04	44.12	89.13	90.48

Table A.7.3 Examples of rationing for growth/fattening beef cattle with corn silage	and without (dry feeding)
---	---------------------------

Source: Cevolani D. et al, 2022.

Table A.7.4 Examples of rationing for suckler cow and beef cattle

Ration feed	Gestation kg/head/day	Lactation kg/head/day	Growing kg/head/d ay	Fattening kg/head/d ay
Pastures	25	25	0	0
Нау	3.5	3.5	1.5	1.0
Straw	2.5	1.5	0.5	0.5
Concentrate	1.0	5.0	4.0	7.0

Ration feed	Gestation kg/head/day	Lactation kg/head/day	Growing kg/head/d	Fattening kg/head/d	
			ay	ay	
Corn silage	0	0	6.0	8.0	
Forages total	31	30	8	9.5	
Concentrate total	1	5	4	7	
DMI intake	32	35	12	16.5	
% Forages	96.88	85.71	66.67	57.58	
% Concentrate	3.13	14.29	33.33	42.42	

Source: Cevolani D. et al, 2021.

Those data are in line with the survey conducted on 135 farms in Veneto, Lombardy and Piedmont on the average type of the feed composition and crude protein content of rations for Charolais cattle (Cozzi, 2007 – see Table A.7.5). Despite some differences between farms located in different regions it is observed that in all cases the corn silage, the corn mash and cereals are the main constituents of rations. The use of dried beet pulp, in particular in the Veneto region, was significant. In Veneto and Lombardy, the long-fiber forages are represented almost exclusively by straw, while in Piedmont these are partially or totally replaced by permanent pasture hay. The supplement of protein is generally based on soybean flour. The protein content is in all cases around 14% of dry matter, a content slightly lower than that found by Xiccato et al., (Xiccato et al., 2005) on 40 farms in Veneto (14.4% + 0.9%) and slightly higher than that found by Mazzenga et al., (Mazzenga et al., 2007) on 406 farms in the Po valley (13% + 1.1%).

Table A.7.5 Feed and chemical composition of total mixed rations for Charolais cattle in different regions – data of feed ration in dry matter

Ration feed	Veneto	Lombardy	Piedmont
Farms, n.	101	23	11
Feed ration, kg			
Silage corn	2.99	3.46	2.12
Mash corn	0.52	0.91	1.76
Cereals, flour and grains	0.86	0.58	0.67
Dried beet pulp	0.39	0.21	0.18
Fodder long fiber	0.61	0.61	0.87
Protein supplements, vitamins and minerals	2.00	2.26	2.09
Molasses and vegetable fats	0.09	0.09	0.17
Chemical composition:			
Dry matter %	55.2	52.6	62.3
Crude protein %	14.0	13.9	14.0
Total forages	4.50	5.19	4.92
Total concentrates	2.95	2.93	2.93
Total feed	7.45	8.11	7.86
% of concentrates	40	36	37
% of forages	60	64	63

Source: Cozzi, 2007.

Taking in consideration also values of DMI reported by Grossi (Grossi et al, 2022) and by the Association of Piemontese breeders (ANABORAPI, 2022), and also some direct experience on field, value of DMI reference consumption is evaluated by CRPA (see section CH4 conversion factors for non-dairy cattle category).

In general, dry matter consumption is reported in the bibliography by weight classes, but within weight classes females are rarely distinguished from males.

Digestibility

As mentioned above, the rations consist mainly of silage and cereals and for fattening animals the ration has been assumed more digestible.

This assumption is supported by a recent survey on dry matter (DM) total tract apparent digestibility in beef cattle (Pacchioli et al, 2023), carried-out on Charolais male in growing and finishing periods feed with wheat silage and corn mash as fodder bases. DM total tract apparent digestibility value were 77.64% and 74.12% at growing and fattening, respectively.

CH₄ conversion factors for non-dairy cattle category

Considering information provided by CRPA and reported in Feed consumption and composition of rations section in terms of typical diets used in Italy and dry matter consumption of beef cattle types grown, the following parameters are adopted by CRPA for non-dairy cattle subcategories.

For cattle less than one year, DMI is estimated at 4.9 kg/head/day;

Males from 1 to 2 years: DMI is considered at 2.0% by weight for breeding males and 1.7% for slaughter, Females 1 to 2 years: DMI is considered at 3.0% by weight for breeding females and 2.0% for slaughter, Males > 2 years: DMI is considered at 2.0% by weight for all,

Females > 2 years: DMI is considered at 2.5 % by weight for breeding females and at 1.7% for slaughter, for other cows, DMI is considered to be 2.0 % by weight.

The country specific Ym, for the different subcategories, have been calculating (see Table A.7.6) with the formula proposed by Ellis (Ellis et al, 2007) based on daily DMI and forages proportion (FP) in the diet, considering the national weight and DMI values and assuming percentages of forages between 30% and 65%, (see previous section). Cattle < 1 year (reported in Table A.7.6) in Italy is baby beef: the average weight is 236 kg and daily consumption is in average 7.5 kg (5 kg of concentrates and 2.5 kg of silage and dry forage); dry matter intake is about 5 kg (equal to 2.1% live weight) and the percentage of forages is only about 30%.

Livestock categories		Average live weight	Dry matter intake (DMI)	DMI (DMI= weight *DMI %)	DMI	forages on dry matter	CH₄ - Ellis et al 2007 formula	Methane conversio n factors - Ym
			% with	kg/head/d	MJ/day	%	MJ/day	%
			respect to weight	ау				
< 1 year	others	236	2.1	4.85 (1)	89.4	30%	3.7	4.16%
1-2 years Male	breeding animal	557	2	11.14	205.5	65%	9.7	4.72%
	slaughter animal	557	1.7	9.47	174.7	55%	8.1	4.62%
1-2 years								
Female	breeding animal	405	3	12.15	224.2	65%	10.4	4.63%
	slaughter animal	444	2	8.88	163.8	55%	7.7	4.68%
> 2 years	Male	700	2	14.00	258.3	55%	11.2	4.32%
> 2 years								
Female	breeding heifers	540	2.5	13.50	249.1	65%	11.3	4.54%
	heifers for slaughter	540	1.7	9.18	169.4	55%	7.9	4.65%
	other cows	557	2	11.14	205.5	55%	9.2	4.48%

Table A.7.6 Estimation of Ym values by non-dairy cattle subcategories

(1) for this subcategory the previous value (CRPA, 1997[a]) very similar to the current one (4.96) has not been changed.

A7.2 Manure management (3B)

In this section the country-specific methodology for estimating the amount of manure sent to the biodigesters and the amount of methane produced, to be subtracted from the total amount of methane deriving from manure management, is explained.

The inventory of methane emissions from manure management is based on a country specific methodology which also takes into account the share of manure sent to bio-digesters annually to recover power and heat.

In Italy the number of bio-digesters has been increasing for the last years in a significant way. Anaerobic digestion of animal manure allows for the recovery of energy and heat and also for reducing methane emissions to air.

1) The anaerobic bio-digesters in Italy and relevant assumptions

The information available concerning heat and power production from biogas at anaerobic digesters fed with animal manure and agriculture residues (energy crops, agro-industrial by-products) is supplied by TERNA and CRPA.

TERNA, the Italian electricity transmission grid operator, reports annually the production of energy from traditional sources and from renewable. As for energy from biogas production in anaerobic digesters TERNA accounts for the number of digesters connected to the national grid and reports the power capacity, the energy production, combined heat and energy production and provides the figures separately for two categories:

- Bio-digesters receiving animal manure
- Bio-digesters receiving agriculture residues

The information is collected electronically and submitted by bio-digesters operators. TERNA's data about installed power, energy production, biogas used for energy production are then available for the inventory purposes (see data from renewable sources in sections "power plants" and "production" at https://www.terna.it/it/sistema-elettrico/statistiche/pubblicazioni-statistiche).

CRPA is the Research Centre on Animal Production, among other activities it has been studying the implementation of anaerobic digestion in the agricultural sector of our country and it has been carrying out surveys to build a picture of the anaerobic digestion plants in the livestock and agro-industrial sector in Italy. In the surveys total number of Italian anaerobic systems is considered, so the plants not connected to the national energy grid are included too. CRPA archive includes also information about the feed (plants working with animal manure, energy crops and agro-industrial by-products). Information about technologies and changes in technologies along the inventory time series is then also available for the inventory purposes.

Comparing the number of plants using manure in the CRPA surveys and those to TERNA, there is evidence that many operators using manure together with crops as a feed to digesters report their information to TERNA under the most general category agriculture residues.

Based on official data by TERNA and on information collected by CRPA (CRPA, 2013; CRPA, 2011[a]; ENAMA, 2011; CRPA, 2008[a]) the inventory team provides with the following picture concerning biodigesters in Italy:

- As for technology, up to 2005 anaerobic digestion of animal manure was implemented at about less than 100 plants. In the '90s typical reactor was a coverage storage structure where manure was stored and anaerobic digestion could occur, the output of the process being biogas mainly burned to recover heat for the livestock facility. In the following years, due to an increasing interest into anaerobic digestion and thanks to incentives to the sector, the implementation of multiple substrates (biomass) co-digestion at the same digester can be observed. As a consequence, the type of process reactor has been changing too, with CSTR (completely stirred tank reactor) reactors becoming the largest share out of the total number of digesters.
- The number of installations has been significantly increasing for the last years (following table), thus affecting also the amount of CH₄ emissions released actually to the atmosphere, that's why the GHG emissions inventory shall take into account also this practice.

In Table A.7.7 a summary of the information provided by TERNA and the estimated data for biogas production is supplied.

N° of plants	Anaero	bic digesters		Energy pro	duction	Biogas production
and productions	Total	Animal manure	Total	Animal manure	Agricultural residues	Total
	n.	n.	GWh	GWh	GWh	Mm ³
1990	-	-	-	-	-	-
1995	5	4	10.7	8.1	2.6	Not available
2000	10	5	8.8	4.9	3.9	Not available
2005	24	14	142	26	117	Not available
2010	176	95	611.2	221	390.2	839
2015	1,466	493	6,557	1,067	5,490	3,194
2017	1,629	602	6,737	1,194	5,543	3,297
2018	1,654	615	6,792	1,237	5,555	3,320
2019	1,699	636	6,820	1,255	5,565	3,599
2020	1,734	656	6,892	1,294	5,599	3,710
2021	1,793	688	6,942	1,297	5,645	3,869

Table A.7.7 Anaerobic digesters in Italy

Source: TERNA and estimated data for biogas production.

Official information about biogas used and energy production at bio-digesters, provided by TERNA, and information about feed of the bio-digesters, provided by CRPA, allow for estimating the amount of slurry and manure fed annually to the Italian bio-digesters.

The biogas average yield and the chemical characteristics of substrates fed to digesters are described in Table A.7.8 supplied by CRPA (CRPA, 2012).

Table A.7.8 Average yields and average chemical characteristics of some substrates used for biogas production

Tabella 8 - Rese medie e caratteristiche chimiche medie di alcuni substrati utilizzabili per la

produzione di biog	jas								
Matrice	Solidi volatili (kg/t)	Biogas (m³/kg SV)	CH₄ (%)	NTK (% ST)	Matrice	Solidi volatili (kg/t)	Biogas (m³/kg SV)	CH₄ (%)	NTK (% ST)
				Liquami 2	ootecnici				
Liquame suino	30	0,50	67	8	Liquame bovino	82	0,35	55	4,7
Solido separato bovi- no	200	0,4	55	2,5	Letame bovino	210	0,40	55	2,7
				Prodotti	vegetali				
Insilato di sorgo zuc- cherino	282	0,6	53	1,8	Insilato di grano	289	0,60	53	1,7
Insilato di erba	248	0,56	52	2,7	Insilato di mais	310	0,65	53	1,4
			Scarti	agro-ind	ustriali animali				
Siero di latte	55	0,75	60	2,3	Sangue bovino	101	0,65	65	11,4
Contenuti ruminali bovini	176	0,75	53	2,6	Fanghi di macelli suini	160	0,35	60	3
Fango di flottazione avicolo	85	0,35	60	14,7	Fanghi di macelli bovini	122	0,35	60	4,8
			Scarti	agro-ind	ustriali vegetali				
Scarti di lavorazione del mais dolce	154	0,48	55	2,2	Buccette e semi di pomodori	291	0,35	55	3,1
Scarti di leguminose	169	0,6	60	4,9	Scarti di lavorazione della patata	230	0,60	53	1,5

As for the types of feed treated in bio-digesters there has been a significant shift from single substrate feed to multiple substrates feed during the last years (CRPA, 2013; CRPA, 2011[a]); the share of biodigesters treating animal manure only has been decreasing while the share of plants operating codigestion of multiple substrates feed has been increasing.

Table A.7.9 Bio-digesters (%) by type of feed sent to anaerobic digesters over the years

Type of feed over the years	2007	2010	2011	2012
animal manure only (%)	56	36	29	18
animal manure+energy crops+ agricultural residues (%)	38	55	58	62
energy crops only (%)	6	9	13	20
everes CDDA	0	5	15	20

Source: CRPA.

Because of multiple substrates fed to bio-digesters, the following average characteristics of the feed, as supplied by CRPA, are considered for the Italian bio-digesters to calculate the total amount of feed from animal manure anaerobic digestion (CRPA, 2018).

Table A.7.10 Type of feed sent to anaerobic digesters

Type of feed	Units	animal manure	energy crops	agro-industrial by-products
Animal manure only	% in the feed	100	0	0
Animal manure + energy crops + agro- industrial by-products	% in the feed	28	52	20
Animal manure + energy crops	% in the feed	38	62	0
Animal manure + agro-industrial by- products	% in the feed	69	0	31
Energy crops + agro-industrial by- products	% in the feed	0	81	19

Source: CRPA.

On the basis of the information reported above and in consideration of the typical feed of the biodigesters the average parameters for animal manure, energy crops and agro-industrial by-products are those reported in Table A.7.11. The biogas methane content is generally reported to range from 50% to 65%, for the inventory purposes and according to CRPA methane content is assumed to be 55% (CRPA/AIEL, 2008; CRPA, 2008[b]). As regards the average volatile solids content, values for animal manure and agro-industrial by-products have been changed based on the recent study of CRPA (CRPA, 2018).

Parameters	Units	animal manure	energy crops	agro-industrial by- products
Average biogas producing potential	m³ biogas/kg VS	0.4	0.6	0.6
Average CH₄ content	%	55	55	55
Average volatile solids content	VS kg/t feed	139	280	237

Source: CRPA.

On the basis of all this information total biogas generated from the amount of slurry and manure fed to bio-digesters can be estimated assuring that for the inventory purposes it does not include biogas generated based on other carbon sources than animal manure.

2) Losses from bio-digesters

Based on the information collected about the Italian bio-digesters, losses of biogas/methane can be characterized as:

- Biogas losses from anaerobic digestion unit (biogas escaping from the digester)
- Biogas losses from digestate storage
- Biogas losses from the combustion unit in the power&heat production step

As for point 1) according to the available literature on Italian bio-digesters (Fabbri *et al.*, 2011) and to the NIR of other EU Country (UBA, 2014) and to the 2019 EMEP/EEA Guidebook (see chapter 5.B.2 Biological treatment of waste – anaerobic digestion at biogas facilities, paragraph 2.3), where manure is processed in bio-digesters with similar technology implemented, the average losses of biogas is reported to be about 1% of the total biogas produced.

As for point 2) according to the IPCC Guidelines this contribution to the emission is equal to zero when covered storage units are in place. Based on our information, digestate covered storage units are in places at the Italian bio-digesters.

As for point 3) emissions resulting from power&heat production step are not to be allocated under agriculture for the purposes of the GHG emissions inventory and are already estimated and allocated in the energy sector.

3) Methodology and parameters

Based on the information supplied by TERNA and CRPA, a country specific methodology to estimate the *amount of animal manure treated in the bio-digesters* has been developed for the years 2007, 2010, 2011 and 2012 onwards. The amount of animal manure sent to anaerobic digesters is used to estimate both the equivalent number of heads and their related *CH*₄ *emissions to be subtracted* from the total CH₄ emissions from manure management and *CH*₄ *emissions from losses of the digesters*.

N₂O emissions from manure management have been revised too because the emission factors (EFs) for animal manure sent to digesters are different from EFs for the other manure management systems (liquid system and solid storage).

In addition, for the reporting purposes the CH₄ producing potentials (Bo), the percentages of nitrogen allocation (by climate region and manure management systems) and methane conversion factors (MCF) have been revised for the relevant animal categories.

Amount of animal manure treated in bio-digesters

Official data about power capacity of digesters (TERNA) have been disaggregated based on the *distribution of digesters' installed power by type of feed* (CRPA).

On the basis of the operating hours, calculated from TERNA data on total energy production divided by the total installed power at digesters, the *energy production by type of feed* has been calculated for the relevant years.

TERNA data are used also to calculate the average energy efficiency and the lower heating value (LHV) that applied to energy productions allow for deriving the *amount of biogas used to produce energy per type of feed*.

Taking into account the percentage of biogas losses at digesters, equal to 1%, and the percentage of biogas flared at digesters, equal to 4%, it is possible to estimate the *biogas produced per type of feed* from biogas used. In 2017 submission, in response to the UNFCCC review process, the percentage of biogas flared has been estimated.

From biogas produced per type of feed it is possible to estimate the *total amount of feed* using the maximum biogas producing capacity (m³ biogas/kg VS – volatile solid) and the VS content in the feed (kg VS/t feed).

In order to estimate the *amount of animal manure sent to digesters*, multiple substrates in the feed have to be considered taking in account the shares of different substrates in the feeds.

CH4 emissions to be subtracted

In order to take into account the practice of manure management in anaerobic bio-digesters, the equivalent, in terms of MMS (liquid and solid), CH₄ emissions should be calculated on the basis of the amount of manure treated in these plants considering the equivalent number of heads and then subtracted from the total CH₄ emissions from manure management. This is because the country specific methodology calculates the average EFs by livestock on the basis of national and international literature which refer to the "conventional" MMS of liquid and solid manure.

Manure sent to digesters has been distributed according to the type of manure (liquid/slurry and solid) and the animal category using the distribution of the national inventory.

Based on the coefficients of the national inventory related to annual production of manure per head and animal category and type of manure, it is possible to estimate *the number of head equivalent* per animal category and type of manure.

Finally, *CH*⁴ emissions from manure sent to digesters are calculated multiplying these equivalent heads by EFs of the inventory expressed in kg CH₄/head per year.

CH4 emissions from losses of bio-digesters

Losses from digesters are equal to 1% of biogas produced. Considering that CH₄ content is equal to 55% of biogas the resulting amount of CH₄ is calculated and added to the total CH₄ emissions from manure management and distributed by animal category.

N₂O emissions

On the basis of CRPA data on measurements of nitrogen quantities in livestock manure (downstream of releases to housing and storage) per animal category and type of manure, the nitrogen quantities in livestock manure sent to anaerobic digestion were estimated. The coefficients, expressed as g N/kg manure, were calculated gross of losses and then the losses to housing were deducted. The resulting coefficients were then multiplied by the quantities of manure sent for anaerobic digestion. The whole time series was updated in submission 2021.

Consequently, the amount of nitrogen stored in the other storage system has been revised too subtracting these N amounts from the relevant animal categories and their type of manure.

Emission factor of the 2006 IPCC Guidelines has been used to estimate the N₂O emissions from manure stored in digesters. The value is zero as reported in the 2006 IPCC Guidelines (IPCC, 2006).

MCF for anaerobic digester

The methane conversion factor has been calculated according to Formula 1 in table 10.17 in the 2006 IPCC Guidelines:

 $MCF = [{CH₄ prod - CH₄ used - CH₄ flared + (MCFstorage /100 * Bo * VSstorage * 0.67)}/ (Bo* VSstorage * 0.67)] * 100$

Where:

 CH_4 prod = methane production in digester, (kg CH_4).

Note: When a gas tight coverage of the storage for digested manure is used, the gas production of the storage should be included.

CH₄ used = amount of methane gas used for energy, (kg CH₄)

 CH_4 flared = amount of methane flared, (kg CH_4)

MCFstorage = MCF for CH₄ emitted during storage of digested manure (%)

VSstorage = amount of VS excreted that goes to storage prior to digestion (kg VS)

When a gas tight storage is included: MCFstorage = 0; otherwise MCFstorage = MCF value for liquid storage. The equation (CH₄ prod - CH₄ used - CH₄ flared) is equal to CH₄ emissions from losses of bio-digesters that is equal to 1% of biogas produced (as reported above): 1471 Mmc (millions of cubic meters of biogas produced from manure in 2021) * 0.01 * 0.55 (methane content is assumed to be 55%) = 8.09 Mmc CH₄. The amount of volatile solids (VS) has been calculated multiplying the amount of animal manure by different type of feed treated in bio-digesters to the average VS content by different type of feed (these values can be obtained from the values shown in Table A.7.11): 2324 kt (animal manure only) * 139 kg VS/t feed + 1014 kt (animal manure from the co-digestion of multiple substrates such as "animal manure + energy crops + agro-industrial by-products") * 232 kg VS/t feed + 4738 kt (animal manure from the co-digestion of multiple substrates such as "animal manure + energy crops") * 226 kg VS/t feed + 8330 kt (animal manure from the co-digestion of multiple substrates such as "animal manure + agro-industrial by-products") * 169 kg VS/t feed = 3042 kt VS. CH₄ producing capacity (Bo) is equal to 0.22 mc CH₄/kg VS. MCF = [8.09 Mmc CH₄ / (3042 kt VS * 0.22 mc CH₄/kg VS)] *100 = 1.21%. In addition, digestate covered storage units are in places at the Italian bio-digesters so according to the Guidelines MCF_{storage} is equal to 0.

The figure 0.22 mc CH₄/kg VS used in the calculation is an average of the values related to pigs slurry, cattle slurry and solid manure, cattle separate solid manure. These values represent the maximum methanigenous potential and have been measured in the laboratory trying to simulate in a controlled environment what happens in an anaerobic digester (as reported in CRPA, 2012). This value is different respect to the values in CRF table3.B(a)s1 that have been estimated with the equation 10.23 of the 2006 IPCC Guidelines. However, the measured and estimated data should be comparable.

In response to the 2018 UNFCCC review process, more information on the estimate of weighted average values of MCF and Bo for animal manure digested in anaerobic digesters have been provided above, reporting a numerical example of how the MCF value is calculated including information on the data sources for the different parameters used.

The biogas flared at bio-digesters has been assumed equal to 4% of the total biogas produced (CRPA, 2016[a]).

In the CRF table 3B(a)s2, the nitrogen allocation and MCF supplied by climate region and manure management systems are reported.

The average CH₄ producing potential reported in Table 3B(a)s1 of the CRF has been revised accordingly using the average MCF for all manure management systems and the 2006 IPCC Guidelines' Equation 10.23.

4) Time series of total manure sent to anaerobic digestion

The amount of animal manure treated in the bio-digesters has been developed for the years 2007, 2010, 2011 and 2012 onwards, as described in the previous paragraphs. In order to develop the complete time series, the following assumptions have been considered taking in account the information provided by TERNA:

- For the years 1990 no changes in the estimation occurred because digesters were not in place;
- For the years 1991-2000 the amount of animal manure treated in the bio-digesters has been estimated based on the energy production from anaerobic digestion of animal manure;
- For the years 2001-2006 the amount of animal manure treated in the bio-digesters has been estimated based on the biogas from animal manure used for energy production;
- For the years 2008 and 2009 the amount of animal manure treated in the bio-digesters has been estimated based on the total biogas used for energy production.

In Table A.7.12-14 all data, parameters and equations used to estimate CH₄ emission from manure management for cattle and buffalo are reported. These data are: the average monthly temperature; storage temperatures and timescale for emptying manure storages; the amount of manure generated by each subcategory of cattle and buffalo (m³/head day⁻¹); the *methane emission rates* (g CH₄/m³ day⁻¹) calculated on the basis of the equations 5.1 and 5.2 reported in the paragraph 5.3.2; the specific conversion factors (g CH₄/kg VS); the content of VS in manure (g VS/head day⁻¹) produced by different subcategories of cattle (dairy and non-dairy cattle) and buffalo (cow buffaloes and other buffaloes); the slurry and solid manure EFs (kg CH₄/head year⁻¹) calculated with Equations 5.3 and 5.4 respectively; the total (slurry and solid manure) amount of VS handled in slurry/liquid and solid manure management systems for the entire reporting period; the total (slurry and solid manure) CH₄ emission factors.

Table A.7.12 Data, parameters and equations used to estimate CH₄ emission from manure management for cattle and buffalo (solid manure)

heads (heads)	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021			
Calves	300,000	458,936	408,000	500,049	507,452	492,126	485,250	468,628	461,877	463,597	450,312			
Male cattle	1,994,704	1,829,546	1,564,000	1,372,963	1,116,364	959,551	1,035,862	1,059,268	1,048,733	1,047,980	1,022,680			
Female cattle	2,503,044	2,242,966	2,428,000	2,065,176	2,090,412	2,183,502	2,346,675	2,387,475	2,468,778	2,481,914	2,448,951			
Other non dairy cattle	312,649	657,856	588,000	471,733	372,089	319,685	290,486	314,501	352,442	361,142	338,983			
Dairycattle	2,641,755	2,079,783	2,065,000	1,842,004	1,746,140	1,826,484	1,791,120	1,693,332	1,643,117	1,638,382	1,609,948			
Cow buffalo	61,800	93,528	116,000	137,242	244,599	230,323	249,059	246,152	232,605	232,887	234,424			
Other buffaloes	32,700	54,876	76,000	67,851	120,487	144,135	151,733	155,185	169,681	174,140	174,984			
solid manure (m3 head-1day-1)	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021	day-1 1990-2000	day-1 2001-2010	m3/heads day-1 from 2011
•	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021	day-1 1990-2000	day-1 2001-2010	from 2011
Calves	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.000
Male cattle	0.0177	0.0187	0.0181	0.0188	0.0175	0.0154	0.0151	0.0152	0.0153	0.0153	0.0153	0.018	0.018	0.016
	0.0207	0.0207	0.0211	0.0214	0.0197	0.0179	0.0174	0.0176	0.0173	0.0172	0.0173	0.021	0.021	0.018
Female cattle	0.0207	0.0207												
Female cattle	0.0356	0.0356	0.0356	0.0356	0.0326	0.0287	0.0280	0.0280	0.0280	0.0280	0.0280	0.036	0.035	0.029
				0.0356 0.0504	0.0326 0.0432	0.0287 0.0366	0.0280 0.0352	0.0280 0.0352	0.0280 0.0352	0.0280 0.0352	0.0280 0.0352	0.036 0.050	0.035 0.049	0.029 0.037
Female cattle Other non dairy cattle	0.0356	0.0356	0.0356											

CH4 EF per solid manure model 1990-2000	temperature	temp storage	storage time (days)	FE CH4 (g/m3 day) - methane emission rate	Calves m3/head	Male cattle m3/head	Female cattle m3/head	O the r non dairy cattle m3/he ad	Dairy cattle m3/he ad	Cow buffalo m3/head	Other buffaloes m3/head	Calves g CH ₄ /head	Male cattle g CH4/he ad	Female cattle g CH4/head	Other non dairy cattle g CH4/head	Dairy cattle g CH4/head	Cow buffalo g CH4/he ad	Other buffaloes g CH4/head
January	5.1	113	75.0	0.3	0.0	41.6	48.7	82.8	117.1	135.6	42.4	0.0	12.9	15.1	25.7	36.3	42.1	13.2
February	6.3	12.7	105.0	0.4	0.0	52.6	61.6	104.7	148.1	171.4	53.6	0.0	18.9	22.1	37.6	53.1	61.5	19.2
March	9.2	17.0	15.0	0.5	0.0	8.3	9.7	16.6	23.4	27.1	8.5	0.0	4.6	5.4	9.1	12.9	14.9	4.7
April	12.3	23.4	45.0	1.0	0.0	24.2	28.3	48.1	68.0	78.7	24.6	0.0	25.1	29.4	49.9	70.6	81.8	25.6
May	17.1	37.9	75.0	4.4	0.0	41.6	48.7	82.8	117.1	135.6	42.4	0.0	184.3	215.7	366.5	518.6	600.3	187.7
June	20.8	55.4	105.0	25.6	0.0	56.4	66.0	112.2	158.7	183.7	57.4	0.0	1444.3	1690.3	2872.2	4063.9	4703.9	1471.0
July	23.6	73.2	15.0	100.0	0.0	8.3	9.7	16.6	23.4	27.1	8.5	0.0	832.6	974.4	1655.7	2342.7	2711.7	848.0
August	23.3	71.5	45.0	100.0	0.0	25.0	29.2	49.7	70.3	81.3	25.4	0.0	2497.8	2923.3	4967.2	7028.1	813 5.0	2544.0
September	19.6	48.8	75.0	13.2	0.0	40.3	47.2	80.1	113.4	131.2	41.0	0.0	530.8	621.2	1055.5	1493.4	1728.6	540.6
October	14.6	29.4	105.0	1.9	0.0	58.3	68.2	115.9	164.0	189.8	59.4	0.0	110.3	129.0	219.3	310.2	359.1	112.3
November	8.7	163	15.0	0.5	0.0	8.1	9.4	16.0	22.7	26.2	8.2	0.0	4.1	4.8	8.2	11.6	13.4	4.2
December	6.1	12.4	45.0	0.3	0.0	25.0	29.2	49.7	70.3	81.3	25.4	0.0	8.7	10.1	17.2	24.4	28.2	8.8
Total	13.9	27.4		1.6	0.0	389.7	456.1	775.0	1096.5	1269.2	396.9	0.0	5674.2	6640.9	11284.1	15965.8	18480.3	5779.2
								VS productio	n (g VS/head da	y-1)			1916.29	2242.78	3810.87	5391.98	6241.17	1951.74

									G									
								Specific conv	ersion factor (g	CH4/KgVS head d	ay-1)		8.11	8.11	8.11	8.11	8.11	8.11
CH4 EF per solid mamure model 2001-2010	temperature	temp storage	storage time (days)	FE CH4 (g/m3 day) - methane emission rate	Calves m3/head	Male cattle m3/head	Female cattle m3/head	O the r non dairy cattle m3/he ad	Dairy cattle m3/he ad	Cow buffalo m3/head	Other buffaloes m3/head	Calves g CH ₄ /head	Male cattle g CH4/he ad	Female cattle g CH4/head	Other non dairy cattle g CH4/head	Dairy cattle	Cow buffalo g CH4/he ad	Other ^g buffaloes CH ₄ /head
January	4.7	10.9	75.0	0.3	0.0	42.3	49.1	81.0	112.9	123.9	40.0	0.0	12.5	14.6	24.0	33.5	36.8	11.9
February	5.4	11.6	105.0	0.3	0.0	53.4	62.1	102.4	142.8	156.7	50.6	0.0	17.1	19.8	32.7	45.6	50.0	16.1
March	9.3	17.2	15.0	0.6	0.0	8.5	9.8	16.2	22.6	24.8	8.0	0.0	4.7	5.5	9.1	12.6	13.9	4.5
April	12.7	24.4	45.0	1.2	0.0	24.5	28.5	47.0	65.6	71.9	23.2	0.0	28.3	32.8	54.2	75.5	82.9	26.7
May	17.6	40.1	75.0	5.5	0.0	42.3	49.1	81.0	112.9	123.9	40.0	0.0	234.3	272.2	449.3	626.3	687.2	221.8
June	21.5	59.3	105.0	37.7	0.0	57.2	66.5	109.8	153.0	167.9	54.2	0.0	2158.6	2507.6	4138.6	5769.0	6329.8	2043.3
July	24.2	78.2	15.0	100.0	0.0	8.5	9.8	16.2	22.6	24.8	8.0	0.0	845.1	981.7	1620.3	2258.6	2478.1	799.9
August	23.9	75.9	45.0	100.0	0.0	25.4	29.5	48.6	67.8	74.3	24.0	0.0	2535.3	2945.2	4860.8	6775.7	7434.3	2399.8
September	19.8	50.1	75.0	15.1	0.0	40.9	47.5	78.4	109.3	119.9	38.7	0.0	616.7	716.4	1182.3	1648.1	1808.3	583.7
October	15.0	30.6	105.0	2.1	0.0	59.2	68.7	113.4	158.1	173.5	56.0	0.0	126.1	146.5	241.7	337.0	369.7	119.4
November	9.1	16.9	15.0	0.5	0.0	8.2	9.5	15.7	21.9	24.0	7.7	0.0	4.5	5.2	8.6	11.9	13.1	4.2
December	53	11.4	45.0	0.3	0.0	25.4	29.5	48.6	67.8	74.3	24.0	0.0	8.0	9.3	15.3	21.3	23.4	7.5
Total	14.0	27.9	0.0	1.6	0.0	39.5.6	459.5	758.4	1057.2	1159.9	374.4	0.0	6591.1	7656.7	12636.8	17615.1	19327.4	6238.9
				-				VS productio	n (g VS/head da	ry-1)			1945.1	2259.5	3729.2	5198.3	5703.6	1841.1
								Specific com	ersion factor (a	CH4/KgVS head o	(av-1)		9.28	9.28	9.28	9.28	9.28	9.28

CH4 EF per solid mamure model from 2011	temperature	temp storage	storage time (days)	FE CH4 (g/m3 day) - methane emission rate	Calves m3/head	Male cattle m3/head	Female cattle m3/head	O the r non dairy cattle m3/he ad	Dairy cattle m3/he ad	Cow buffalo m3/head	Other buffaloes m3/head	Calves g CH ₄ /head	Male cattle g CH4/he ad	Female cattle g CH₄/head	Other non dairy cattle g CH4/head	-	Cow buffalo g CH4/he ad	Other buffaloes g CH4/head
January	4.7	10.8	75.0	0.3	0.0	36.5	41.8	67.5	86.1	84.9	36.1	0.0	10.8	123	19.9	25.4	25.0	10.6
February	6.0	123	105.0	0.3	0.0	46.2	52.9	85.3	108.9	107.3	45.6	0.0	15.8	18.2	29.3	37.4	36.8	15.7
March	9.7	18.0	15.0	0.6	0.0	73	8.4	13.5	17.2	17.0	7.2	0.0	4.4	5.1	8.2	10.5	10.3	4.4
April	13.4	26.0	45.0	1.4	0.0	21.2	24.3	39.2	50.0	49.3	21.0	0.0	28.6	32.8	52.9	67.6	66.6	28.3
May June	17.9	413 62.9	75.0 105.0	6.2 54.1	0.0	36.5 49.5	41.8 56.6	67.5 91.4	86.1 116.7	84.9 115.0	36.1 48.9	0.0	226.8 2673.3	259.8 3062.0	419.2 4940.8	535.0 6305.9	527.2 6214.0	2 24.3 2643.1
July	22.1	79.5	105.0	100.0	0.0	73	8.4	13.5	17.2	17.0	7.2	0.0	730.1	836.2	1349.3	1722.1	1697.0	721.8
August	24.3	79.2	45.0	100.0	0.0	21.9	25.1	40.5	51.7	50.9	21.7	0.0	2190.2	2508.7	4048.0	5166.3	5091.1	2165.5
September	19.9	50.4	75.0	15.5	0.0	35.3	40.5	65.3	83.3	82.1	34.9	0.0	547.4	627.0	1011.7	1291.2	1272.4	541.2
October	15.0	30.8	105.0	2.2	0.0	51.1	58.5	94.5	120.5	118.8	50.5	0.0	111.6	127.8	206.2	263.2	259.4	110.3
November	9.8	18.0	15.0	0.6	0.0	7.1	8.1	13.1	16.7	16.4	7.0	0.0	4.3	4.9	7.9	10.1	10.0	43
December Total	5.5 14.4	11.7 28.8	45.0 0.0	0.3 1.6	0.0	21.9 341.7	25.1 391.4	40.5 631.6	51.7 806.1	50.9 794.3	21.7 337.9	0.0	7.1 6550.4	8.1 7502.9	13.1 12106.5	16.7 15451.3	16.4 15226.2	7.0 6476.5
1081	14.4	20.0	0.0	1.0	0.0	341.7	391.4	VS production	ı (g VS/head day			0.0	1680.33 10.68	1924.68 10.68	3105.61 10.68	3963.64 10.68	3905.90 10.68	1661.37 10.68
VS production (g VS/head day	y-1)		1990	199	95	2000		2005	201	0 2	2015	2017 2	2018	2019	2020)	202	1
Calves			0.0	0.	0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0)
Male cattle			1896.0	200	1.1	1932.3		2012.2	1867	.8 10	650.2 1	612.2 1	525.7	1633.1	1635.	3	1638	3.0
Female cattle			2210.8	221	6.4	2254.2		2289.8	2109				879.9	1851.2	1841.		1856	
Other non dairy cattle			3810.9	381		3810.9		3810.9	3484				994.3	2994.3	2994.	-	2994	
Dairy cattle			5392.0	539		5392.0		5392.0	4618				771.0	3771.0	3771.		3771	
Cow buffalo			6403.9	624		6078.4		5915.7	4984				588.6	3588.6	3588.	-	3588	
Other buffaloes			1998.6	195	1.7	1904.9		1858.1	1767	.0 10	653.1 1	630.3 10	530.3	1630.3	1630.	3	1630).3
CH₄ EF (kg CH4/head year)			1990	199	95	2000		2005	201	0 2	2015	2017 2	2018	2019	2020)	202	1
Calves			0.00	0.0	00	0.00		0.00	0.0) (0.00	0.00	0.00	0.00	0.00		0.0	0
Male cattle			5.61	5.9	93	5.72		6.82	6.33	3 (6.43	6.28	5.34	6.37	6.37		6.3	9
Female cattle			6.55	6.5	56	6.67		7.76	7.1	5 3	7.45	7.27	7.33	7.22	7.18		7.2	4
Other non dairy cattle			11.28	11.	28	11.28		12.91	11.8				1.67	11.67	11.6		11.6	
Dairy cattle			15.97	15.	97	15.97		18.27	15.6		5.25	14.70 1	4.70	14.70	14.70	0	14.7	/0
Cow buffalo			18.96	18.4		18.00		20.05	16.8				3.99	13.99	13.99	9	13.9	
Other buffaloes			5.92	5.7	78	5.64		6.30	5.99) (6.44	6.36	5.36	6.36	6.36		6.3	6

Table A.7.13 Data, parameters and equations used to estimate CH₄ emission from manure management for cattle and buffalo (slurry manure)

slurry																		
aury														ave rage				
slurry (m3 head-1day-1)												average m3/heads dav-1 1990-2000	day-1 2001-2010	m3/heads day-1				
	1990	1995	2000	2 0 0 5	2010	2015	2017	2018	2019	2 0 2 0	2021	-		from 2011				
Calves	0.024	0.024	0.024	0.024	0.024	0.024	0.024	0.024	0.024	0.024	0.024	0.024	0.024	0.024				
Male cattle	0.018	0.019	0.019	0.019	0.020	0.019	0.020	0.020	0.020	0.020	0.020	0.018	0.019	0.020				
Female cattle	0.011	0.011	0.011	0.011	0.011	0.010	0.010	0.010	0.010	0.010	0.010	0.011	0.011	0.010				
Other non dairy cattle	0.015	0.015	0.015	0.015	0.014	0.012	0.012	0.012	0.012	0.012	0.012	0.015	0.015	0.012				
Dairy cattle	0.021	0.021	0.021	0.021	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.021	0.024	0.030				
Cow buffalo	0.016	0.017	0.018	0.019	0.019	0.019	0.019	0.019	0.019	0.019	0.019	0.017	0.019	0.019				
Other buffaloes	0.011	0.012	0.012	0.012	0.011	0.010	0.010	0.010	0.010	0.010	0.010	0.012	0.012	0.010				
				FE CH4			Female	O the r non							Other non	Deinenter	C	Other
			storage time	(g/m3 day) - methane	Calves m3/bead	Male cattle	cattle	dairy cattle	Dairy cattle m3/he ad	Cow buffalo	Other buffaloes m3/head	Calves g CH ₄ /head	Male cattle g CH4/he ad	Female cattle g	dairy cattle g	Dairy cattle (-	buffaloes g
CH4 EF per slurry manure model 1990-2000	temperature		(days)	emission rate	m3/nead	m3/head	m3/he ad	m3/head	m3/ne ad	m3/head	m3/nea a		CH4/ne ad	CH4/head	CH ₄ /he ad	g CH4/head	CH ₄ /he ad	CH ₄ /head
	5.1		75.0	3.7	55.0	43.0	25.4	35.5	49.9	38.6	27.0	201.1	157.1	93.0	129.7	182.4	141.2	98.9
January February	63		105.0	42	69.6	54.3	32.2	44.9	63.1	48.8	34.2	293.5	229.3	135.7	189.3	266.1	206.1	144.3
March	92		105.0	4.2	09.0	8.6	5.1	7.1	10.0	48.8	34.2 5.4	65.3	51.0	30.2	42.1	59.2	45.9	32.1
April	12.3		45.0	8.6	31.9	24.9	14.8	20.6	29.0	22.4	15.7	276.2	215.7	127.7	178.2	250.4	194.0	135.8
May	17.1		75.0	15.3	55.0	43.0	25.4	35.5	49.9	38.6	27.0	842.1	657.8	389.3	543.2	763.6	591.3	414.0
June	20.8		105.0	24.0	74.5	58.2	34.5	48.1	67.6	52.3	36.6	1790.3	1398.4	827.7	1154.8	1623.3	1257.2	880.1
July	23.6		15.0	33.4	11.0	8.6	5.1	7.1	10.0	7.7	5.4	367.5	287.1	169.9	237.1	333.2	258.1	180.7
August	23.3		45.0	32.5	33.0	25.8	153	21.3	29.9	23.2	16.2	1071.1	836.6	495.2	690.9	971.2	752.1	526.5
September	19.6		75.0	20.7	53.2	41.6	24.6	34.3	48.3	37.4	26.2	1099.4	858.8	508.3	709.2	996.9	772.0	540.4
October	14.6		105.0	11.3	77.0	60.1	35.6	49.7	69.8	54.1	37.9	872.6	681.6	403.5	562.9	791.2	612.8	429.0
November	8.7		15.0	5.6	10.6	8.3	4.9	6.9	9.7	7.5	5.2	60.0	46.9	27.7	38.7	54.4	42.1	29.5
December	6.1		45.0	4.1	33.0	25.8	153	21.3	29.9	23.2	16.2	134.9	105.4	62.4	87.0	122.3	94.7	66.3
Total	13.9			10.5	514.9	402.2	238.1	332.1	466.9	361.6	253.1	7074.1	5525.6	3270.6	4563.1	6414.3	4967.6	3477.5
								VS production	ı (g VS/head day	-1)		1123.733	877.749	519.545	724.863	1018.921	789.118	552.404
								Specific conv	ersion factor (g	CH4/KgVS head da	y-1)	1725	17.25	17.25	17.25	17.25	17.25	17.25
				(g/m3 day) -			Female	O the r non							Other non			Other
			storage time	(g/m3 day) - methane	Calves	Male cattle	Female cattle	Othernon dairy cattle	Dairy cattle	Cow buffalo	Other buffaloes	Calves g CH4/head	Male cattle g	Female cattle g	Other non dairy cattle	p Dany carne	Cow buffalo g	other buffaloesg
CH4 EF per slurry manure model 2001-2010	temperature		storage time (days)		Calves m3/head	Male cattle m3/head			Dairy cattle m3/he ad	Cow buffalo m3/head	Other buffaloes m3/head	Calves g CH4/head	Male cattle g CH4/he ad	Female cattle g CH4/head	Other non dairy cattle CH4/head	Dairy cattle g CH4/head	Cow buffalo g CH4/he ad	
CH4 EF per slurry manure model 2001-2010 January	temperature 4.7	0.0	-	methane			cattle	dairy cattle	-			Calves g CH ₄ /head	-	-	dairy cattle	p Dany carne	-	^g buffaloes g
	4.7 5.4	0.0	(days) 75.0 105.0	methane emission rate 3.5 3.8	m3/he a d 55.0 69.6	m3/head 44.5 56.3	cattle m3/he ad 25.8 32.7	dairy cattle m3/head 34.6 43.8	m3/he ad 56.0 70.8	m3/head 43.3 54.8	m3/he a d 27.7 35.0	191.9 262.1	CH4/he ad 155.3 212.1	CH4/head 90.2 123.1	dairy cattle CH4/he ad 120.8 165.0	g CH4/head 195.3 266.8	CH ₄ /he ad 151.2 206.5	buffaloes g CH ₄ /head 96.6 131.9
January	4.7 5.4 9.3	0.0 0.0	(days) 75.0 105.0 15.0	methane emission rate 3.5 3.8 6.0	m3/he a d 55.0 69.6 11.0	m3/head 44.5 56.3 8.9	c attle m3/he ad 25.8 32.7 5.2	dairy cattle m3/he ad 34.6 43.8 6.9	m3/he ad 56.0 70.8 11.2	m3/head 43.3 54.8 8.7	m3/he a d 27.7 35.0 5.5	191.9 262.1 66.2	CH4/he ad 155.3 212.1 53.5	CH4/head 90.2 123.1 31.1	dairy cattle CH4/head 120.8 165.0 41.7	g CH4/head 195.3 266.8 67.3	CH ₄ /he ad 151.2 206.5 52.1	buffaloes g CH4/head 96.6 131.9 33.3
January February March April	4.7 5.4 9.3 12.7	0.0 0.0 0.0	(days) 75.0 105.0 15.0 45.0	methane emission rate 3.5 3.8 6.0 9.1	m3/he a d 55.0 69.6 11.0 31.9	m3/he ad 44.5 56.3 8.9 25.8	cattle m3/he ad 25.8 32.7 5.2 15.0	dairy cattle m3/he ad 34.6 43.8 6.9 20.1	m3/he ad 56.0 70.8 11.2 32.5	m3/head 43.3 54.8 8.7 25.2	m3/he a d 27.7 35.0 5.5 16.1	191.9 262.1 66.2 290.7	CH4/he ad 155.3 212.1 53.5 235.3	CH4/head 90.2 123.1 31.1 136.6	dairy cattle CH4/he ad 120.8 165.0 41.7 183.1	g CH₄/head 195.3 266.8 67.3 296.0	CH4/he ad 151.2 206.5 52.1 229.1	buffaloes g CH4/head 96.6 131.9 33.3 146.4
January February March April May	4.7 5.4 9.3 12.7 17.6	0.0 0.0 0.0 0.0	(dnys) 75.0 105.0 15.0 45.0 75.0	methane emission rate 3.5 3.8 6.0 9.1 16.4	m3/he a d 55.0 69.6 11.0 31.9 55.0	m3/he ad 44.5 56.3 8.9 25.8 44.5	cattle m3/he ad 25.8 32.7 5.2 15.0 25.8	dairy cattle m3/head 34.6 43.8 6.9 20.1 34.6	m3/he ad 56.0 70.8 11.2 32.5 56.0	m3/head 43.3 54.8 8.7 25.2 43.3	m3/he a d 27.7 35.0 5.5 16.1 27.7	191.9 262.1 66.2 290.7 901.7	CH4/he ad 155.3 212.1 53.5 235.3 729.7	CH4/head 90.2 123.1 31.1 136.6 423.7	dairy cattle CH ₄ /he ad 120.8 165.0 41.7 183.1 567.8	g CH4/head 195.3 266.8 67.3 296.0 917.9	CH ₄ /he ad 151.2 206.5 52.1 229.1 710.4	buffaloes g CH4/head 96.6 131.9 33.3 146.4 453.9
January February March April May June	4.7 5.4 9.3 12.7 17.6 21.5	0.0 0.0 0.0 0.0 0.0	(days) 75.0 105.0 15.0 45.0 75.0 105.0	methane emission rate 3.5 3.8 6.0 9.1 16.4 26.0	m3/he a d 55.0 69.6 11.0 31.9 55.0 74.5	m3/he ad 44.5 56.3 8.9 25.8 44.5 60.3	cattle m3/he ad 25.8 32.7 5.2 15.0 25.8 35.0	dairy cattle m3/head 34.6 43.8 6.9 20.1 34.6 46.9	m3/he ad 56.0 70.8 11.2 32.5 56.0 75.9	m3/head 43.3 54.8 8.7 25.2 43.3 58.7	m3/he a d 27.7 35.0 5.5 16.1 27.7 37.5	191.9 262.1 66.2 290.7 901.7 1939.2	CH4/he ad 155.3 212.1 53.5 235.3 729.7 1569.2	CH4/head 902 123.1 31.1 136.6 423.7 911.1	dairy cattle CH4/head 120.8 165.0 41.7 183.1 567.8 1221.1	g CH ₄ /head 195.3 266.8 67.3 296.0 917.9 1974.0	CH4/he ad 151.2 206.5 52.1 229.1 710.4 1527.8	buffaloes g CH4/head 96.6 131.9 33.3 146.4 453.9 976.2
January February March April May June June Juny	4.7 5.4 9.3 12.7 17.6 21.5 24.2	0.0 0.0 0.0 0.0 0.0 0.0	(dnys) 75.0 105.0 15.0 45.0 75.0 105.0 15.0	methame emission rate 3.5 3.8 6.0 9.1 16.4 26.0 36.1	m3/he a d 55.0 69.6 11.0 31.9 55.0 74.5 11.0	m3/be ad 44.5 56.3 8.9 25.8 44.5 60.3 8.9	cattle m3/be ad 25.8 32.7 5.2 15.0 25.8 35.0 5.2	dairy cattle m3/head 34.6 43.8 6.9 20.1 34.6 46.9 6.9	m3/he ad 56.0 70.8 11.2 32.5 56.0 75.9 11.2	m3/head 43.3 54.8 8.7 25.2 43.3 58.7 8.7	m3/he a d 27.7 35.0 5.5 16.1 27.7 37.5 5.5	191.9 262.1 66.2 290.7 901.7 1939.2 396.9	CH4/he ad 155.3 212.1 53.5 235.3 729.7 1569.2 321.2	CH4/head 90.2 123.1 136.6 423.7 911.1 186.5	dairy cattle CH4/head 120.8 165.0 41.7 183.1 567.8 1221.1 249.9	g CH ₄ /head 195.3 266.8 67.3 296.0 917.9 1974.0 404.0	CH4/he ad 151.2 206.5 52.1 229.1 710.4 152.7.8 312.7	buffaloes g CH4/head 96.6 131.9 33.3 146.4 453.9 976.2 199.8
January February March April May June July August	4.7 5.4 9.3 12.7 17.6 21.5 24.2 23.9	0.0 0.0 0.0 0.0 0.0 0.0 0.0	(days) 75.0 105.0 15.0 45.0 75.0 105.0 15.0 45.0	methane emission rate 3.5 3.8 6.0 9.1 16.4 26.0 36.1 34.8	m3/he a d 55.0 69.6 11.0 31.9 55.0 74.5 11.0 33.0	m3/bead 44.5 56.3 8.9 25.8 44.5 60.3 8.9 26.7	cattle m3/he ad 25.8 32.7 5.2 15.0 25.8 35.0 5.2 15.5	dairy cattle m3/head 34.6 43.8 6.9 20.1 34.6 46.9 6.9 20.8	m3/he ad 56.0 70.8 11.2 32.5 56.0 75.9 11.2 33.6	m3/head 43.3 54.8 8.7 25.2 43.3 58.7 8.7 26.0	m3/he a d 27.7 35.0 5.5 16.1 27.7 37.5 5.5 16.6	191.9 262.1 66.2 290.7 901.7 1939 2 396.9 1149.8	CH ₄ /he ad 155.3 212.1 53.5 235.3 729.7 1569 2 321.2 930.4	CH4/head 90.2 123.1 31.1 136.6 423.7 911.1 186.5 540.3	dairy cattle CH4/head 120.8 165.0 41.7 183.1 567.8 1221.1 249.9 724.1	g CH ₄ /he ad 195.3 266.8 67.3 296.0 917.9 1974.0 404.0 1170.4	CH4/he ad 151.2 206.5 52.1 229.1 710.4 1527.8 312.7 905.9	^g buffa loes g CH ₄ /head 96.6 131.9 33.3 146.4 453.9 976.2 199.8 578.8
January February March April May June July August September	4.7 5.4 9.3 12.7 17.6 21.5 24.2 23.9 19.8	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(days) 75.0 105.0 15.0 45.0 75.0 105.0 15.0 45.0 75.0	methane emission rate 3.5 3.8 6.0 9.1 16.4 26.0 36.1 34.8 21.3	m3/he a d 55.0 69.6 11.0 31.9 55.0 74.5 11.0 33.0 53.2	m3/he ad 44.5 56.3 8.9 25.8 44.5 60.3 8.9 26.7 43.1	cattle m3/he ad 25.8 32.7 5.2 15.0 25.8 35.0 5.2 15.5 25.0	dairy cattle m3/head 34.6 43.8 6.9 20.1 34.6 46.9 6.9 20.8 33.5	m3/he ad 56.0 70.8 11.2 32.5 56.0 75.9 11.2 33.6 54.2	m3/head 43.3 54.8 8.7 25.2 43.3 58.7 8.7 26.0 41.9	m3/he a d 27.7 35.0 5.5 16.1 27.7 37.5 5.5 16.6 26.8	191.9 262.1 66.2 290.7 901.7 1939.2 396.9 1149.8 1135.5	CH4/be ad 155.3 212.1 53.5 235.3 729.7 1569.2 321.2 930.4 918.9	CH4/head 90.2 123.1 31.1 136.6 423.7 911.1 186.5 540.3 533.6	dairy cattle CH4/he ad 120.8 165.0 41.7 183.1 567.8 1221.1 249.9 724.1 715.1	g CH4/head 195.3 266.8 67.3 296.0 917.9 1974.0 404.0 1170.4 1155.9	CH4/he ad 151.2 206.5 52.1 229.1 710.4 1527.8 312.7 905.9 894.7	butfa koes g CH4/head 96.6 131.9 33.3 146.4 453.9 976.2 199.8 578.8 571.6
January February March April May June July July August September October	4.7 5.4 93 12.7 17.6 21.5 24.2 23.9 19.8 15.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(days) 75.0 105.0 15.0 45.0 75.0 105.0 15.0 45.0 75.0 105.0	methane emission rate 3.5 3.8 6.0 9.1 16.4 26.0 36.1 34.8 21.3 11.9	m3/he a d 55.0 69.6 11.0 31.9 55.0 74.5 11.0 33.0 53.2 77.0	m3 /he ad 44.5 56.3 8.9 25.8 44.5 60.3 8.9 26.7 43.1 62.3	cattle m3/he ad 25.8 32.7 5.2 15.0 25.8 35.0 5.2 15.5 25.0 36.2	dairy cattle m3/be ad 34.6 43.8 6.9 20.1 34.6 46.9 6.9 20.8 33.5 48.5	m3/he ad 56.0 70.8 11.2 32.5 56.0 75.9 11.2 33.6 54.2 78.4	m3/head 43.3 54.8 8.7 25.2 43.3 58.7 8.7 26.0 41.9 60.7	m3/he a d 27.7 35.0 5.5 16.1 27.7 37.5 5.5 16.6 26.8 38.8	191.9 262.1 262.2 290.7 901.7 1939 2 396.9 1149.8 1135 5 914.7	CH4/he ad 155.3 212.1 53.5 235.3 729.7 1569.2 321.2 930.4 918.9 740.2	CH/head 90.2 123.1 31.1 136.6 423.7 911.1 186.5 540.3 533.6 429.8	dairy cattle CH4/he ad 120.8 165.0 41.7 183.1 567.8 1221.1 249.9 724.1 715.1 576.0	g CHJ/hend 195.3 266.8 67.3 296.0 917.9 1974.0 404.0 1170.4 1155.9 931.1	CH4/he ad 151.2 206.5 52.1 229.1 710.4 152.7.8 312.7 905.9 894.7 720.7	buffa koes g CH4/head 96.6 131.9 33.3 146.4 453.9 976.2 199.8 578.8 571.6 460.5
January February March April May June July August September October No vember	4.7 5.4 93 12.7 17.6 21.5 24.2 23.9 19.8 15.0 9.1	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(days) 75.0 105.0 15.0 45.0 75.0 105.0 15.0 45.0 75.0 105.0 105.0 15.0	methame emission rate 3.5 3.8 6.0 9.1 16.4 26.0 36.1 34.8 21.3 11.9 5.9	m3/he a d 55.0 69.6 11.0 31.9 55.0 74.5 11.0 33.0 53.2 77.0 10.6	m3/he ad 44.5 56.3 8.9 25.8 44.5 60.3 8.9 26.7 43.1 62.3 8.6	cattle m3/he ad 25.8 32.7 5.2 15.0 25.8 35.0 5.2 15.5 25.0 36.2 5.0	dairy cattle m3/be ad 34.6 43.8 6.9 20.1 34.6 46.9 6.9 20.8 33.5 48.5 6.7	m3/he ad 56.0 70.8 11.2 32.5 56.0 75.9 11.2 33.6 54.2 78.4 10.8	m3/head 43.3 54.8 8.7 25.2 43.3 58.7 8.7 26.0 41.9 60.7 8.4	m3/he a d 27.7 35.0 5.5 16.1 27.7 37.5 5.5 16.6 26.8 38.8 5.4	191.9 262.1 262.2 290.7 901.7 1939.2 396.9 1149.8 1135.5 914.7 62.9	CH4/be ad 155.3 212.1 53.5 235.3 729.7 1569 2 321.2 930.4 918.9 740.2 50.9	CH/head 902 123.1 31.1 136.6 423.7 911.1 186.5 540.3 533.6 429.8 29.5	dairy cattle CH4/he ad 120.8 165.0 41.7 183.1 567.8 1221.1 249.9 724.1 715.1 576.0 39.6	g CH4/head 195.3 266.8 67.3 296.0 917.9 1974.0 404.0 1170.4 1155.9 931.1 64.0	CH4/he ad 151.2 206.5 52.1 229.1 710.4 1527.8 312.7 905.9 894.7 720.7 49.5	buffa koes g CH4/head 96.6 131.9 33.3 146.4 453.9 976.2 199.8 578.8 571.6 460.5 31.7
January February March April May June July July August September October	4.7 5.4 93 12.7 17.6 21.5 24.2 23.9 19.8 15.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(days) 75.0 105.0 15.0 45.0 75.0 105.0 15.0 45.0 75.0 105.0	methane emission rate 3.5 3.8 6.0 9.1 16.4 26.0 36.1 34.8 21.3 11.9	m3/he a d 55.0 69.6 11.0 31.9 55.0 74.5 11.0 33.0 53.2 77.0	m3 /he ad 44.5 56.3 8.9 25.8 44.5 60.3 8.9 26.7 43.1 62.3	cattle m3/he ad 25.8 32.7 5.2 15.0 25.8 35.0 5.2 15.5 25.0 36.2	dairy cattle m3/be ad 34.6 43.8 6.9 20.1 34.6 46.9 6.9 20.8 33.5 48.5	m3/he ad 56.0 70.8 11.2 32.5 56.0 75.9 11.2 33.6 54.2 78.4	m3/head 43.3 54.8 8.7 25.2 43.3 58.7 8.7 26.0 41.9 60.7	m3/he a d 27.7 35.0 5.5 16.1 27.7 37.5 5.5 16.6 26.8 38.8	191.9 262.1 262.2 290.7 901.7 1939 2 396.9 1149.8 1135 5 914.7	CH4/he ad 155.3 212.1 53.5 235.3 729.7 1569.2 321.2 930.4 918.9 740.2	CH/head 90.2 123.1 31.1 136.6 423.7 911.1 186.5 540.3 533.6 429.8	dairy cattle CH4/he ad 120.8 165.0 41.7 183.1 567.8 1221.1 249.9 724.1 715.1 576.0	g CHJ/hend 195.3 266.8 67.3 296.0 917.9 1974.0 404.0 1170.4 1155.9 931.1	CH4/he ad 151.2 206.5 52.1 229.1 710.4 152.7.8 312.7 905.9 894.7 720.7	buffa koes g CH4/head 96.6 131.9 33.3 146.4 453.9 976.2 199.8 578.8 571.6 460.5
January February March April May June July August September October November December	4.7 5.4 9.3 12.7 17.6 21.5 24.2 23.9 19.8 15.0 9.1 5.3	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(days) 75.0 105.0 15.0 45.0 75.0 105.0 15.0 45.0 75.0 105.0 15.0 15.0 45.0	methame emission rate 3.5 3.8 6.0 9.1 16.4 26.0 36.1 34.8 21.3 11.9 5.9 3.7 10.7	m3/he a d 55.0 69.6 11.0 31.9 55.0 74.5 11.0 33.0 53.2 77.0 10.6 33.0 514.9	m3/he ad 44.5 56.3 8.9 25.8 44.5 60.3 8.9 26.7 43.1 62.3 8.6 26.7 43.1 62.3 8.6 26.7 41.6.7	cattle m3/be ad 25.8 32.7 5.2 15.0 25.8 35.0 5.2 15.5 25.0 36.2 5.0 15.5 241.9	dairy cattle m3/be ad 34.6 43.8 6.9 20.1 34.6 46.9 6.9 20.8 33.5 48.5 6.7 20.8 324.3	m3/he ad 56.0 70.8 11.2 32.5 56.0 75.9 11.2 33.6 54.2 78.4 10.8 33.6 524.2	m3/head 43.3 54.8 8.7 25.2 43.3 58.7 8.7 26.0 41.9 60.7 8.4 26.0 405.7	m3/he ad 27.7 35.0 5.5 16.1 27.7 37.5 5.5 16.6 26.8 38.8 5.4 16.6 259.2	191.9 262.1 66.2 290.7 901.7 1939.2 396.9 1149.8 1135.5 914.7 62.9 122.3	CH4/he ad 155.3 212.1 53.5 235.3 729.7 1569 2 321.2 930.4 918.9 740.2 50.9 99.0 6015.6	CH/head 902 123.1 31.1 136.6 423.7 911.1 186.5 540.3 533.6 429.8 29.5 57.5 3492.9	dairy cattle CH4/he ad 120.8 165.0 41.7 183.1 567.8 1221.1 249.9 724.1 715.1 576.0 39.6 77.0 4681.3	g CH/head 195.3 266.8 67.3 296.0 917.9 1974.0 404.0 1170.4 1155.9 931.1 64.0 124.5 7567.3	CH4/he ad 151.2 206.5 52.1 229.1 710.4 152.7.8 312.7 905.9 894.7 720.7 49.5 96.4 5857.0	⁵ buffa loes g CH ₄ /head 96.6 131.9 33.3 146.4 453.9 976.2 199.8 578.8 571.6 460.5 31.7 61.6 3742.1
January February March April May June July August September October November December	4.7 5.4 9.3 12.7 17.6 21.5 24.2 23.9 19.8 15.0 9.1 5.3	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(days) 75.0 105.0 15.0 45.0 75.0 105.0 15.0 45.0 75.0 105.0 15.0 45.0 0.0	methane emission rate 35 3.8 6.0 9.1 16.4 26.0 36.1 34.8 21.3 11.9 5.9 3.7 10.7 (g/m3 day) -	m3/he a d 55.0 69.6 11.0 31.9 55.0 74.5 11.0 33.0 53.2 77.0 10.6 33.0	m3/he ad 44.5 56.3 8.9 25.8 44.5 60.3 8.9 26.7 43.1 62.3 8.6 26.7 416.7 Male cattle	cattle m3/be ad 25.8 32.7 5.2 15.0 25.8 35.0 25.8 35.0 15.5 25.0 36.2 5.0 36.2 5.0 36.2 5.0 241.9 Female	dairy cattle m3/bead 34.6 43.8 6.9 20.1 34.6 46.9 6.9 20.8 33.5 48.5 6.7 20.8 33.5 48.5 6.7 20.8 324.3 Other non	m3/he ad 56.0 70.8 11.2 32.5 56.0 75.9 11.2 33.6 54.2 78.4 10.8 33.6 524.2 Dairy cattle	m3/head 43.3 54.8 8.7 25.2 43.3 58.7 8.7 26.0 41.9 60.7 8.4 26.0	m3/he ad 27.7 35.0 5.5 16.1 27.7 37.5 5.5 16.6 26.8 38.8 38.8 5.4 16.6	191.9 262.1 66.2 290.7 901.7 1939.2 396.9 1149.8 1135.5 914.7 62.9 122.3 7433.8	CH4/he ad 155.3 212.1 53.5 235.3 729.7 1566 2 321.2 930.4 918.9 740.2 50.9 99.0 6015.6 Male cattle g	CH/head 902 123.1 31.1 136.6 423.7 911.1 186.5 540.3 533.6 429.8 29.5 57.5 3492.9 Femak cattle g	dairy cattle CH./he ad 120.8 165.0 41.7 183.1 567.8 1221.1 249.9 724.1 715.1 576.0 39.6 77.0 4681.3 Other non	g CH ₄ /head 195.3 266.8 67.3 296.0 917.9 1974.0 404.0 1170.4 1155.9 931.1 64.0 124.5 7567.3 Dairy cattle	CH4/he ad 151.2 206.5 52.1 229.1 710.4 152.7 894.7 720.7 49.5 96.4 585.7.0 Cow buffalo g	buffa loes g CH ₄ /head 96.6 131.9 33.3 146.4 453.9 976.2 199.8 571.6 460.5 31.7 61.6 3742.1
January February March April May June July Auruat September October October December December Toal	4.7 5.4 9.3 12.7 17.6 21.5 24.2 23.9 19.8 15.0 9.1 5.3 14.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(days) 75.0 105.0 15.0 45.0 75.0 105.0 15.0 45.0 75.0 105.0 15.0 45.0 75.0 105.0 15.0 45.0 0.0	methane emission rate 3.5 3.8 6.0 9.1 16.4 26.0 36.1 34.8 21.3 4.8 21.3 11.9 5.9 3.7 10.7 (g/m3 day) - methane	m3/he a d 55.0 69.6 11.0 31.9 55.0 74.5 11.0 33.0 53.2 77.0 10.6 33.0 514.9	m3/he ad 44.5 56.3 8.9 25.8 44.5 60.3 8.9 26.7 43.1 62.3 8.6 26.7 43.1 62.3 8.6 26.7 41.6.7	cattle m3/he ad 25.8 32.7 5.2 15.0 25.8 35.0 5.2 15.5 25.0 15.5 25.0 15.5 25.0 15.5 25.0 15.5 241.9 Female cattle	dairy cattle m3/bead 34.6 43.8 6.9 20.1 34.6 46.9 20.8 33.5 6.7 20.8 33.5 6.7 20.8 33.5 6.7 20.8 33.5 6.7 20.8 33.5 6.7 20.8 33.5 6.7 20.8 33.5 6.7 20.8 33.5 6.7 20.8 33.5 7 20.8 33.5 7 20.8 33.5 7 20.8 33.5 7 20.8 33.5 7 20.8 33.5 7 20.8 33.5 7 20.8 33.5 7 20.8 33.5 7 20.8 33.5 7 20.7 20.8 33.5 7 20.8 33.5 7 20.8 33.5 7 20.8 33.5 7 20.8 33.5 7 20.8 33.5 7 20.8 33.5 7 20.8 33.5 20.9 20.8 33.5 20.8 33.5 20.8 33.5 20.8 33.5 20.8 33.5 20.8 33.5 20.8 33.5 20.8 20.8 33.5 20.8 33.5 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8	m3/he ad 56.0 70.8 11.2 32.5 56.0 75.9 11.2 33.6 54.2 78.4 10.8 33.6 524.2 Dairy cattle	m3/head 43.3 54.8 8.7 25.2 43.3 58.7 8.7 26.0 41.9 60.7 8.4 26.0 405.7	m3/he ad 27.7 35.0 5.5 16.1 27.7 37.5 5.5 16.6 26.8 38.8 5.4 16.6 259.2	191.9 262.1 66.2 290.7 901.7 1939.2 396.9 1149.8 1135.5 914.7 62.9 122.3	CH4/he ad 155.3 212.1 53.5 235.3 729.7 1569.2 321.2 930.4 918.9 740.2 50.9 99.0 6015.6 Male cattle g	CH/head 902 123.1 31.1 136.6 423.7 911.1 186.5 540.3 533.6 429.8 29.5 57.5 3492.9	dairy cattle CH4/head 120.8 165.0 41.7 183.1 567.8 1221.1 249.9 724.1 715.1 576.0 39.6 77.0 4681.3 Other mon dairy cattle	g CH4/head 195.3 266.8 67.3 296.0 917.9 1974.0 404.0 1170.4 1155.9 931.1 64.0 124.5 7567.3 Pairs cattle	CH4/he ad 151.2 206.5 52.1 229.1 710.4 152.7.8 312.7 905.9 894.7 720.7 49.5 96.4 5857.0	⁵ buffa loes g CH ₄ /head 96.6 131.9 33.3 146.4 453.9 976.2 199.8 578.8 571.6 460.5 31.7 61.6 3742.1 ⁹ Other buffa loes g
January February March April May June July August September October November December Total CH4 EF per slurry manure model from 2011	4.7 5.4 9.3 12.7 17.6 21.5 24.2 23.9 19.8 15.0 9.1 5.3 14.0 temperature	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(days) 75.0 105.0 15.0 45.0 75.0 105.0 15.0 45.0 75.0 105.0 15.0 45.0 0.0 storage time (days)	methane emission rate 3,5 3,8 6,0 9,1 16,4 26,0 3,6,1 3,4,8 21,3 11,9 5,9 3,7 10,7 (g/m3 day) - methane emission rate	m3/head 55.0 69.6 11.0 31.9 55.0 74.5 11.0 33.0 53.2 77.0 33.0 53.2 77.0 33.0 53.2 77.0 10.6 33.0 514.9 Calves m3/head	m3/he ad 44.5 56.3 8.9 25.8 44.5 60.3 8.9 26.7 43.1 62.3 8.6 26.7 43.1 62.3 8.6 26.7 416.7 Male cattle m3/head	cattle m3/be ad 25.8 32.7 5.2 15.0 25.8 35.0 5.2 15.5 25.0 15.5 241.9 Fema le cattle m3/be ad	dairy cattle m3/be ad 34.6 43.8 6.9 20.1 34.6 46.9 6.9 20.8 33.5 48.5 20.8 33.5 48.5 20.8 33.4 0 Cher non dairy cattle m3/be ad	m3/he ad 56.0 70.8 11.2 32.5 56.0 75.9 11.2 33.6 54.2 78.4 10.8 33.6 524.2 Dairy cattle m3/he ad	m3/head 43.3 54.8 8.7 25.2 43.3 58.7 8.7 26.0 41.9 60.7 8.4 26.0 405.7 Cow buffalo m3/head	m3/he ad 27.7 35.0 5.5 16.1 27.7 37.5 5.5 16.6 26.8 38.8 5.4 16.6 259.2 Other buffabes m3/he ad	191.9 262.1 66.2 290.7 901.7 1939.2 396.9 1149.8 1135.5 914.7 62.9 122.3 7433.8 Calves g CH ₄ /bead	CH4/he ad 155.3 212.1 53.5 235.3 729.7 1566 2 321.2 930.4 918.9 740.2 50.9 99.0 6015.6 Male cattle g CH4/he ad	CH/head 902 123.1 31.1 136.6 423.7 911.1 186.5 540.3 533.6 429.8 29.5 57.5 3492.9 Femak cattle g CH/head	dairy cattle CH/head 120.8 165.0 41.7 183.1 567.8 1221.1 249.9 724.1 715.1 576.0 39.6 77.0 4681.3 CH/head	g CH4/head 195.3 266.8 67.3 296.0 917.9 1974.0 404.0 1170.4 1155.9 931.1 64.0 124.5 7567.3 g CH4/head	CH4/he ad 151.2 206.5 52.1 229.1 710.4 152.7.8 312.7 905.9 894.7 720.7 49.5 96.4 5857.0 Cow buffalo g CH4/he ad	buffaloes g CH/head 96.6 131.9 33.3 146.4 453.9 976.2 199.8 571.6 571.6 571.6 571.6 31.7 61.6 3742.1 9 0ther sg CH/hes g CH/hes g
January February March April May June July July August Sepember October November December December Total CH4 EF per slurry manure model from 2011 January	4.7 5.4 9.3 12.7 17.6 21.5 24.2 23.9 19.8 15.0 9.1 5.3 14.0 temperature 4.7	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(days) 75.0 105.0 15.0 45.0 75.0 15.0 45.0 75.0 105.0 45.0 45.0 45.0 0.0 storage time (days) 75.0	methane emission rate 35 3.8 6.0 9.1 16.4 26.0 36.1 34.8 21.3 11.9 5.9 3.7 10.7 (g/m3 day) - methane emission rate 3.5	m3/he ad 55.0 69.6 11.0 31.9 55.0 74.5 11.0 33.0 53.2 77.0 10.6 33.0 514.9 Calves m3/he ad 55.0	m3/head 44.5 56.3 89 25.8 44.5 60.3 8.9 26.7 43.1 62.3 8.6 26.7 416.7 Male cattle m3/head 45.7	cattle m3/he ad 25.8 32.7 5.2 15.0 25.8 35.0 5.2 15.5 25.0 36.2 5.0 36.2 5.0 36.2 5.0 15.5 241.9 Female cattle m3/he ad 22.9	dairy cattle m3/head 34.6 43.8 6.9 20.1 34.6 46.9 6.9 20.8 33.5 48.5 6.7 20.8 33.5 48.5 6.7 20.8 32.4 3 Other non dairy cattle m3/head 28.2	m3/he ad 56.0 70.8 11.2 32.5 56.0 75.9 11.2 33.6 54.2 78.4 10.8 33.6 524.2 Dairy cattle m3/he ad 70.6	m3/head 43.3 54.8 8.7 25.2 43.3 58.7 26.0 41.9 60.7 8.4 26.0 405.7 Cow buffalo m3/head 43.8	m3/he ad 27.7 35.0 5.5 16.1 27.7 37.5 5.5 16.6 26.8 38.8 5.4 16.6 259.2 Other buffabees m3/he ad 24.4	191.9 262.1 66.2 290.7 901.7 1939.2 396.9 1149.8 1135.5 914.7 62.9 122.3 7433.8 Calves g CH ₄ /head 190.5	CH4/he ad 155.3 212.1 53.5 235.3 729.7 1569.2 321.2 930.4 918.9 740.2 50.9 99.0 6015.6 Male cattle g CH4/he ad 158.3	CH/head 902 123.1 31.1 136.6 423.7 911.1 186.5 540.3 533.6 429.8 295 540.3 295 3492.9 Femak cattle g CH/head 79.3	dairy cattle CH4/head 120.8 165.0 41.7 183.1 567.8 1221.1 249.9 724.1 715.1 576.0 39.6 724.1 715.1 576.0 39.6 777.0 46813 chira participation 46813 CH4/head 97.7	g CHi/head 195.3 266.8 67.3 296.0 917.9 1974.0 404.0 1170.4 1155.9 931.1 64.0 124.5 7567.3 g CHi/head 244.7	CH4/he ad 151.2 206.5 52.1 229.1 710.4 152.7 905.9 894.7 720.7 49.5 96.4 5857.0 Cow buffalo g CH4/he ad 151.7	buffaloes g CH/head 96.6 131.9 33.3 146.4 453.9 976.2 199.8 578.8 571.6 440.5 31.7 66 3742.1 Other buffaloes g CH/head 84.5
January February March April May June July August September October November December Toal CH4 EF per slurry manure model from 2011 January February	4.7 5.4 9.3 12.7 17.6 21.5 24.2 23.9 19.8 15.0 9.1 5.3 14.0 temperature	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(days) 75.0 105.0 15.0 45.0 75.0 105.0 15.0 45.0 75.0 105.0 15.0 45.0 0.0 storage time (days)	methane emission rate 3,5 3,8 6,0 9,1 16,4 26,0 3,6,1 3,4,8 21,3 11,9 5,9 3,7 10,7 (g/m3 day) - methane emission rate	m3/head 55.0 69.6 11.0 31.9 55.0 74.5 11.0 33.0 53.2 77.0 33.0 53.2 77.0 33.0 53.2 77.0 10.6 33.0 514.9 Calves m3/head	m3/he ad 44.5 56.3 8.9 25.8 44.5 60.3 8.9 26.7 43.1 62.3 8.6 26.7 43.1 62.3 8.6 26.7 416.7 Male cattle m3/head	cattle m3/be ad 25.8 32.7 5.2 15.0 25.8 35.0 5.2 15.5 25.0 15.5 241.9 Fema le cattle m3/be ad	dairy cattle m3/be ad 34.6 43.8 6.9 20.1 34.6 46.9 6.9 20.8 33.5 48.5 20.8 33.5 48.5 20.8 33.4 0 Cher non dairy cattle m3/be ad	m3/he ad 56.0 70.8 11.2 32.5 56.0 75.9 11.2 33.6 54.2 78.4 10.8 33.6 524.2 Dairy cattle m3/he ad	m3/head 43.3 54.8 8.7 25.2 43.3 58.7 8.7 26.0 41.9 60.7 8.4 26.0 405.7 Cow buffalo m3/head	m3/he ad 27.7 35.0 5.5 16.1 27.7 37.5 5.5 16.6 26.8 38.8 5.4 16.6 259.2 Other buffabes m3/he ad	191.9 262.1 66.2 290.7 901.7 1939.2 396.9 1149.8 1135.5 914.7 62.9 122.3 7433.8 Calves g CH ₄ /bead	CH4/he ad 155.3 212.1 53.5 235.3 729.7 1566 2 321.2 930.4 918.9 740.2 50.9 99.0 6015.6 Male cattle g CH4/he ad	CH/head 902 123.1 31.1 136.6 423.7 911.1 186.5 540.3 533.6 429.8 29.5 57.5 3492.9 Femak cattle g CH/head	dairy cattle CH/head 120.8 165.0 41.7 183.1 567.8 1221.1 249.9 724.1 715.1 576.0 39.6 77.0 4681.3 CH/head	g CH4/head 195.3 266.8 67.3 296.0 917.9 1974.0 404.0 1170.4 1155.9 931.1 64.0 124.5 7567.3 g CH4/head	CH4/he ad 151.2 206.5 52.1 229.1 710.4 152.7 905.9 894.7 720.7 49.5 96.4 5857.0 Cow buffalo g CH4/he ad	buffaloes g CH/head 96.6 131.9 33.3 146.4 453.9 976.2 199.8 571.6 571.6 571.6 571.6 31.7 61.6 3742.1 9 0ther sg CH/hes g CH/hes g
January February March April May June July July August Sepember October November December December Total CH4 EF per slurry manure model from 2011 January	4.7 5.4 9.3 12.7. 17.6 21.5 24.2 23.9 19.8 15.0 9.1 5.3 14.0 temperature 4.7 6.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(days) 75.0 105.0 15.0 45.0 75.0 105.0 15.0 45.0 75.0 105.0 15.0 45.0 75.0 105.0 15.0 45.0 75.0 0.0 storage time (days) 75.0 105.0	methane emission rate 3.5 3.8 6.0 9.1 16.4 26.0 36.1 34.8 21.3 11.9 5.9 3.7 10.7 (g/m3 day) - methane emission rate 3.5 4.0	m3/head 55.0 69.6 11.0 31.9 55.0 74.5 11.0 33.0 52.2 77.0 10.6 33.0 514.9 Calves m3/head 57.0 77.0	m3/head 44.5 56.3 8.9 25.8 44.5 60.3 8.9 26.7 43.1 62.3 26.7 43.1 62.3 26.7 416.7 Male cattle m3/head 45.7 64.0	cattle m3/he ad 25.8 32.7 5.2 15.0 25.8 35.0 25.8 35.0 15.5 25.0 15.5 241.9 Female cattle m3/he ad 22.9 32.1	dairy cattle m3/bead 34.6 43.8 6.9 20.1 34.6 46.9 6 9 20.8 33.5 48.5 6.7 20.8 33.5 6.7 20.8 33.5 6.7 20.8 33.5 48.5 6.7 20.8 33.5 6.7 20.8 33.5 4 8.5 9 20.8 33.5 4 8.5 9 20.1 1 20.8 33.5 4 8.5 9 20.8 33.5 4 8.5 9 20.8 33.5 4 8.5 9 20.8 33.5 4 8.5 9 20.8 33.5 4 8.5 9 20.8 33.5 4 8.5 9 20.8 33.5 6 9 20.8 33.5 6 9 20.8 33.5 6 9 20.8 33.5 6 9 20.8 33.5 6 9 20.8 33.5 6 9 20.8 33.5 6 9 20.8 20.8 33.5 6 9 20.8 20.8 33.5 6 20.8 20.8 20.8 20.8 20.8 20.8 20.9 20.8 20.8 20.8 20.8 20.8 20.8 20.9 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8	m3/he ad 56.0 70.8 11.2 32.5 56.0 75.9 11.2 33.6 54.2 78.4 10.8 33.6 524.2 Dairy cattle m3/he ad 70.6 98.9	m3/head 43.3 54.8 8.7 25.2 43.3 58.7 8.7 26.0 41.9 60.7 8.4 26.0 405.7 Cow buffalo m3/head 43.8 61.3	m3/he ad 27.7 35.0 5.5 16.1 27.7 37.5 5.5 16.6 26.8 38.8 5.4 16.6 2592 Other buffabes m3/he ad 24.4 34.2	191.9 262.1 66.2 290.7 901.7 1939.2 396.9 1149.8 1135.5 914.7 62.9 122.3 7433.8 Calves g CH ₄ /head 190.5 311.7	CH4/he ad 155.3 212.1 53.5 235.3 729.7 1569 2 321.2 930.4 918.9 740.2 930.4 918.9 740.2 50.9 99.0 6015.6 Male cattle g CH4/he ad 158.3 259.0	CH/head 902 123.1 31.1 136.6 423.7 911.1 186.5 540.3 533.6 429.8 57.5 3492.9 Femak cattle g CH/head 79.3 129.8	dairy cattle CH_/head 120.8 165.0 41.7 183.1 567.8 1221.1 249.9 724.1 715.1 576.0 39.6 77.0 4881.3 Other mon Other mon CH_/head 97.7 159.8	g CH4/head 195.3 266.8 67.3 296.0 917.9 1974.0 404.0 1170.4 1155.9 931.1 64.0 124.5 7567.3 Dairy cattle g CH4/head 244.7 400.3	CH4/he ad 151.2 206.5 52.1 229.1 710.4 152.7.8 312.7 905.9 894.7 720.7 49.5 96.4 5857.0 Cow buffalo g CH4/he ad 151.7 248.1	buffaloes g CH/head 96.6 131.9 33.3 146.4 453.9 976.2 1998.5 578.8 578.9 578.8 578.8 578.8 57
January February March April May June July August September October November December Total CH4 EF per shurry manure model from 2011 January February March	4.7 5.4 9.3 12.7 17.6 24.2 23.9 19.8 15.0 9.1 5.3 14.0 temperature 4.7 6.0 9.7	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(days) 75.0 105.0 15.0 45.0 75.0 105.0 15.0 45.0 75.0 105.0 15.0 45.0 0.0 storage time (days) 75.0 105.0 105.0	methane emission rate 35 38 60 9.1 16.4 26.0 36.1 34.8 21.3 11.9 59 3.7 10.7 (g/m3 day) - methane emission rate 3.5 4.0 6.4	m3/head 55.0 69.6 11.0 31.9 55.0 74.5 11.0 33.0 514.9 Calves m3/head 55.0 77.0 10.6 33.0 514.9 Calves m3/head 55.0 77.0 11.0 13.0 11.0 13.0 11.0 13.0 11.0 13.0 11.0 13.0 11.0 13.0 11.0 13.0 11.0 13.0 11.0 13.0 11.0 13.0 11.0 11.0 13.0 11.	m3/head 44.5 56.3 8.9 25.8 44.5 60.3 8.9 26.7 40.5 62.3 8.6 26.7 416.7 Male cattle m3/head 45.7 64.0 9.1	cattle m3/he ad 25.8 32.7 5.2 15.0 25.8 35.0 5.2 15.5 25.0 36.2 5.0 15.5 241.9 Female cattle m3/he ad 22.9 32.1 4.6	dairy cattle m3/head 34.6 43.8 6.9 20.1 34.6 46.9 6.9 20.8 33.5 6.7 20.8 324.3 Other non dairy cattle m3/head 28.2 39.5 5.6	m3/he ad 56.0 70.8 11.2 32.5 56.0 75.9 11.2 33.6 54.2 78.4 10.8 33.6 524.2 Dairy cattle m3/he ad 70.6 98.9 14.1	m3/head 43.3 54.8 8.7 25.2 43.3 58.7 8.7 26.0 41.9 60.7 8.4 26.0 405.7 Cow buffalo m3/head 43.8 61.3 8.8	m3/he ad 27.7 35.0 5.5 16.1 27.7 37.5 5.5 16.6 26.8 38.8 5.4 16.6 259.2 Other buffabes m3/he ad 24.4 34.2 4.9	191.9 262.1 66.2 290.7 901.7 1939.2 396.9 1149.8 1135.5 914.7 62.9 122.3 7433.8 Calves g CH ₄ /bead 190.5 311.7 69.9	CH4/he ad 155.3 212.1 53.5 235.3 729.7 1566 2 321.2 930.4 918.9 740.2 50.9 99.0 6015.6 Male cattle g CH4/he ad 158.3 259.0 58.0	CH/head 902 123.1 31.1 136.6 423.7 911.1 186.5 540.3 533.6 429.8 29.5 57.5 3492.9 Femak cattle g CH/head 79.3 129.8 29.1	dairy cattle CH ₄ /head 120.8 165.0 41.7 183.1 567.8 1221.1 249.9 724.1 155.6 39.6 77.0 4681.3 Other non dairy cattle CH ₄ /head 97.7 159.8 35.8	g CHi/head 195.3 266.8 67.3 296.0 917.9 1974.0 404.0 1170.4 1155.9 931.1 64.0 124.5 7567.3 g CHi/head 244.7 400.3 89.7	CH4/he ad 151.2 206.5 52.1 229.1 710.4 152.7 805.9 894.7 720.7 49.5 96.4 5857.0 Cow buffalo g CH4/he ad 151.7 248.1 55.6	buffaloesg CH/head 96.6 131.9 33.3 146.4 453.9 976.2 199.6 578.6 578.6 571.6 460.5 31.7 61.6 3742.1 Other 50 buffaloesg CH/head 84.5 138.3 31.0 31.0
January February March April May June July August Sepember October November December December Total CH, EF per slurry manure model from 2011 January February March April	4.7 5.4 9.3 12.7 17.6 21.5 24.2 23.9 19.8 15.0 9.1 5.3 14.0 temperature 4.7 6.0 9.7 13.4	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(days) 75.0 105.0 15.0 45.0 75.0 105.0 15.0 45.0 75.0 105.0 15.0 45.0 75.0 105.0 15.0 45.0 75.0 105.0 15.0 45.0 75.0 105.0 15.0 45.0 15.0 45.0 15.0 45.0 15.0 45.0 15.0 45.0 15.0 45.0 15.0 45.0 15.0 45.0 15.0 45.0 15.0 45.0 15.0 45.0 15.0	methane emission rate 35 3.8 6.0 9.1 16.4 26.0 36.1 34.8 21.3 11.9 5.9 3.7 10.7 (g/m3 day) - methane emission rate 3.5 4.0 6.4 9.8	m3/head 55.0 69.6 11.0 31.9 55.0 74.5 11.0 33.0 55.0 77.0 10.6 514.9 Calves m3/head 55.0 77.0 11.0 33.0 55.0 77.0 11.0 33.0 55.0 77.0 11.0 33.0 55.0 77.0 11.0 33.0 55.0 77.0 11.0 33.0 55.0 77.0 10.0 55.0 77.0 10.0 55.0 77.0 10.0 51.0 51.0 51.0 51.0 51.0 51.0 52.0 51.0 51.0 51.0 53.0 51.0 51.0 53.0 51.0 51.0 53.0 51.0 55.0 77.0 51.0 55.0 77.0 55.0 77.0 55.0 77.0 55.0 77.0 55.0 77.0 55.0 77.0 33.0 33.0 55.0 77.0 33.0 33.0 55.0 77.0 33.0 33.0 55.0 77.0 33.0 33.0 55.0 77.0 53.0 77.0 53.0 77.	m3/head 44.5 56.3 8.9 25.8 44.5 60.3 8.9 26.7 43.1 62.3 8.6 26.7 416.7 Male cattle m3/head 45.7 64.0 9.1 27.4	cattle m3/he ad 25.8 32.7 5.2 15.0 25.8 35.0 25.8 35.0 15.5 25.0 15.5 25.0 15.5 25.0 15.5 241.9 Female cattle m3/he ad 22.9 32.1 4.6 13.7	dairy cattle m3/bead 34.6 43.8 6.9 20.1 34.6 46.9 6.9 20.8 33.5 48.5 6.7 20.8 33.5 48.5 6.7 20.8 33.5 48.5 6.7 20.8 32.4.3 Other non dairy cattle m3/bead 28.2 39.5 5.5 6.9	m3/he ad 56.0 70.8 11.2 32.5 56.0 75.9 11.2 33.6 54.2 78.4 10.8 33.6 524.2 Dairy cattle m3/he ad 70.6 98.9 14.1 42.4	m3/head 43.3 54.8 8.7 25.2 43.3 58.7 26.0 41.9 60.7 8.4 26.0 405.7 Cow buffalo m3/head 43.8 61.3 8.8 26.3	m3/he ad 27.7 35.0 5.5 16.1 27.7 37.5 5.5 16.6 26.8 38.8 5.4 16.6 259.2 Other buffabes m3/he ad 24.4 34.2 4.9 14.6	191.9 262.1 66.2 290.7 901.7 1939.2 396.9 1149.8 1135.5 914.7 62.9 122.3 7433.8 Calves g CH ₄ /bead 190.5 311.7 69.9 232.8	CH4/he ad 155.3 212.1 53.5 235.3 729.7 1569.2 321.2 930.4 918.9 740.2 50.9 99.0 6015.6 Male cattle g CH4/he ad 158.3 259.0 58.0 269.1	CH/head 902 123.1 31.1 136.6 423.7 911.1 186.5 540.3 533.6 429.8 29.5 3492.9 Femak cattle g CH/head 79.3 129.8 29.1 134.9	dairy cattle CH4/head 120.8 165.0 41.7 183.1 567.8 1221.1 249.9 724.1 715.1 576.0 39.6 724.1 715.1 576.0 39.6 724.1 715.1 576.0 39.6 724.1 715.1 576.0 39.6 724.1 715.1 576.0 46813 6 724.1 715.1 576.0 46813 770.0 46813 770.0 46813 770.0 46813 770.0 46813 770.0 46813 770.0 46813 770.0 46815 770.0 46815 770.0 46815 770.0 46815 770.0 470.	g CHi/head 195.3 266.8 67.3 296.0 917.9 1974.0 404.0 1170.4 1155.9 931.1 64.0 124.5 7567.3 pairy cattle g CHi/head 244.7 400.3 89.7 415.9	CH4/he ad 151.2 206.5 52.1 229.1 710.4 152.7 905.9 894.7 720.7 49.5 96.4 5857.0 Cow buffalo g CH4/he ad 151.7 248.1 55.6 257.8	buffaloes g CH/head 96.6 131.9 33.3 146.4 453.9 976.2 199.8 578.7 578
January February March April May June July August September October November December Toal CH, EF per slurry manure model from 2011 January February March April May	4.7 5.4 9.3 12.7, 17.6 21.5 24.2 23.9 19.8 15.0 9.1 5.3 14.0 temperature 4.7 6.0 9.7 13.4 17.9	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(days) 75.0 105.0 15.0 45.0 75.0 75.0 15.0 45.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0 15.0 45.0 75.0 75.0 15.0 45.0 75.0 75.0 15.	methane emission rate 3.5 3.8 6.0 9.1 16.4 26.0 36.1 34.8 21.3 11.9 5.9 3.7 10.7 (g/m3 day) - methane emission rate 3.5 4.0 6.4 9.8 16.9	m3/head 55.0 69.6 11.0 31.9 55.0 74.5 11.0 33.0 53.2 77.0 10.6 33.0 514.9 Calves m3/head 55.0 77.0 11.0 35.0 55.0 77.0 11.0 35.0 55.0 77.0 11.0 55.0 55.0 74.5 11.0 55.0 55.0 74.5 11.0 55.0 55.0 74.5 11.0 55.0 55.0 74.5 11.0 55.0 55.0 55.0 74.5 11.0 55.0 55.0 55.0 11.0 55.0 77.0 11.0 55.0 55.0 77.0 11.0 55.0 55.0 77.0 11.0 55.0 55.0 77.0 11.0 55.0 57.0 57.0 11.0 55.0 77.0 11.0 55.0 77.0 11.0 55.0 77.0 11.0 55.0 77.0 11.0 55.0 77.0 11.0 55.0 77.0 11.0 55.0 77.0 11.0 55.0 77.0 11.0 55.0 77.0 11.0 55.0 77.0 55.0 77.0 55.0 77.0 11.0 55.0 55.0 77.0 11.0 55.	m3/head 44.5 56.3 8.9 25.8 44.5 60.3 8.9 26.7 43.1 62.3 8.6 26.7 43.1 62.3 8.6 26.7 416.7 Male cattle m3/head 45.7 64.0 9.1 9.1 9.1	cattle m3/he ad 25.8 32.7 5.2 15.0 25.8 35.0 25.8 35.0 15.5 25.0 15.5 25.0 15.5 241.9 Female cattle m3/he ad 22.9 32.1 4.6	dairy cattle m3/bead 34.6 43.8 6.9 20.1 34.6 46.9 6.9 20.8 33.5 48.5 6.7 20.8 33.5 48.5 6.7 20.8 33.5 48.5 6.7 20.8 32.4.3 Other mon dairy cattle m3/bead 28.2 39.5 5.6	m3/he ad 56.0 70.8 11.2 32.5 56.0 75.9 11.2 33.6 54.2 78.4 10.8 33.6 524.2 Daity cattle m3/he ad 70.6 98.9 14.1 42.4 70.6	m3/head 43.3 54.8 8.7 25.2 43.3 58.7 8.7 26.0 41.9 60.7 8.4 26.0 405.7 Cow buffalo m3/head 43.8 61.3 8.8 26.3 43.8	m3/head 27.7 35.0 5.5 16.1 27.7 37.5 5.5 16.6 26.8 38.8 5.4 16.6 259.2 Other buffabes m3/head 24.4 34.2 4.9 14.6 24.4	191.9 262.1 66.2 290.7 901.7 1939.2 396.9 1149.8 1135.5 914.7 62.9 122.3 7433.8 Calves g CH4/bead 190.5 311.7 69.9 223.8 932.0	CH4/he ad 155.3 212.1 53.5 235.3 729.7 1569 2 321.2 930.4 918.9 740.2 50.9 99.0 6015.6 Male cattle g CH4/he ad 158.3 259.0 58.0 269.1 774.3	CH/head 902 123.1 31.1 136.6 423.7 911.1 186.5 533.6 429.8 295 575 3492.9 Female cattle g CH/head 79.3 129.8 29.1 134.9 388.1 894.7 168.7	dairy cattle CH_/head 120.8 165.0 41.7 183.1 567.8 1221.1 576.0 39.6 77.0 4681.3 Other non 4681.3 Other non 4681.3 57.8 15.8 16.0 47.7 15.8 35.8 16.1 47.9 4	g CH4/head 195.3 266.8 67.3 296.0 917.9 1974.0 404.0 1170.4 1155.9 931.1 64.0 124.5 7567.3 Dairy cattle g CH4/head 244.7 400.3 89.7 415.9 1196.9 2759.3 520.1	CH4/he ad 151.2 206.5 52.1 229.1 710.4 152.7.8 312.7 905.9 894.7 720.7 49.5 96.4 585.70 Cow buffalo g CH4/he ad 151.7 248.1 55.6 257.8 741.9 1710.3 322.4	 buffaloes g CH/head 96.6 131.9 33.3 146.4 433.9 976.2 199.8 571.6 460.5 31.7 61.6 3742.1 g CH₂/head 84.5 138.3 31.0 143.7 413.5
January February March April May June July August September October November December Total CH4 EF per slurry manure model from 2011 January February March April May June July August	4.7 5.4 9.3 12.7 17.6 21.5 24.2 23.9 15.0 9.1 5.3 14.0 temperature 4.7 6.0 9.7 13.4 17.9 22.1 24.4 24.3	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(days) 75.0 105.0 15.0 45.0 75.0 15.0 45.0 75.0 15.0 45.0 75.0 15.0 45.0 75.0 15.0 15.0 45.0 15.0 45.0 75.0 15.0 15.0 45.0 75.0 15.0 45.0 75.0 15.0 45.0 75.0 15.0 45.0 75.0 15.0 45.0 75.0 15.0 45.0 75.0 15.0 45.0 75.0 15.0 45.0 75.0 15.0	methane emission rate 3.5 3.8 6.0 9.1 16.4 26.0 36.1 34.8 21.3 11.9 5.9 3.7 10.7 (g/m3 day) - methane emission rate 3.5 4.0 6.4 9.8 16.9 2.7.9 3.6.8 3.6.6	m3/head 55.0 69.6 11.0 31.9 55.0 74.5 11.0 33.0 514.9 Calves m3/head 55.0 77.0 11.0 33.0 514.9 Calves m3/head 55.0 77.0 11.0 33.0 55.0 77.0 11.0 33.0 55.0 77.0 11.0 33.0	m3/head 44.5 56.3 8.9 25.8 44.5 8.9 26.7 43.1 62.3 8.9 26.7 43.1 62.3 8.6 26.7 416.7 Male cattle m3/head 45.7 64.0 9.1 27.4 45.7	cattle m3/he ad 25.8 32.7 5.2 15.0 25.8 35.0 5.2 15.5 25.0 36.2 5.0 15.5 241.9 Female cattle m3/he ad 22.9 32.1 4.6 13.7 22.9 32.1 4.6	dairy cattle m3/head 34.6 43.8 6.9 20.1 34.6 46.9 20.8 33.5 6.7 20.8 324.3 Other nom dairy cattle m3/head 28.2 39.5 5.6 16.9 28.2 39.5 5.6 16.9	m3/he ad 56.0 70.8 11.2 32.5 56.0 75.9 11.2 33.6 54.2 78.4 10.8 33.6 524.2 Dairy cattle m3/he ad 70.6 98.9 14.1 42.4	m3/head 43.3 54.8 8.7 25.2 43.3 58.7 8.7 26.0 41.9 60.7 8.4 26.0 405.7 Cow buffalo m3/head 43.8 61.3 8.8 26.3 43.8 61.3 8.8 26.3	m3/head 27.7 35.0 5.5 16.1 27.7 37.5 5.5 16.6 26.8 38.8 5.4 16.6 2592 Other buffabes m3/head 24.4 34.2 4.9 14.6 24.4 34.2 4.9 14.6	191.9 262.1 66.2 290.7 901.7 1939.2 396.9 1149.8 1135.5 914.7 62.9 122.3 7433.8 Calves g CH4/head 190.5 311.7 69.9 323.8 932.0 2148.6 405.0 1208.9	CH4/he ad 155.3 212.1 53.5 235.3 729.7 1569 2 321.2 930.4 918.9 740.2 50.9 99.0 6015.6 Male cattle g CH4/he ad 158.3 259.0 58.0 269.1 774.3 1785.1 336.5 1004.3	CH/head 902 123.1 31.1 136.6 423.7 911.1 186.5 540.3 533.6 429.8 29.5 57.5 3492.9 Femak cattle g CH/head 79.3 129.8 29.1 134.9 388.1 894.7 503.4	dairy cattle CH_/head 120.8 165.0 41.7 183.1 567.8 1221.1 249.9 724.1 715.1 576.0 39.6 77.0 4681.3 CH_/head 97.7 159.8 35.8 166.1 477.9 1101.7 207.7 619.8	g CH ₄ /head 195.3 266.8 67.3 296.0 917.9 1974.0 404.0 1170.4 1155.9 931.1 64.0 124.5 7567.3 g CH ₄ /head 244.7 400.3 89.7 415.9 1196.9 2759.3 520.1 1552.5	CH4/he ad 151.2 206.5 52.1 229.1 710.4 152.7.8 312.7 905.9 894.7 720.7 49.5 96.4 585.7.0 Cow buffalo g CH4/he ad 151.7 248.1 55.6 257.8 741.9 1710.3 322.4 962.3	 buffaloes g CH/head 96.6 131.9 33.3 146.4 453.9 976.2 199.8 571.6 571.6 31.7 61.6 3742.1 g buffaloes g buffaloes g there are a second secon
January February March April May June July July August September October November December Toni CH4 EF per slurry manure model from 2011 January February March April May June July August September	4.7 5.4 9.3 12.7 17.6 24.2 23.9 19.8 15.0 9.1 5.3 14.0 temperature 4.7 6.0 9.7 13.4 17.9 22.1 24.4 24.3 19.9	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(days) 75.0 105.0 15.0 45.0 75.0 105.0 15.0 45.0 75.0 105.0 15.0 45.0 0.0 storage times (days) 75.0 105.0 15.0 45.0 75.0 105.0 15.0 45.0 75.0 105.0 15.0 45.0 75.0 105.0 15.0 45.0 75.0 105.0 15.0 45.0 75.0 105.0 15.0 45.0 75.0 105.0 15.0 45.0 75.0 15.0 45.0 75.0 15.0 45.0 75.0 15.0 45.0 75.0 15.0 45.0 75.0 15.0 45.0 75.0 15.0 45.0 75.0 15.0 45.0 75.0 15.0 45.0 75.0 15.0 45.0 75.0 15.0 45.0 75.0 15.0 45.0 75.0 15.0 45.0 75.0 15.0 45.0 75.0 15.0 45.0 75.0 15.0 45.0 75.0 15.0 45.0 75.0 15.0 45.0 75.0 15.0 45.0 75.0 15.0 15.0 45.0 75.0 15.0 15.0 45.0 75.0 15.0 15.0 45.0 75.0 15.0 15.0 45.0 75.0 15.0 15.0 45.0 75.0 15.0 45.0 75.0 15.0 45.0 75.0 15.0 45.0 75.0 15.0 45.0 75.0 15.0 45.0 75.0 15.0 45.0 75.0 15.0 45.0 75.0 15.0 45.0 75.0 15.0 45.0 75.0 15.0 45.0 75.0 15.0 15.0 45.0 75.0 15.0	methane emission rate 3.5 3.8 6.0 9.1 16.4 26.0 36.1 34.8 21.3 11.9 5.9 3.7 10.7 (g/m3 day) - methane emission rate 3.5 4.0 6.4 9.8 16.9 27.9 3.6.8 3.6.6 21.5	m3/head 55.0 69.6 11.0 31.9 55.0 74.5 11.0 33.0 514.9 55.0 77.0 10.6 55.0 77.0 33.0 514.9 55.0 77.0 11.0 33.0 55.0 77.0 11.0 33.0 55.0 77.0 11.0 33.0 55.0 77.0 11.0 33.0 55.0 55.0 77.0 11.0 33.0 55.0 77.0 11.0 33.0 55.0	m3/head 44.5 56.3 8.9 25.8 44.5 60.3 8.9 26.7 416.7 Male cattle m3/head 45.7 64.0 9.1 27.4 45.7 64.0 9.1 27.4 45.7	cattle m3/he ad 25.8 32.7 5.2 15.0 25.8 35.0 25.0 36.2 5.0 36.2 5.0 36.2 5.0 25.0 36.2 5.0 25.0 36.2 5.0 241.9 Female cattle m3/he ad 22.9 32.1 4.6 13.7 22.9	dairy cattle m3/head 34.6 43.8 6.9 20.1 34.6 46.9 6.9 20.8 33.5 48.5 48.5 48.5 48.5 48.5 48.5 48.5 20.8 32.4.3 Other non dairy cattle m3/head 28.2 39.5 5.6 16.9 28.2 5.6 16.9 28.2	m3/he ad 56.0 70.8 11.2 32.5 56.0 75.9 11.2 33.6 54.2 78.4 10.8 33.6 524.2 Dairy cattle m3/he ad 70.6 98.9 14.1 42.4 70.6	m3/head 43.3 54.8 8.7 25.2 43.3 58.7 8.7 26.0 41.9 60.7 8.4 26.0 405.7 Cow buffalo m3/head 43.8 61.3 8.8 26.3 43.8	m3/he ad 27.7 35.0 5.5 16.1 27.7 37.5 5.5 16.6 26.8 38.8 5.4 16.6 259.2 Other buffaloes m3/he ad 24.4 34.2 4.9 14.6 24.4 34.2 4.9 14.6 24.4	191.9 262.1 66.2 290.7 901.7 1939.2 396.9 1149.8 1135.5 914.7 62.9 122.3 7433.8 Calves g CH ₄ /bead 190.5 311.7 69.9 323.8 932.0 2148.6 405.0 1208.9 1180.9	CH4/he ad 155.3 212.1 53.5 235.3 729.7 1566 2 321.2 930.4 918.9 740.2 50.9 99.0 6015.6 Male cattle g CH4/he ad 158.3 259.0 58.0 269.1 774.3 1785.1 336.5 1004.3 981.1	CH/head 902 123.1 31.1 136.6 423.7 91.1 186.5 540.3 533.6 429.8 29.5 57.5 3492.9 Female cattle g CH/head 79.3 129.8 29.1 134.9 388.1 884.7 168.7 503.4 491.7	dairy cattle CH ₄ /head 120.8 165.0 41.7 183.1 567.8 1221.1 249.9 724.1 715.1 576.0 39.6 77.0 4681.3 Other non 4681.3 Other non 4681.3 578. 0ther non 4681.3 578. 0ther non 4681.3 0ther non 4681	g CHi/head 195.3 266.8 67.3 296.0 917.9 1974.0 404.0 1170.4 1155.9 931.1 64.0 124.5 7567.3 g CHi/head 244.7 400.3 89.7 415.9 1196.9 2759.3 520.1 1552.5 1516.5	CH4/he ad 151.2 206.5 52.1 229.1 710.4 152.7 805.9 894.7 720.7 49.5 96.4 5857.0 Cow buffalo g CH4/he ad 151.7 248.1 55.6 257.8 741.9 1710.3 322.4 962.3 940.0	 buffaloes g CH/head 96.6 131.9 33.3 146.4 453.9 976.2 199.8 578.8 571.6 199.8 578.8 571.6 3742.1 Other at4.5 138.3 31.0 143.7 413.5 953.3 179.7 536.3 523.9
January February March April May June July August September October November December Tomi CH4 EF per slurry manure model from 2011 January February March April May July August September October	4.7 5.4 9.3 12.7. 17.6 21.5 24.2 23.9 19.8 15.0 9.1 5.3 14.0 temperature 4.7 6.0 9.7 13.4 17.9 22.1 24.4 24.3 19.9 15.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(days) 75.0 105.0 15.0 45.0 75.0 105.0 15.0 45.0 75.0 105.0 15.0 45.0 0.0 storage time (days) 75.0 105.0 15.0 45.0 0.0 storage time (days) 75.0 105.0 15.0 15.0 15.0 45.0 75.0 105.0 15.0 15.0 15.0 15.0 15.0 15.0	methane emission rate 35 3.8 6.0 9.1 16.4 26.0 34.8 21.3 34.8 21.3 11.9 5.9 3.7 10.7 (g/m3 day) - methane emission rate 3.5 4.0 6.4 9.8 16.9 27.9 36.8 36.6 21.5 12.0	m3/head 55.0 69.6 11.0 31.9 55.0 33.0 53.2 77.0 33.0 514.9 Calves m3/head 55.0 77.0 11.0 33.0 55.0 77.0 11.0 33.0 55.0 77.0 11.0 33.0 55.0 77.0 77.0	m3/head 44.5 56.3 8.9 25.8 44.5 60.3 8.9 26.7 43.1 62.3 8.6 26.7 416.7 Male cattle m3/head 45.7 64.0 9.1 27.4 45.7 64.0	cattle m3/he ad 25.8 32.7 5.2 15.0 25.8 35.0 25.8 35.0 15.5 25.0 15.5 25.0 15.5 241.9 Female cattle m3/he ad 22.9 32.1 4.6 13.7 22.9 32.1	dairy cattle m3/bead 34.6 43.8 6.9 20.1 34.6 46.9 6.9 20.8 33.5 48.5 6.7 20.8 33.5 48.5 6.7 20.8 33.5 48.5 6.7 20.8 33.5 48.5 6.7 20.8 33.5 5 6.7 20.8 33.5 5 5.6 6.7 20.8 33.5 5 5.6 6.7 20.8 33.5 5.5 6.7 20.8 33.5 5.5 6.7 20.8 33.5 5.5 6.7 20.8 33.5 5.5 6.7 20.8 33.5 5.5 6.7 20.8 33.5 5.5 6.7 20.8 33.5 5.5 6.7 20.8 3.5 5.5 6.7 2.3 3.5 5.5 6.7 2.3 3.5 5.5 6.7 2.3 3.5 5.5 6.6 2.5 5.5 5.5 6.6 2.5 5.5 5.5 6.5 2.5 5.5 5.5 6.5 5.5 5.5 5.5 5.5 5.5 5.5 5	m3/he ad 56.0 70.8 11.2 32.5 56.0 75.9 11.2 33.6 54.2 78.4 10.8 33.6 524.2 Dairy cattle m3/he ad 70.6 98.9 14.1 42.4 70.6 98.9	m3/head 43.3 54.8 8.7 25.2 43.3 58.7 8.7 26.0 41.9 60.7 8.4 26.0 405.7 Cow buffalo m3/head 43.8 61.3 8.8 26.3 43.8 61.3 8.8 26.3 43.8 61.3	m3/he ad 27.7 35.0 5.5 16.1 27.7 37.5 5.5 16.6 26.8 38.8 5.4 16.6 259.2 Other buffabes m3/he ad 24.4 34.2 4.9 14.6 24.4 34.2 4.9 14.6 24.4 34.2	191.9 262.1 66.2 290.7 901.7 1939.2 396.9 1149.8 1135.5 914.7 62.9 122.3 7433.8 Calves g CH ₄ /head 190.5 311.7 69.9 323.8 932.0 2148.6 405.0 1208.9 1180.9 9.22.3	CH4/he ad 155.3 212.1 53.5 235.3 729.7 1569 2 321.2 930.4 918.9 740.2 930.4 918.9 740.2 99.0 6015.6 Male cattle g CH4/he ad 158.3 259.0 58.0 269.1 774.3 1785.1 336.5 1004.3 981.1 767.1	CH/head 902 123.1 31.1 136.6 423.7 911.1 186.5 540.3 533.6 429.8 29.5 57.5 3492.9 Female cattle g CH/head 79.3 129.8 29.1 134.9 388.1 894.7 503.4 491.7 384.5	dairy cattle CH_/head 120.8 165.0 41.7 183.1 567.8 1221.1 249.9 724.1 715.1 576.0 39.6 77.0 4881.3 Other mon 67.7 57.0 4881.3 Other mon 97.7 159.8 35.8 165.1 477.9 1101.7 207.7 619.8 605.5	g CH4/head 195.3 266.8 67.3 296.0 917.9 1974.0 404.0 1170.4 1155.9 931.1 64.0 124.5 7567.3 Dairy cattle g CH4/head 244.7 400.3 89.7 415.9 1196.9 2759.3 1196.9 2759.3 1196.9 2759.3 1196.9 2759.3 1195.5 1185.7	CH4/he ad 151.2 206.5 52.1 229.1 710.4 152.7.8 312.7 905.9 894.7 720.7 96.4 5857.0 Cow buffalo g CH4/he ad 151.7 248.1 55.6 257.8 741.9 1710.3 3940.0 734.9	 buffaloes g CH/head 96.6 131.9 33.3 146.4 453.9 976.2 199.8 578.8 578.9 578.9 578.9 578.9 409.6
January February March April May June July August September October November December Total CH4 EF per slurry manure model from 2011 January February March April March April May June July August September October November December COLOBER May June July August September October November November New March August September October November November	4.7 5.4 9.3 12.7 17.6 24.2 23.9 15.0 9.1 5.3 14.0 temperature 4.7 6.0 9.7 13.4 17.9 22.1 24.4 24.3 19.9 15.0 9.8	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(days) 75.0 105.0 15.0 45.0 75.0 105.0 15.0 45.0 75.0 105.0 15.0 45.0 0.0 storage time (days) 75.0 105.0 105.0 105.0 15.0 45.0 75.0 105.0 15.0 45.0 75.0 105.0 15.0 15.0 45.0 75.0 105.0 15.0 45.0 75.0 105.0 15.0 15.0 45.0 75.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 1	methane emission rate 35 38 60 9.1 16.4 26.0 36.1 34.8 21.3 11.9 59 3.7 10.7 (g/m3 day) - methane emission rate 3.5 4.0 6.4 9.8 16.9 27.9 36.8 36.6 21.5 12.0 6.4	m3/head 55.0 69.6 11.0 31.9 55.0 74.5 11.0 33.0 53.2 77.0 10.6 33.0 514.9 55.0 77.0 11.0 33.0 514.9 Calves m3/head 55.0 77.0 11.0 33.0 55.0 77.0 11.0 33.0 55.0 77.0 11.0 33.0 55.0 77.0 11.0 33.0 55.0 77.0 11.0 11.0	m3/head 44.5 56.3 8.9 25.8 44.5 8.9 26.7 43.1 62.3 8.6 26.7 43.1 62.3 8.6 26.7 416.7 Male cattle m3/head 45.7 64.0 9.1 27.4 45.7 64.0 9.1 27.4 27.4 27.4 27.4 27.4 27.4 27.4 27.4	cattle m3/he ad 25.8 32.7 5.2 15.0 25.8 35.0 5.2 15.5 25.0 36.2 5.0 15.5 241.9 Female cattle m3/he ad 22.9 32.1 4.6 13.7 22.9 32.1 4.6	dairy cattle m3/head 34.6 43.8 6.9 20.1 34.6 46.9 20.8 33.5 6.7 20.8 33.5 6.7 20.8 324.3 Other non dairy cattle m3/head 28.2 39.5 5.6 16.9 17.5 18.2 18.5	m3/he ad 56.0 70.8 11.2 32.5 56.0 75.9 11.2 33.6 54.2 78.4 10.8 33.6 524.2 Dairy cattle m3/he ad 70.6 98.9 14.1 42.4 70.6 98.9 14.1	m3/head 43.3 54.8 8.7 25.2 43.3 58.7 8.7 26.0 41.9 60.7 8.4 26.0 405.7 Cow buffalo m3/head 43.8 61.3 8.8 26.3 43.8 61.3 8.8 26.3 43.8 61.3 8.8	m3/head 27.7 35.0 5.5 16.1 27.7 37.5 5.5 16.6 26.8 38.8 5.4 16.6 2592 Other buffabes m3/head 24.4 34.2 4.9 14.6 24.4 34.2 4.9 14.6 24.4 34.2 4.9 14.6	191.9 262.1 66.2 290.7 901.7 1939.2 396.9 1149.8 1135.5 914.7 62.9 122.3 7433.8 Calves g CH ₄ /head 190.5 311.7 69.9 323.8 932.0 2148.6 405.0 12008.9 1180.9 923.3 70.0	CH4/he ad 155.3 212.1 53.5 235.3 729.7 1569 2 321.2 930.4 918.9 740.2 50.9 99.0 6015.6 Male cattle g CH4/he ad 158.3 259.0 58.0 269.1 774.3 1785.1 336.5 1004.3 981.1 767.1 58.1	CH/head 902 123.1 31.1 136.6 423.7 911.1 186.5 540.3 533.6 429.8 29.5 57.5 3492.9 Femak cattle g CH/head 79.3 129.8 29.1 134.9 388.1 894.7 1568.7 1503.4 491.7 1568.7 1503.4 491.7 1568.7 1503.4 491.7 1568.7 1503.4 491.7 1568.7 1503.4 491.7 1568.7 1568.7 1568.7 1568.7 1568.7 1569.7 15	dairy cattle CH_/head 120.8 165.0 41.7 183.1 567.8 1221.9 724.1 715.1 576.0 39.6 77.0 4681.3 Other non dairy creation 4681.3 0 CH_/head 97.7 159.8 166.1 477.9 1101.7 207.7 619.8 605.5 473.4 35.9	g CH4/head 195.3 266.8 67.3 296.0 917.9 1974.0 404.0 1170.4 1155.9 931.1 64.0 124.5 7567.3 g CH4/head 244.7 400.3 89.7 415.9 1156.9 2759.3 520.1 1552.5 1516.5 1155.7 89.9	CH4/he ad 151.2 206.5 52.1 229.1 710.4 152.78 312.7 905.9 894.7 720.7 49.5 96.4 585.70 Cow buffalo g CH4/he ad 151.7 248.1 55.6 257.8 741.9 1710.3 322.4 940.0 734.9 55.7	 buffaloes g CH/head 96.6 131.9 33.3 146.4 453.9 976.2 199.8 571.6 571.6 571.6 31.7 61.6 3742.1 Other buffaloes g CH/head 84.5 138.3 31.0 143.7 413.7 413.7 53.3 179.7 536.3 523.9 409.6 31.0
January February March Aoril May June July August Sepember October December To al CH4 EF per slurry manure model from 2011 January February March Aoril May June July August Sepember October November December	4.7 5.4 9.3 12.7 17.6 24.2 23.9 15.0 9.1 5.3 14.0 temperature 4.7 6.0 9.7 13.4 17.9 22.1 24.4 31.9 19.9 15.0 9.8 5.5	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(days) 75.0 105.0 15.0 45.0 75.0 105.0 45.0 75.0 105.0 45.0 0.0 storage time (days) 75.0 105.0 15.0 45.0 75.0 105.0 15.0 45.0 75.0 105.0 15.0 45.0 75.0 105.0 15.0 45.0 75.0 105.0 15.0 45.0 75.0 105.0 15.0 45.0 75.0 105.0 15.0 45.0 75.0 105.0 15.0 45.0 75.0 105.0 15.0 45.0 75.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 1	methane emission rate 3.5 3.8 6.0 9.1 16.4 26.0 36.1 34.8 21.3 11.9 5.9 3.7 10.7 (g/m3 day) - methane emission rate 3.5 4.0 6.4 9.8 16.9 27.9 36.8 36.6 21.5 12.0 6.4 3.8	m3/head 55.0 69.6 61.0 11.0 31.9 55.0 74.5 11.0 33.0 53.2 77.0 10.6 33.0 514.9 655.0 77.0 13.0 55.0 77.0 11.0 33.0 55.0 77.0 11.0 33.0 55.0 77.0 11.0 33.0 55.0 77.0 11.0 33.0 55.0 77.0 11.0 33.0 55.0 77.0 11.0 33.0 55.0 77.0 11.0 33.0 77.0 11.0 33.0	m3/head 44.5 56.3 8.9 25.8 44.5 60.3 8.9 26.7 43.1 62.3 8.6 26.7 43.1 62.3 8.6 26.7 416.7 416.7 416.7 45.7 64.0 9.1 27.4 45.7 64.0 9.1 27.4 27.4	cattle m3/he ad 25.8 32.7 5.2 15.0 25.8 35.0 25.0 36.2 5.0 36.2 5.0 36.2 5.0 241.9 Female cattle m3/he ad 22.9 32.1 4.6 13.7 22.9 32.1 4.6 13.7	dairy cattle m3/head 34.6 43.8 6.9 20.1 34.6 46.9 6.9 20.8 33.5 48.5 6.7 20.8 32.4 33.5 48.5 6.7 20.8 32.4 3 32.5 5.6 16.9 28.2 39.5 5.6 16.9 28.2 39.5 5.6 16.9 28.2 39.5 5.6 16.9	m3/he ad 56.0 70.8 11.2 32.5 56.0 75.9 11.2 33.6 54.2 78.4 10.8 33.6 524.2 Dairy cattle m3/he ad 70.6 98.9 14.1 42.4 70.6 98.9 14.1 42.4	m3/head 43.3 54.8 8.7 25.2 43.3 58.7 8.7 26.0 41.9 60.7 8.4 26.0 405.7 Cow buffalo m3/head 43.8 61.3 8.8 26.3 43.8 61.3 8.8 26.3 43.8 61.3 8.8 26.3 43.8 61.3 8.8 26.3 45.2 26.3 45.2 26.3 45.2 26.3 45.2 26.3 45.2 26.3 45.2 26.3 45.2 26.3 45.2 26.3 45.2 26.3 45.2 26.3 26.4 26.3 26.4 26.4 26.4 26.4 26.4 26.4 26.4 26.4 26.4	m3/he ad 27.7 35.0 5.5 16.1 27.7 37.5 5.5 16.6 26.8 38.8 5.4 16.6 259.2 Other buffaloes m3/he ad 24.4 34.2 4.9 14.6 24.4 34.2 4.9 14.6 24.4 34.2 4.9 14.6	191.9 262.1 66.2 290.7 901.7 1939.2 396.9 1149.8 1135.5 914.7 62.9 122.3 7433.8 Calves g CH4/head 190.5 311.7 69.9 323.8 932.0 2148.6 405.0 1208.9 1180.9 923.3 70.0 125.6	CH4/he ad 155.3 212.1 53.5 235.3 729.7 1566 2 321.2 930.4 918.9 740.2 50.9 99.0 6015.6 Male cattle g CH4/he ad 158.3 259.0 58.0 269.1 774.3 1785.1 336.5 1004.3 981.1 767.1 58.1 104.3	CH/head 902 123.1 31.1 136.6 423.7 91.1 186.5 540.3 533.6 429.8 29.5 57.5 3492.9 Female cattle g CH/head 79.3 129.8 29.1 134.9 388.1 884.7 168.7 503.4 491.7 384.5 29.1 52.3	dairy cattle CH_/head 120.8 165.0 41.7 183.1 567.8 1221.1 249.9 724.1 715.1 576.0 39.6 77.0 4581.3 Other non 4681.3 Other non	g CHi/head 195.3 266.8 67.3 296.0 917.9 1974.0 404.0 1170.4 1155.9 931.1 64.0 124.5 7567.3 Dairy cattle g CHi/head 244.7 400.3 89.7 415.9 1196.9 2759.3 520.1 1552.5 1185.7 89.9 161.2	CH4/he ad 151.2 206.5 52.1 229.1 710.4 152.7 805.9 894.7 720.7 49.5 96.4 5857.0 Cow buffalo g CH4/he ad 151.7 248.1 55.6 257.8 741.9 1710.3 322.4 962.3 940.0 734.9 55.7 99.9	 buffaloes g CH/head 96.6 131.9 33.3 146.4 453.9 976.2 199.8 578.8 578.8
January February March April May June July August September October November December Total CH4 EF per slurry manure model from 2011 January February March April March April May June July August September October November December COLOBER May June July August September October November November New March August September October November November	4.7 5.4 9.3 12.7 17.6 24.2 23.9 15.0 9.1 5.3 14.0 temperature 4.7 6.0 9.7 13.4 17.9 22.1 24.4 24.3 19.9 15.0 9.8	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(days) 75.0 105.0 15.0 45.0 75.0 105.0 15.0 45.0 75.0 105.0 15.0 45.0 0.0 storage time (days) 75.0 105.0 105.0 105.0 15.0 45.0 75.0 105.0 15.0 45.0 75.0 105.0 15.0 15.0 45.0 75.0 105.0 15.0 45.0 75.0 105.0 15.0 15.0 45.0 75.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 1	methane emission rate 35 38 60 9.1 16.4 26.0 36.1 34.8 21.3 11.9 59 3.7 10.7 (g/m3 day) - methane emission rate 3.5 4.0 6.4 9.8 16.9 27.9 36.8 36.6 21.5 12.0 6.4	m3/head 55.0 69.6 11.0 31.9 55.0 74.5 11.0 33.0 53.2 77.0 10.6 33.0 514.9 55.0 77.0 11.0 33.0 514.9 Calves m3/head 55.0 77.0 11.0 33.0 55.0 77.0 11.0 33.0 55.0 77.0 11.0 33.0 55.0 77.0 11.0 33.0 55.0 77.0 11.0 11.0	m3/head 44.5 56.3 8.9 25.8 44.5 8.9 26.7 43.1 62.3 8.6 26.7 43.1 62.3 8.6 26.7 416.7 Male cattle m3/head 45.7 64.0 9.1 27.4 45.7 64.0 9.1 27.4 27.4 27.4 27.4 27.4 27.4 27.4 27.4	cattle m3/he ad 25.8 32.7 5.2 15.0 25.8 35.0 5.2 15.5 25.0 36.2 5.0 15.5 241.9 Female cattle m3/he ad 22.9 32.1 4.6 13.7 22.9 32.1 4.6	dairy cattle m3/head 34.6 43.8 6.9 20.1 34.6 46.9 20.8 33.5 6.9 20.8 33.5 6.9 20.8 32.4.3 Other non dairy cattle m3/head 28.2 39.5 5.6 16.9 27.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	m3/he ad 56.0 70.8 11.2 32.5 56.0 75.9 11.2 33.6 54.2 78.4 10.8 33.6 524.2 Daity cattle m3/he ad 70.6 98.9 14.1 42.4 70.6 70.6 70.6 70.5 70.6 7	m3/head 43.3 54.8 8.7 25.2 43.3 58.7 8.7 26.0 41.9 60.7 8.4 26.0 405.7 Cow buffalo m3/head 43.8 61.3 8.8 26.3 43.8 61.3 8.8 26.3 43.8 61.3 8.8 26.3 43.8 61.3 8.8 26.3 43.8 61.3 8.8 26.3 43.8 61.3 8.8 26.3 43.8 61.3 8.8 26.3 43.8 61.3 8.8 26.3 42.0 42.0 42.0 42.0 43.8 43.3 43.8 43.3 43.8 43.8 43.8 43.3 43.8 43.3 43.8 43.3 43.8 43.3 43.8 43.3 43.8 43.3 43.	m3/head 27.7 35.0 5.5 16.1 27.7 37.5 5.5 16.6 26.8 38.8 5.4 16.6 2592 Other buffabes m3/head 24.4 34.2 4.9 14.6 24.4 34.2 4.9 14.6 24.4 34.2 4.9 14.6	191.9 262.1 66.2 290.7 901.7 1939 2 396.9 1149.8 1135 5 914.7 62.9 122.3 7433.8 Calves g CH ₄ /head 190.5 311.7 69.9 323.8 932.0 2148.6 405.0 1208.9 1180.9 923.3 70.0 125.6 7890.1	CH4/he ad 155.3 212.1 53.5 235.3 729.7 1569 2 321.2 930.4 918.9 740.2 50.9 99.0 6015.6 Male cattle g CH4/he ad 158.3 259.0 58.0 269.1 774.3 1785.1 336.5 1004.3 981.1 767.1 58.1 104.3 6555.2	CH/head 902 123.1 31.1 136.6 423.7 911.1 186.5 540.3 533.6 429.8 29.5 57.5 3492.9 Femak cattle g CH/head 79.3 129.8 29.1 134.9 388.1 894.7 503.4 491.7 184.5 29.1 134.9 388.1 894.7 503.4 491.7 184.5 29.1 134.9 388.1 894.7 503.4 491.7 184.5 29.1 194.9 195.8 29.1 194.9 195.8 29.1 194.9 195.8 29.1 194.9 195.8 29.1 194.9 195.8 29.1 194.9 195.8 29.1 194.9 195.8 29.1 194.9 29.1 194.9 29.1 194.9 29.1 194.9 29.2 29.1 194.9 29.2 29.1 194.9 29.1 194.9 29.2 29.1 194.9 29.2 29.1 194.9 29.2 29.1 194.9 29.2 29.1 194.9 29.2 29.1 194.9 29.2 29.1 29.2 29.1 29.2 29.2 29.1 29.2 29.2 29.1 29.2 29.1 29.2 29.2 29.1 29.2 29.1 29.2 29.2 29.2 29.1 29.2 20.3 20.3 20.2 20	dairy cattle CH_/head 120.8 165.0 41.7 183.1 567.8 1221.1 576.0 39.6 77.0 4881.3 CH4/head 97.7 159.8 35.8 166.1 477.9 1101.7 207.7 159.8 35.8 166.1 1477.9 1101.7 207.7 159.8 35.8 165.1 473.4 474.4 474.9 1101.7 205.5 473.4 473.4 474.4 35.9	g CHi/head 195.3 266.8 67.3 296.0 917.9 1974.0 404.0 1170.4 1155.9 931.1 64.0 124.5 7567.3 g CHi/head 244.7 400.3 89.7 415.9 1196.9 2759.3 500.1 1552.5 1516.5 1185.7 89.9 161.2 10132.7	CH4/he ad 151.2 206.5 52.1 229.1 710.4 152.7.8 312.7 905.9 894.7 720.7 49.5 96.4 585.7.0 Cow buffalo g CH4/he ad 151.7 248.1 55.6 257.8 741.9 1710.3 322.4 962.3 940.0 734.9 55.7 89.9 6280.7	 buffaloes g CH/head 96.6 131.9 33.3 146.4 453.9 976.2 199.8 571.6 460.5 31.7 61.6 3742.1 g Other buffaloes g CH/head 84.5 138.3 31.0 143.7 413.5 953.3 17.9 536.3 523.9 409.6 31.0 536.3 523.9 409.6 31.0 53.10
January February March April May June July September October November December To al CH4 EF per slurry manure model from 2011 January February March April May June July August September October November December October	4.7 5.4 9.3 12.7 17.6 24.2 23.9 15.0 9.1 5.3 14.0 temperature 4.7 6.0 9.7 13.4 17.9 22.1 24.4 31.9 19.9 15.0 9.8 5.5	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(days) 75.0 105.0 15.0 45.0 75.0 105.0 45.0 75.0 105.0 45.0 0.0 storage time (days) 75.0 105.0 15.0 45.0 75.0 105.0 15.0 45.0 75.0 105.0 15.0 45.0 75.0 105.0 15.0 45.0 75.0 105.0 15.0 45.0 75.0 105.0 15.0 45.0 75.0 105.0 15.0 45.0 75.0 105.0 15.0 45.0 75.0 105.0 15.0 45.0 75.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 1	methane emission rate 3.5 3.8 6.0 9.1 16.4 26.0 36.1 34.8 21.3 11.9 5.9 3.7 10.7 (g/m3 day) - methane emission rate 3.5 4.0 6.4 9.8 16.9 27.9 36.8 36.6 21.5 12.0 6.4 3.8	m3/head 55.0 69.6 61.0 11.0 31.9 55.0 77.0 33.0 514.9 55.0 77.0 13.0 55.0 55.0 77.0 11.0 33.0 514.9 Calves 33.0 55.0 77.0 11.0 33.0 55.0 77.0 11.0 35.0 77.0 11.0 33.0 55.0 77.0 11.0 33.0 55.0 77.0 11.0 33.0 55.0 77.0 11.0 33.0 55.0 77.0 11.0 33.0 77.0 13.0 30.0	m3/head 44.5 56.3 8.9 25.8 44.5 60.3 8.9 26.7 43.1 62.3 8.6 26.7 43.1 62.3 8.6 26.7 416.7 416.7 416.7 45.7 64.0 9.1 27.4 45.7 64.0 9.1 27.4 27.4	cattle m3/he ad 25.8 32.7 5.2 15.0 25.8 35.0 25.0 36.2 5.0 36.2 5.0 36.2 5.0 241.9 Female cattle m3/he ad 22.9 32.1 4.6 13.7 22.9 32.1 4.6 13.7	dairy cattle m3/head 34.6 43.8 6.9 20.1 34.6 46.9 20.8 33.5 6.7 20.8 324.3 Other non dairy cattle m3/head 28.2 39.5 5.6 16.9 28.2 27.0 27	m3/he ad 56.0 70.8 11.2 32.5 56.0 75.9 11.2 33.6 524.2 78.4 10.8 33.6 524.2 Dairy cattle m3/he ad 70.6 98.9 14.1 42.4 70.6 98.9 14.1 42.4 70.6 98.9 14.1 42.4 70.6 98.9 14.1 42.4 70.6 98.9 14.1 35.0 75.9 14.1 70.6 98.9 14.1 70.6 70.6 70.8 70.6 70.8 70.6 70.8	m3/head 43.3 54.8 8.7 25.2 43.3 58.7 8.7 26.0 41.9 60.7 8.4 26.0 405.7 Cow buffalo m3/head 43.8 61.3 8.8 26.3 43.8 61.3 8.8 26.3 43.8 61.3 8.8 26.3 43.8 61.3 8.8 26.3 43.8 61.3 8.8 26.3 43.8 61.3 8.8 26.3 42.0 3.8 8.8 26.3 42.0 3.8 8.8 26.3 42.0 3.8 8.8 26.3 42.0 3.8 8.8 26.3 42.0 3.8 8.8 26.3 42.0 3.8 8.8 26.3 42.0 3.8 8.8 26.3 42.0 42.0 42.0 43.8 43.3 43.8 43.3 43.8 43.3 43.8 43.3 43.8 43.8 43.8 43.3 43.8 43.3 43.8 43.3 43.	m3/head 27.7 35.0 5.5 16.1 27.7 37.5 5.5 16.6 26.8 38.8 5.4 16.6 2592 Other buffabes m3/head 24.4 34.2 4.9 14.6 23.4 3 4.9 14.6 23.4 3 14.6 23.4 3 14.6 23.4 3 14.6 23.4 3 14.6 23.4 3 14.6 23.4 3 14.6 23.4 3 14.6 23.4 3 14.6 23.4 3 14.6 23.4 3 14.6 23.4 3 14.6 23.4 3 14.6 23.4 3 14.6 23.4 3 14.6 23.4 3 14.6 23.4 3 14.6 23.4 23 14.5 14.6 23.4 23.4 24.5 24.5 25.5 14.6 23.4 25.5	191.9 262.1 66.2 290.7 901.7 1939.2 396.9 1149.8 1135.5 914.7 62.9 122.3 7433.8 Calves g CH4/head 190.5 311.7 69.9 323.8 932.0 2148.6 405.0 1208.9 1180.9 923.3 70.0 125.6	CH4/he ad 155.3 212.1 53.5 235.3 729.7 1566 2 321.2 930.4 918.9 740.2 50.9 99.0 6015.6 Male cattle g CH4/he ad 158.3 259.0 58.0 269.1 774.3 1785.1 336.5 1004.3 981.1 767.1 58.1 104.3	CH/head 902 123.1 31.1 136.6 423.7 91.1 186.5 540.3 533.6 429.8 29.5 57.5 3492.9 Female cattle g CH/head 79.3 129.8 29.1 134.9 388.1 884.7 168.7 503.4 491.7 384.5 29.1 52.3	dairy cattle CH_/head 120.8 165.0 41.7 183.1 567.8 1221.1 249.9 724.1 715.1 576.0 39.6 77.0 4581.3 Other non 4681.3 Other non	g CHi/head 195.3 266.8 67.3 296.0 917.9 1974.0 404.0 1170.4 1155.9 931.1 64.0 124.5 7567.3 Dairy cattle g CHi/head 244.7 400.3 89.7 415.9 1196.9 2759.3 520.1 1552.5 1185.7 89.9 161.2	CH4/he ad 151.2 206.5 52.1 229.1 710.4 152.7 805.9 894.7 720.7 49.5 96.4 5857.0 Cow buffalo g CH4/he ad 151.7 248.1 55.6 257.8 741.9 1710.3 322.4 962.3 940.0 734.9 55.7 99.9	 buffaloes g CH/head 96.6 131.9 33.3 146.4 453.9 976.2 199.8 578.8 578.8

VS production (g VS head-1 day-1)	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
Calves	1123.7	1123.7	1123.7	1123.7	1123.7	1123.7	1123.7	1123.7	1123.7	1123.7	1123.7
Male cattle	868.4	916.6	885.1	921.7	929.9	925.2	927.8	935.6	939.8	941.1	942.7
Female cattle	518.9	516.9	520.8	536.7	508.7	464.1	456.7	459.3	458.4	458.0	460.4
Other non dairy cattle	724.9	724.9	724.9	724.9	656.0	569.9	552.7	552.7	552.7	552.7	552.7
Dairy cattle	1018.9	1018.9	1018.9	1018.9	1427.1	1444.4	1447.8	1447.8	1447.8	1447.8	1447.8
Cow buffalo	737.9	789.1	840.4	891.6	892.9	894.6	895.0	895.0	895.0	895.0	895.0
Other buffaloes	540.5	552.4	564.3	576.2	540.2	495.3	486.3	486.3	486.3	486.3	486.3
CH₄ EF (kg CH4/head year)	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
Calves	7.07	7.07	7.07	7.43	7.43	7.89	7.89	7.89	7.89	7.89	7.89
Male cattle	5.47	5.77	5.57	6.10	6.15	6.50	6.51	6.57	6.60	6.61	6.62
Female cattle	3.27	3.25	3.28	3.55	3.37	3.26	3.21	3.22	3.22	3.22	3.23
Other non dairy cattle	4.56	4.56	4.56	4.80	4.34	4.00	3.88	3.88	3.88	3.88	3.88
Dairy cattle	6.41	6.41	6.41	6.74	9.44	10.14	10.17	10.17	10.17	10.17	10.17
Cow buffalo	4.65	4.97	5.29	5.90	5.91	6.28	6.28	6.28	6.28	6.28	6.28
Other buffaloes	3.40	3.48	3.55	3.81	3.57	3.48	3.41	3.41	3.41	3.41	3.41

Table A.7.14 Data, parameters and equations used to estimate CH₄ emission from manure management for cattle and buffalo (total manure)

Total (solid manure and slurry)											
Total SV (kg dm/head/day)	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
Calves	1.12	1.12	1.12	1.12	1.12	1.12	1.12	1.12	1.12	1.12	1.12
Male cattle	2.76	2.92	2.82	2.93	2.80	2.58	2.54	2.56	2.57	2.58	2.58
Female cattle	2.73	2.73	2.77	2.83	2.62	2.38	2.32	2.34	2.31	2.30	2.32
Other non dairy cattle	4.54	4.54	4.54	4.54	4.14	3.65	3.55	3.55	3.55	3.55	3.55
Dairy cattle	6.41	6.41	6.41	6.41	6.05	5.36	5.22	5.22	5.22	5.22	5.22
Cow buffalo	7.14	7.03	6.92	6.81	5.88	4.72	4.48	4.48	4.48	4.48	4.48
Other buffaloes	2.54	2.50	2.47	2.43	2.31	2.15	2.12	2.12	2.12	2.12	2.12
Total average SV (kg dm/head/day)	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
Cattle	4.00	3.89	3.90	3.90	3.65	3.31	3.19	3.17	3.14	3.13	3.14
Dairy cattle	6.41	6.41	6.41	6.41	6.05	5.36	5.22	5.22	5.22	5.22	5.22
Non dairy cattle	2.76	2.88	2.86	2.85	2.62	2.37	2.32	2.35	2.35	2.34	2.35
Buffalo	5.55	5.36	5.16	5.36	4.70	3.73	3.59	3.57	3.49	3.47	3.47
Total CH, EF (kg CH4/head year)	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
Calves	7.07	7.07	7.07	7.43	7.43	7.89	7.89	7.89	7.89	7.89	7.89
Mal e cattl e	11.08	11.70	11.29	12.92	12.48	12.93	12.80	12.91	12.97	12.98	13.00
Female cattle	9.81	9.82	9.95	11.31	10.51	10.71	10.47	10.55	10.43	10.40	10.47
Other non dairy cattle	15.85	15.85	15.85	17.71	16.15	15.99	15.55	15.55	15.55	15.55	15.55
Dairy cattle	22.38	22.38	22.38	25.01	25.09	25.39	24.87	24.87	24.87	24.87	24.87
Cow buffalo	23.61	23.45	23.29	25.94	22.80	21.18	20.27	20.27	20.27	20.27	20.27
Other buffaloes	9.32	9.26	9.19	10.11	9.56	9.92	9.77	9.77	9.77	9.77	9.77
CH_4 emissions (t)	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
Calves	2,122	3,247	2,886	3,717	3,772	3,883	3,829	3,698	3,644	3,658	3,553
Mal e cattl e	22,103	21,398	17,663	17,733	13,933	12,406	13,259	13,671	13,597	13,606	13,299
Female cattle	24,562	22,018	24,166	23,356	21,980	23,383	24,575	25,196	25,761	25,802	25,641
Other non dairy cattle	4,955	10,425	9,318	8,354	6,008	5,113	4,518	4,891	5,482	5,617	5,272
Dairy cattle	59,123	46,546	46,215	46,072	43,813	46,379	44,538	42,107	40,858	40,740	40,033
Cow buffalo	1,459	2,193	2,701	3,561	5,577	4,878	5,049	4,990	4,716	4,721	4,752
Other buffaloes	305	508	699	686	1,152	1,430	1,482	1,516	1,658	1,701	1,710
Total	114,628	106,334	103,649	103,479	96,235	97,471	97,250	96,070	95,715	95,846	94,261
Total CH4 IEF (kg CH4/head year)	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
EF non dairy cattle (kg/head)	10.52	11.00	10.83	12.05	11.18	11.32	11.11	11.22	11.19	11.18	11.21
EF dairy cattle (kg/head)	22.38	22.38	22.38	25.01	25.09	25.39	24.87	24.87	24.87	24.87	24.87
EF buffalo (kg/head)	18.66	18.20	17.71	20.70	18.43	16.85	16.30	16.21	15.84	15.78	15.78
Bo (m3 CH ₄ /kg VS)	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
Calves	0.283	0.283	0.291	0.295	0.299	0.349	0.357	0.357	0.357	0.378	0.384
Male cattle	0.181	0.181	0.185	0.196	0.202	0.249	0.256	0.256	0.256	0.271	0.275
Female cattle	0.162	0.162	0.166	0.178	0.182	0.224	0.230	0.230	0.230	0.243	0.247
Other non dairy cattle	0.157	0.157	0.162	0.174	0.176	0.218	0.223	0.223	0.223	0.236	0.240
Dairy cattle	0.192	0.192	0.198	0.218	0.186	0.222	0.223	0.223	0.223	0.235	0.238
Cow buffalo	0.178	0.174	0.169	0.182	0.178	0.180	0.176	0.176	0.176	0.176	0.176

A7.3 Agricultural soils (3D)

Sewage sludge applied to soils

In Table A.7.15 parameters used for estimating direct and indirect N₂O emissions from sewage sludge applied to soils are presented.

(ear	Total amount sewage sludge for agriculture (t dry matter)	N content (%)	N sewage sludge (t)
1990	98,164	5.2	5,071
1995	157,512	5.2	8,137
2000	217,424	5.0	10,954
2005	215,742	4.1	8,874
2010	248,215	4.0	10,040
2015	222,225	3.7	8,303
2017	172,844	4.1	7,116
2018	173,358	4.2	7,247
2019	190,476	4.0	7,697
2020	186,555	4.0	7,418
2021	187,904	4.0	7,590

Table A.7.15 Time series of sewage sludge activity data

Source: ISPRA elaborations from MATTM (MATTM, 2014).

Bedding material in the estimates for the category animal manure applied to soils

A description of the types of agricultural residues considered in the estimates of the animal manure applied to soils (3Da2a), crop residues (3Da4) and field burning of agricultural residues (3F) categories is reported.

First of all, the agricultural residues are distinguished between removable and fixed. The last term is used to differentiate them from removable residues (such as straw and cereal stalks and residues of woody crops), "fixed" (no- removable) residues refer to residues which remain on the ground after harvest. The fixed residues include the remaining cereal stalks and the residues of other crops (such as beans, tubers, forages, grass, vegetables, etc.). The distinction between fixed and removable residues is required in the UNECE/LRTAP Convention.

From the cultivation of the crop (e.g. wheat), the product (grain), the removable residue (straw and wheat stalks) and the fixed residue (portion of the wheat stalks that remains on the ground after harvest) are obtained. As regards the removable residues, it is assumed that a portion (10% of residues) is burnt (first is removed from the field and then burned in the open air) and the corresponding emissions are reported in the waste sector (5C open burning of agricultural waste). Another portion (90% of residues) is used for various purposes (feed, bedding, construction, etc.). As regards the fixed residues, it is assumed that a portion (10% of residues) is burnt (the combustion of the residues takes place in the field) and the corresponding emissions are reported in the agriculture sector in 3F field burning of agricultural residues category. Another portion (90% of residues) is returned to soils and the corresponding emissions are reported in crop residues category (3Da4).

Considering the example of wheat, the total amount of durum wheat residues is thus distributed (2021 data):

72% are the removable residues used for various purposes (feed, bedding, construction, etc.), 18% are the fixed residues returned to soils,

8% are the removable residues burnt (removed from the field and then burned in the open air), 2% are the fixed residues burnt (the combustion of the residues takes place in the field).

As regard the estimate of the amount of straw used as bedding and the nitrogen content (see Table A.7.16), the following data are used: the number of dairy cattle, non-dairy cattle and buffalo (excluding

pigs for which assumes only the liquid storage); the average weight of the subcategories of cattle and buffalo categories; the types of housings in each subcategory; the amount of straw per day (per tons of live weight, per type of housing for cattle and buffalo subcategories); the nitrogen content in straw. Data on the amount of straw per day (per tons of live weight, per type of housing, for cattle and buffalo) are contained in the Ministerial Decree of 25 February 2016 on the use of zootechnical effluents, combined with the manure production coefficients used in the estimation of methane emissions from storage. As recommended during the 2019 UNFCCC review, data on the quantity of bedding material used in solid manure management system are provided for 2019: 1.54 kg dm (straw)/head/day for dairy cattle and fattening cattle; 1.69 kg dm (straw)/head/day for replacement cows; 2.37 kg dm (straw)/head/day for other non-dairy cattle; 1.50 kg dm (straw)/head/day for fattening cattle; 1.65 kg dm (straw)/head/day for dairy cattle; 1.50 kg dm (straw)/head/day for fattening cattle; 2.45 kg dm (straw)/head/day for buffalo. The amount of nitrogen estimated from bedding materials was added to the nitrogen input from manure applied to soils (3Da2a category) to estimate N₂O emissions.

Year	Dairy cattle – straw consumed	Non-dairy cattle – straw consumed	Buffalo – straw consumed	Total straw consumed	N in organic bedding material (straw consumed)
			tons		
1990	1,828,772	2,690,058	90,119	4,608,949	23,567
1995	1,439,743	2,807,134	138,572	4,385,448	22,231
2000	1,429,510	2,665,661	175,378	4,270,548	21,623
2005	1,275,139	2,324,638	183,317	3,783,094	19,093
2010	1,034,808	2,126,664	326,327	3,487,799	17,510
2015	994,450	2,066,608	334,438	3,395,496	17,006
2017	957,942	2,187,677	357,990	3,503,609	17,606
2018	905,642	2,260,588	358,435	3,524,664	17,734
2019	878,785	2,317,306	359,099	3,555,191	17,969
2020	876,253	2,326,975	363,300	3,566,528	18,042
2021	861,046	2,285,241	365,427	3,511,714	17,683

Crop residues (FCR)

In Tables A.7.17-22, the cultivated surface, crops production, residues production and parameters used for emission calculation of nitrogen input from crop residues (FCR) for each type of crop are shown, respectively.

As recommended during the 2019 UNFCCC review, to enhance transparency on the total amount of crop residues generated and shares of the crop residue amounts used for different purposes (such as bedding material (3.D.a.2.a), left on fields (3.D.a.4), burnt on-site (3.F) and off-site (1.A, 5.C.2)), a flow-chart is reported in Figure A.7.1.

Table A.7.17 Cultivated surfaces for the estimation of crop residues

Cultivated surfaces (ha)	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
Wheat	2,759,926	2,482,119	2,321,893	2,122,896	1,830,475	1,882,516	1,806,572	1,821,725	1,754,636	1,711,219	1,726,608
Rice	214,124	239,259	220,348	224,015	247,653	227,329	229,547	217,195	220,027	227,319	227,038
Barley	469,344	381,482	343,701	319,944	272,213	242,895	250,526	262,482	261,411	263,430	251,762
Maize, stalks	767,780	942,475	1,063,555	1,113,166	926,776	727,366	645,742	591,206	628,801	602,856	588,597
Maize, cobs	767,780	942,475	1,063,555	1,113,166	926,776	727,366	645,742	591,206	628,801	602,856	588,597
Rye	8,105	7,108	3,479	2,654	4,513	4,113	3,592	3,538	3,910	3,580	3,382
Oats	156,628	134,647	140,748	174,799	130,024	108,956	108,459	107,454	103,789	103,459	99,490
Sorghum	23,676	34,417	33,900	31,578	40,311	45,374	40,901	39,596	46,799	52,912	37,542
Triticum	4,215	3,716	5,882	6,766	21,658	36,955	33,205	34,347	32,962	46,951	43,797
Potatoes	120,481	89,350	81,894	69,912	62,400	50,416	48,571	46,429	46,806	47,346	46,699
Sweet potatoes	526	597	1,268	1,431	457	354	388	378	385	371	372
Sugar beet	274,000	283,993	249,154	253,043	62,266	38,124	37,972	34,408	29,967	27,265	27,905
Sunflower	111,797	230,402	216,852	129,874	100,475	114,449	114,446	103,870	118,518	122,767	116,985
Cabbage	26,296	22,345	24,778	27,556	27,196	25,213	23,665	24,086	23,981	21,486	21,641
Artichoke	48,172	51,273	50,283	50,127	50,321	41,299	40,482	40,175	39,419	38,163	38,452
Asparagus	6,046	6,520	5,516	6,442	6,359	6,397	6,687	6,863	7,158	7,400	7,446
Salad	48,725	49,288	51,219	50,010	47,371	40,647	43,240	43,661	42,443	40,915	39,857
Spinach	7,573	7,959	6,992	7,367	6,406	6,461	5,974	6,593	6,287	6,141	6,084
Tomato	136,379	114,917	136,265	138,759	119,977	107,178	99,750	97,092	99,020	99,783	102,056
Cauliflower	19,405	23,991	24,827	18,150	17,867	15,624	15,956	15,860	15,670	15,508	15,128
Pumpkin and zucchini	13,253	13,490	14,621	16,736	17,354	18,614	18,737	18,671	19,084	20,151	19,950
Cucumber	4,373	3,814	2,048	2,331	2,219	2,071	2,038	2,029	2,055	2,097	2,012
Eggplant	10,574	10,334	12,355	12,169	10,816	10,148	9,449	9,560	9,546	9,508	9,571
Pepper and chili	14,864	13,099	14,489	13,787	11,881	11,521	10,323	10,522	10,284	10,007	9,670
Onion	17,453	15,725	14,562	12,281	12,603	11,877	12,248	11,597	14,064	12,816	12,514
Garlic	4,707	4,070	3,677	3,163	2,966	3,044	3,473	3,573	3,411	3,287	3,590
Bean, freshseed	29,096	23,943	23,448	23,146	19,027	17,059	18,618	18,368	18,253	17,915	18,378
Bean, dryseed	23,002	14,462	11,046	8,755	7,001	5,870	6,001	6,411	5,587	5,541	5,265
Broadbean, freshseed	16,564	14,180	11,998	9,484	8,487	7,914	7,553	7,985	7,624	7,372	7,310
Broadbean, dryseed	104,045	63,257	47,841	48,507	52,108	42,157	51,135	50,421	60,007	61,982	57,207
Pea, freshseed	28,192	21,582	11,403	11,636	8,691	14,940	15,232	15,559	16,197	16,154	15,730
Pea,dryseed	10,127	6,625	4,498	11,134	11,692	11,181	17,046	17,916	22,926	20,766	17,771
Chickpea	4,624	3,023	3,996	5,256	6,813	11,167	20,025	26,024	20,999	18,579	17,617

Cultivated surfaces	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
(ha)											
Lentil	1,048	1,038	1,016	1,786	2,458	3,099	4,981	5,417	5,861	5,612	5,710
Vetch	5,768	6,532	6,800	7,142	7,560	7,795	7,827	7,827	7,827	7,827	7,827
Lupin	3,303	3,070	3,300	2,500	3,401	3,358	3,337	3,337	3,337	3,337	3,337
Soyabean	521,169	195,191	256,647	152,331	159,511	308,979	322,417	326,587	273,332	256,134	285,464
Alfalfa	987,000	823,834	810,866	779,430	745,128	667,325	682,160	695,492	719,073	715,642	694,481
Clovergrass	224,087	125,009	114,844	103,677	102,691	119,942	118,390	124,375	127,087	127,270	124,308
Waxy Corn	97,435	271,532	285,148	270,739	282,407	339,787	336,767	355,112	367,322	378,943	375,493
Grass Barley	11,291	35,913	44,745	43,834	40,055	51,045	52,052	52,222	52,760	52,760	52,760
Waxy Barley	3,615	9,967	11,807	11,549	21,813	8,230	13,001	13,719	13,553	12,914	17,184
Ryegrass	20,719	52,000	57,520	57,324	61,213	76,636	85,486	89,574	94,490	87,218	88,354
Other grasses	84,925	224,471	171,828	141,733	129,913	137,752	245,864	256,904	266,063	280,281	303,299
Gramineae	8,906	33,615	77,386	74,394	120,408	125,229	86,706	81,825	84,505	87,033	101,360
Leguminosae	13,772	33,118	78,001	59,569	57,128	65,635	82,402	83,394	81,716	84,526	91,919
Other mixtures	140,222	349,350	282,921	261,488	269,885	307,785	272,231	274,097	279,284	288,789	280,823
Sainfoin (Lupinella)	21,521	39,677	39,257	20,082	18,930	14,460	14,740	14,638	14,729	14,674	14,262
Sulla	51,469	112,049	106,194	89,865	89,032	90,017	94,121	95,241	94,040	99,233	95,720
Polyphytic meadows	109,860	224,444	213,389	177,689	204,313	144,946	221,938	312,817	312,528	330,586	345,079
Total	8,557,961	8,796,747	8,783,759	8,295,171	7,388,997	7,088,614	7,037,717	7,079,378	7,118,334	7,080,682	7,073,402

Table A.7.18 Crop production for the estimation of crop residues

Crops production (t)	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
Wheat	8,108,500	7,946,081	7,427,660	7,717,129	6,849,858	7,394,495	6,966,465	6,932,943	6,576,584	6,553,861	7,118,272
Rice	1,290,700	1,320,851	1,245,555	1,444,818	1,574,320	1,505,804	1,516,033	1,480,887	1,498,133	1,513,057	1,464,700
Barley	1,702,500	1,387,069	1,261,560	1,214,054	944,257	955,131	984,281	1,010,328	1,072,447	1,090,630	1,059,803
Maize, stalks	5,863,900	8,454,198	10,139,639	10,427,930	8,495,946	7,073,897	6,048,499	6,179,035	6,258,747	6,771,089	6,060,232
Maize, cobs	5,863,900	8,454,198	10,139,639	10,427,930	8,495,946	7,073,897	6,048,499	6,179,035	6,258,747	6,771,089	6,060,232
Rye	20,800	19,780	10,292	7,876	13,926	13,183	11,097	10,639	12,509	11,475	10,886
Oats	298,400	301,322	317,926	429,153	288,880	261,366	229,041	243,366	238,107	242,709	233,452
Sorghum	114,200	214,802	215,200	184,915	275,572	294,218	240,694	293,865	312,384	361,694	223,459
Triticum	10,480	13,210									
Potatoes	2,308,700	2,080,896	2,053,043	1,755,686	1,558,030	1,355,409	1,346,936	1,307,598	1,338,432	1,434,651	1,362,127
Sweet potatoes	11,300	14,273	14,496	20,251	8,681	7,547	8,494	7,480	5,534	6,179	5,894
Sugar beet	11,768,400	13,188,317	11,569,182	14,155,683	3,549,871	2,183,878	2,453,568	1,941,479	1,779,127	1,831,092	1,510,710
Sunflower	403,500	533,581	460,714	289,365	212,900	248,007	243,671	248,847	292,836	297,948	280,583
Cabbage	491,600	450,687	482,147	478,972	502,955	467,412	436,187	443,683	457,819	420,638	413,500
Artichoke	487,000	517,229	512,946	469,975	480,112	401,335	387,803	389,813	378,819	367,079	376,277
Asparagus	28,382	33,479	30,492	43,496	43,973	44,055	46,419	49,000	49,913	47,039	45,715
Salad	901,700	906,200	968,833	1,010,470	990,572	846,754	941,051	975,345	956,528	933,656	1,164,081
Spinach	87,300	106,500	92,959	99,367	90,608	92,385	91,977	102,532	99,518	99,870	100,769
Tomato	5,469,068	5,172,611	7,487,358	7,187,014	6,026,766	6,410,249	6,015,868	5,798,103	5,777,614	6,247,909	6,644,793
Cauliflower	375,800	470,800	518,030	430,669	427,407	385,972	371,568	368,117	368,154	365,355	359,728
Pumpkin and zucchini	338,800	356,000	412,779	488,054	509,512	533,495	536,213	560,173	569,123	600,431	601,663
Cucumber	90,278	83,032	54,010	72,572	59,598	55,599	51,415	51,008	58,120	58,366	60,826
Eggplant	270,900	301,600	357,031	338,803	303,046	300,182	286,473	298,313	300,616	304,687	306,444
Pepper and chili	343,200	325,100	365,624	362,994	296,074	282,896	250,072	260,746	249,637	247,624	244,052
Onion	486,200	471,965	437,359	358,926	380,855	378,300	410,536	372,183	477,905	457,972	415,588
Garlic	41,200	34,939	31,639	29,598	26,501	27,123	29,983	30,496	29,270	27,966	32,765
Bean, freshseed	234,400	200,700	218,379	218,757	185,752	148,713	154,851	163,824	154,391	162,215	169,902
Bean, dryseed	35,900	23,647	20,274	18,908	13,181	12,215	11,176	11,981	11,645	13,201	12,424
Broadbean, freshseed	90,100	85,512	72,948	53,796	50,837	46,527	45,304	46,530	47,850	46,641	40,271
Broadbean, dryseed	114,600	98,730	71,762	86,920	104,241	79,772	92,767	101,625	118,785	119,810	104,445
Pea, freshseed	168,100	129,600	72,078	71,411	52,092	74,702	85,897	86,266	79,649	80,412	81,569
Pea,dryseed	34,400	19,756	12,107	34,464	30,872	26,240	48,528	50,195	69,991	61,019	50,083

Crops production (t)	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
Chickpea	4,200	3,358	4,140	6,113	9,143	16,761	33,541	47,039	35,525	33,170	30,439
Lentil	800	865	758	1,234	1,697	2,484	3,663	4,544	5,285	4,895	5,008
Vetch	4,700	6,134	6,800	8,000	8,555	9,050	9,101	9,101	9,101	9,101	9,101
Lupin	4,200	5,144	4,800	3,500	4,810	4,748	4,721	4,721	4,721	4,721	4,721
Soyabean	1,750,500	732,448	908,290	553,002	552,454	1,116,982	1,019,781	1,138,993	1,001,154	965,439	886,566
Alfalfa	30,094,610	27,858,100	25,662,700	25,924,100	21,928,700	17,255,600	16,777,300	19,401,800	20,931,600	21,312,007	18,418,557
Clovergrass	6,304,100	2,899,100	2,397,800	2,203,300	1,982,500	2,107,700	1,936,500	2,167,700	2,190,000	2,125,454	2,025,131
Waxy Corn	5,445,099	14,033,200	13,517,200	14,334,200	14,088,600	16,668,600	15,882,900	18,466,200	18,691,400	20,653,520	20,124,845
Grass Barley	187,415	518,100	790,900	816,800	677,800	729,200	747,600	748,200	767,300	767,300	767,300
Waxy Barley	84,982	285,300	351,200	334,800	979,100	224,600	312,800	356,700	357,200	369,902	485,733
Ryegrass	734,816	1,800,000	1,855,400	1,717,500	1,696,600	2,223,200	2,161,400	2,341,900	2,116,700	2,029,998	2,106,172
Other grasses	2,236,744	5,060,400	3,649,400	3,057,900	2,306,900	2,390,000	3,737,500	4,282,100	4,483,800	4,944,599	5,212,511
Gramineae	202,038	557,800	1,471,600	1,191,900	1,261,800	1,277,500	661,200	655,900	700,700	779,826	1,101,699
Leguminosae	160,962	387,700	1,365,400	1,059,700	785,700	550,500	652,600	907,200	860,400	1,032,338	1,086,378
Other mixtures	3,112,241	7,869,200	5,840,000	5,422,300	3,198,800	3,569,200	2,995,600	4,151,800	4,231,300	4,455,097	3,717,484
Sainfoin (Lupinella)	412,452	793,800	751,000	334,400	281,900	208,200	162,300	208,200	207,300	202,579	180,392
Sulla	705,718	1,876,900	1,723,400	1,262,200	1,214,300	1,140,500	1,100,000	1,182,100	1,165,300	1,213,939	1,101,977
Polyphytic meadows	2,828,675	5,346,900	4,561,400	3,838,900	4,048,700	2,563,500	3,484,700	3,856,900	3,256,600	3,743,313	3,751,221

Crops	Residues/Crop product mass ratio ⁽¹⁾		Dry matter of residues (%) ⁽³⁾	Reincorporated fraction ⁽⁴⁾	Protein in dry matter (5)	N content of aboveground residues ⁽⁵⁾	Ratio of belowground residues to above- ground biomass (RBG-BIO) ⁽⁶⁾	N content of belowground residues (NBG) ⁽⁶⁾	Dry matter fraction of harvested product (DRY) ⁽⁶⁾	Slope (6)	Intercept (6)
Wheat	0.1725		85	0.91	0.03	0.0048	0.24	0.009	0.89		
Rice	0.1675		75	0.6	0.045	0.0072	0.16	0.014	0.89		
Barley	0.2		85	0.91	0.04	0.0064	0.22	0.014	0.89		
Maize, stalks	0.13		40	1	0.045	0.0072	0.22	0.007	0.87		
Maize, cobs	0.02		50	1	0.035	0.0056	0.22	0.007	0.87		
Rye	0.175		85	0.91	0.04	0.0064	0.24	0.011	0.88		
Oats	0.175		85	0.91	0.04	0.0064	0.25	0.008	0.89		
Sorghum		0.625	85	0.91	0.045	0.0072	0.24	0.006	0.89		
Triticum	0.2		85	0.91	0.04	0.0064	0.25	0.008	0.88		
Potatoes	0.4		40	0.9	0.09	0.0144	0.2	0.014	0.22		
Sweet potatoes	0.4		40	0.9	0.09	0.0144	0.2	0.014	0.22		
Sugar beet	0.07		20	0.9	0.125	0.02	0.2	0.014	0.16		
Sunflower	0.4		60	0.9	0.025	0.004	0.24	0.006	0.94		
Cabbage	2.5		15	0.9	0.175	0.028	0.2	0.014	0.07		
Artichoke	2.5		15	0.9	0.135	0.0216	0.2	0.014	0.08		
Asparagus		2.8	8	0.9	0.09375	0.015	0.2	0.014	0.08		
Salad		3.4	4.5	0.9	0.09375	0.015	0.2	0.014	0.06		
Spinach		3.4	8	0.9	0.09375	0.015	0.2	0.014	0.08		
Tomato	0.3		15	0.9	0.08	0.0128	0.2	0.014	0.06		
Cauliflower		3.8	8	0.9	0.09375	0.015	0.2	0.014	0.08		
Pumpkin and zucchini		9.5	4.5	0.9	0.09375	0.015	0.2	0.014	0.08		
Cucumber		8.5	4.5	0.9	0.09375	0.015	0.2	0.014	0.04		
Eggplant		9.5	8	0.9	0.09375	0.015	0.2	0.014	0.08		
Pepper and chili		9.5	8	0.9	0.09375	0.015	0.2	0.014	0.07		
Onion		0.7	8	0.9	0.09375	0.015	0.2	0.014	0.09		
Garlic		0.7	30	0.9	0.09375	0.015	0.2	0.014	0.09		
Bean, freshseed		17.7	20	0.9	0.125	0.02	0.19	0.008	0.91		

Table A.7.19 Parameters used for emission of nitrogen input from crop residues (FCR)

Crops	Residues/Crop surface (t/ha) (2)	Dry matter of residues (%) ⁽³⁾	Reincorporated fraction ⁽⁴⁾	Protein in dry matter (5)	N content of aboveground residues ⁽⁵⁾	Ratio of belowground residues to above- ground biomass (RBG-BIO) ⁽⁶⁾	N content of belowground residues (NBG) ⁽⁶⁾	Dry matter fraction of harvested product (DRY) ⁽⁶⁾	Slope (6)	Intercept (6)
Bean, dryseed	0.6699	85	0.9	0.1	0.016	0.19	0.01	0.9		
Broadbean, freshseed	17.7	20	0.9	0.125	0.02	0.19	0.008	0.91		
Broadbean, dryseed	0.6699	85	0.9	0.1	0.016	0.19	0.008	0.91		
Pea, freshseed	17.7	20	0.9	0.125	0.02	0.19	0.008	0.91		
Pea,dryseed	0.6699	85	0.9	0.1	0.016	0.19	0.008	0.91		
Chickpea	0.6699	85	0.9	0.1	0.016	0.19	0.008	0.91		
Lentil	0.6699	85	0.9	0.1	0.016	0.19	0.008	0.91		
Tare	0.6699	85	0.9	0.1	0.016	0.19	0.008	0.91		
Lupin	0.6699	85	0.9	0.1	0.016	0.19	0.008	0.91		
Soyabean	2.6	47.5	0.9	0.075	0.012	0.19	0.008	0.91		
Alfalfa		90	0.2	0.16875	0.027	0.4	0.019	0.9		
Clovergrass		90	0.2	0.16875	0.027	0.4	0.022	0.9		
Other temporary forages			0.2		0.018	0.6	0.013	0.9	0.3	0
Perennial grasses			0.2		0.015	0.8	0.012	0.9	0.3	0

(1) CESTAAT, 1988 and ENEA, 1994; (2) CRPA/CNR, 1992 and ENEA, 1994; (3) IPCC, 1997; CRPA/CNR, 1992; CESTAAT, 1988; Borgioli, 1981; CREA expert judgment; (4) Values are the complement of the fraction of fixed residues burned (CRPA, 1997 [b]). Values also include the non-combusted portion of burned grain residues, which have a combustion coefficient C of 90%, except for rice, which is 80%; (5) Nitrogen in dry matter is equal to raw protein in residues (dry matter fraction) (CESTAAT, 1988; Borgioli, 1981) dividing by factor 6.25 (100 g of protein/16 g of nitrogen); (6) Table 11.2 of the 2006 IPCC Guidelines.

Table A.7.20 Aboveground residues production for the estimation of crop residues

t dry matter	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
Wheat	1,188,909	1,165,094	1,089,081	1,131,524	1,004,360	1,084,218	1,021,458	1,016,543	964,292	960,960	1,043,717
Rice	162,144	165,932	156,473	181,505	197,774	189,167	190,452	186,036	188,203	190,078	184,003
Barley	289,425	235,802	214,465	206,389	160,524	162,372	167,328	171,756	182,316	185,407	180,166
Maize, stalks	304,923	439,618	527,261	542,252	441,789	367,843	314,522	321,310	325,455	352,097	315,132
Maize, cobs	58,639	84,542	101,396	104,279	84,959	70,739	60,485	61,790	62,587	67,711	60,602
Rye	3,094	2,942	1,531	1,172	2,072	1,961	1,651	1,582	1,861	1,707	1,619
Oats	44,387	44,822	47,292	63,837	42,971	38,878	34,070	36,201	35,418	36,103	34,726
Sorghum	14,798	21,511	21,188	19,736	25,194	28,359	25,563	24,748	29,249	33,070	23,464
Triticum	1,782	2,246	0	0	0	0	0	0	0	0	0
Potatoes	369,392	332,943	328,487	280,910	249,285	216,865	215,510	209,216	214,149	229,544	217,940
Sweet potatoes	1,808	2,284	2,319	3,240	1,389	1,208	1,359	1,197	885	989	943
Sugar beet	164,758	184,636	161,969	198,180	49,698	30,574	34,350	27,181	24,908	25,635	21,150
Sunflower	96,840	128,059	110,571	69,448	51,096	59,522	58,481	59,723	70,281	71,507	67,340
Cabbage	184,350	169,008	180,805	179,615	188,608	175,280	163,570	166,381	171,682	157,739	155,063
Artichoke	182,625	193,961	192,355	176,241	180,042	150,501	145,426	146,180	142,057	137,655	141,104
Asparagus	16,929	18,256	15,444	18,038	17,805	17,913	18,725	19,216	20,042	20,721	20,848
Salad	165,665	167,579	174,144	170,035	161,060	138,199	147,015	148,447	144,305	139,112	135,514
Spinach	25,748	27,061	23,774	25,049	21,781	21,966	20,313	22,416	21,377	20,879	20,685
Tomato	246,108	232,767	336,931	323,416	271,204	288,461	270,714	260,915	259,993	281,156	299,016
Cauliflower	73,739	91,166	94,343	68,970	67,895	59,371	60,633	60,268	59,546	58,930	57,486
Pumpkin and											
zucchini	125,904	128,155	138,898	158,987	164,863	176,831	178,005	177,378	181,298	191,430	189,521
Cucumber	37,171	32,419	17,405	19,813	18,865	17,600	17,326	17,248	17,469	17,825	17,098
Eggplant	100,453	98,173	117,371	115,602	102,751	96,404	89,762	90,818	90,686	90,330	90,926
Pepper and	4 4 4 2 2 2 2	101111	127 6 10	120.075	110.071	100 45 4	00.000	00.000	07 700	05.005	01.050
chili	141,208	124,441	137,648	130,975	112,871	109,454	98,066	99,960	97,700	95,065	91,869
Onion	12,217	11,008	10,193	8,597	8,822	8,314	8,574	8,118	9,845	8,971	8,760
Garlic	3,295	2,849	2,574	2,214	2,076	2,131	2,431	2,501	2,388	2,301	2,513
Bean,freshseed	103,000	84,758	83,004	81,936	67,354	60,388	65,909	65,021	64,617	63,420	65,057
Bean, dryseed Broadbean, fres	13,098	8,235	6,290	4,985	3,986	3,342	3,417	3,651	3,181	3,155	2,998
hseed	58,637	50,197	42,473	33,573	30,044	28,016	26,738	28,267	26,989	26,097	25,877
Broadbean,dry	55,657	55,157	12,713	55,575	30,044	20,010	20,750	20,201	20,000	20,007	25,011
seed	59,245	36,019	27,241	27,621	29,671	24,005	29,117	28,710	34,169	35,293	32,575
Pea, freshseed	99,800	76,400	40,366	41,193	30,766	52,887	53,922	55,078	57,336	57,186	55,683

t dry matter	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
Pea,dryseed	5,766	3,772	2,561	6,340	6,658	6,367	9,706	10,202	13,054	11,824	10,119
Chickpea	2,633	1,721	2,275	2,993	3,879	6,359	11,403	14,818	11,957	10,579	10,031
Lentil	597	591	579	1,017	1,400	1,765	2,836	3,085	3,337	3,196	3,251
Vetch	3,284	3,719	3,872	4,067	4,305	4,439	4,457	4,457	4,457	4,457	4,457
Lupin	1,881	1,748	1,879	1,424	1,937	1,912	1,900	1,900	1,900	1,900	1,900
Soyabean	643,644	241,061	316,959	188,129	196,996	381,589	398,185	403,335	337,565	316,325	352,548
Alfalfa	1,963,673	1,817,741	1,674,491	1,691,548	1,430,848	1,125,928	1,094,719	1,265,967	1,365,787	1,390,608	1,201,811
Clovergrass	567,369	260,919	215,802	198,297	178,425	189,693	174,285	195,093	197,100	191,291	182,262
Other											
temporary											
forages	2,507,313	6,404,657	6,098,715	6,052,511	5,338,221	6,207,568	5,954,334	7,046,994	7,223,184	7,834,582	7,749,260
Total	10,046,247	13,098,813	12,720,426	12,535,653	10,954,243	11,608,386	11,176,715	12,463,706	12,662,625	13,326,837	13,079,034

Table A.7.21 Estimate of nitrogen from crop residues of perennial grasses ⁽¹⁾

	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
Surface (ha)	855,117	931,388	893,737	828,835	879,405	924,270	835,706	832,613	856,000	832,254	791,733
Production (t)	15,213,383	16,945,600	15,841,500	13,853,700	14,478,400	11,766,500	9,074,800	9,127,600	9,499,900	9,445,691	9,085,736
Crop (kg dm/ha) ⁽²⁾	16,012	16,375	15,953	15,043	14,817	11,458	9,773	9,866	9,988	10,215	10,328
AG _{DM} (t/ha) ⁽³⁾	4.80	4.91	4.79	4.51	4.45	3.44	2.93	2.96	3.00	3.06	3.10
R _{AG} (kg dm/ kg dm) ⁽⁴⁾	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
R _{BG} (kg dm/ kg dm) ⁽⁵⁾	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04
F _{CR} of perennial grasses (t N) ⁽⁶⁾	36,640	40,812	38,153	33,365	34,870	28,338	21,856	21,983	22,880	22,749	21,882

(1) According to the equations 11.6 and 11.7 of the 2006 IPCC Guidelines; (2) Harvested annual dry matter yield - kg harvested fresh yield / ha * DRY (dry matter fraction); (3) Above-ground residue dry matter calculated as (Crop/1000)*slope+intercept; (4) Ratio of above-ground residues dry matter to harvested yield, calculated as AG_{DM}*1000/Crop; (5) Ratio of below-ground residues to harvested yield, calculated as R_{BG-BIO}*[(AG_{DM}*1000+Crop)]; (6) Calculated according to equation 11.6 assuming Frac_{Renew}= 1/5, Area burnt=0, Frac_{Renov}= 0.8.

Table A.7.22 Total nitrogen content in the aboveground and belowground crop residues

Total nitrogen (t N)	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
Wheat	23,349	22,881	21,388	22,222	19,725	21,293	20,060	19,964	18,938	18,872	20,498
Rice	3,637	3,722	3,419	3,967	4,322	4,134	4,162	4,066	4,113	4,154	4,021
Barley	7,244	5,902	5,368	5,166	4,018	4,064	4,188	4,299	4,563	4,641	4,509
Maize, stalks	10,521	15,169	18,193	18,711	15,244	12,693	10,853	11,087	11,230	12,149	10,874
Maize, cobs	8,275	11,931	14,309	14,716	11,989	9,983	8,536	8,720	8,832	9,555	8,552
Rye	75	71	37	28	50	47	40	38	45	41	39
Oats	878	887	936	1,263	850	769	674	716	701	714	687

Total nitrogen (t N)	1990	1995	2000	2005	2010	2015	2017	2018	2019	2020	2021
Sorghum	265	447	445	395	555	604	513	574	634	728	474
Triticum	32	41	0	0	0	0	0	0	0	0	0
Potatoes	7,244	6,529	6,442	5,509	4,888	4,253	4,226	4,103	4,199	4,501	4,274
Sweet potatoes	35	45	45	64	27	24	27	23	17	19	18
Sugar beet	8,699	9,749	8,552	10,464	2,624	1,614	1,814	1,435	1,315	1,354	1,117
Sunflower	1,034	1,368	1,181	742	546	636	625	638	751	764	719
Cabbage	5,258	4,821	5,157	5,123	5,380	4,999	4,665	4,746	4,897	4,499	4,423
Artichoke	4,171	4,430	4,393	4,025	4,112	3,437	3,321	3,338	3,244	3,144	3,222
Asparagus	282	305	259	304	300	302	316	324	338	348	350
Salad	2,852	2,884	3,001	2,941	2,792	2,395	2,554	2,584	2,513	2,424	2,404
Spinach	439	465	408	431	375	379	352	388	371	363	360
Tomato	4,443	4,202	6,083	5,839	4,896	5,208	4,887	4,710	4,694	5,076	5,398
Cauliflower	1,286	1,591	1,654	1,221	1,202	1,054	1,072	1,065	1,053	1,042	1,018
Pumpkin and zucchini	2,128	2,169	2,357	2,701	2,801	3,002	3,022	3,017	3,083	3,255	3,224
Cucumber	616	538	290	331	314	293	288	287	291	297	286
Eggplant	1,698	1,668	1,993	1,960	1,743	1,639	1,527	1,547	1,546	1,541	1,551
Pepper and chili	2,369	2,092	2,315	2,206	1,898	1,840	1,647	1,680	1,641	1,598	1,545
Onion	322	298	276	231	240	231	243	226	281	262	248
Garlic	64	55	50	44	41	42	47	48	46	45	49
Bean, freshseed	2,335	1,932	1,922	1,902	1,572	1,384	1,501	1,496	1,475	1,462	1,505
Bean, dryseed	275	175	137	114	88	75	75	80	72	74	70
Broadbean, freshseed	1,269	1,098	930	730	657	611	585	616	593	574	561
Broadbean, dryseed	1,102	710	533	560	617	492	592	598	708	728	663
Pea, freshseed	2,181	1,671	888	903	673	1,136	1,171	1,194	1,229	1,227	1,200
Pea,dryseed	139	87	58	149	149	138	222	232	305	273	230
Chickpea	48	32	42	56	74	124	228	301	239	214	202
Lentil	11	11	10	18	25	32	50	55	60	58	59
Vetch	59	68	71	76	80	83	84	84	84	84	84
Lupin	36	35	37	28	37	37	37	37	37	37	37
Soyabean	10,351	3,983	5,161	3,083	3,191	6,246	6,316	6,545	5,544	5,233	5,570
Alfalfa	76,990	71,268	65,652	66,320	56,099	44,144	42,921	49,635	53,548	54,521	47,119
Clovergrass	24,699	11,359	9,395	8,633	7,767	8,258	7,587	8,493	8,580	8,328	7,934
Other temporary forages	107,212	265,491	248,641	240,532	205,788	230,420	220,708	264,245	268,402	291,795	286,107
Perennial grasses	36,640	40,812	38,153	33,365	34,870	28,338	21,856	21,983	22,880	22,749	21,882
Total	360,563	502,989	480,180	467,066	402,618	406,452	383,590	435,217	443,092	468,742	453,082

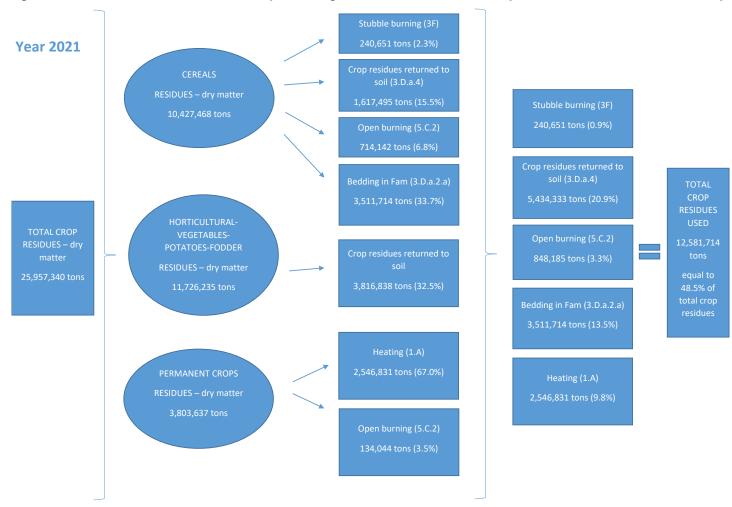


Figure A.7.1. Flow-chart on the amount of crop residues generated and shares of the crop residue amounts used for different purposes

Note: part of the 25,957,340 tons of total crop residues is used to feed the anaerobic digesters, but at the moment it is not possible to quantify their size; the quantity of stubble burning and open burning refer to the amount of dry residues burnt.

ANNEX 8: ADDITIONAL INFORMATION OF THE ANNUAL INVENTORY SUBMISSION

A8.1 Annual inventory submission

This appendix shows Tables 10s1 and 10s6 from the Common Reporting Format 2021, submitted in 2023, in which time series of emission estimates are reported in CO_2 eq.

Table A8.1.1 GHG emission trends by gas and by sector, CRF year 2021

TABLE 10 EMISSION TRENDS

SUMMARY

Inventory 2021

Submission 2023

GREENHOUSE GAS SOURCE AND SINK CATEGORIES	Base year ⁽¹⁾	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
						(kt CO ₂ eq)					
Total (net emissions) ⁽²⁾	517991.61	517991.61	503760.80	505039.60	511059.60	492228.34	511734.18	504950.87	521072.05	536008.62	531850.92
1. Energy	425548.31	425548.31	425555.84	425419.03	420624.70	415749.29	438292.96	435145.99	441047.52	453754.86	458340.36
A. Fuel combustion (sectoral approach)	411345.15	411345.15	411537.10	411328.98	406481.34	401955.13	424917.16	422081.52	427847.71	440589.08	446225.83
1. Energy industries	137620.14	137620.14	131981.14	131190.71	125341.92	127784.65	140603.23	135258.00	137630.61	138882.21	133460.93
2. Manufacturing industries and construction	92149.73	92149.73	89470.63	89482.88	88034.76	89821.35	90202.90	89331.44	93413.33	96852.12	101830.44
3. Transport	102191.95	102191.95	104817.95	109986.75	111654.11	111518.55	114217.67	115953.22	117891.11	122309.87	123875.05
4. Other sectors	78247.68	78247.68	83968.37	79278.53	79878.03	71246.99	78334.23	80259.81	77582.39	81418.43	85859.50
5. Other	1135.66	1135.66	1299.00	1390.11	1572.53	1583.59	1559.13	1279.05	1330.27	1126.45	1199.91
B. Fugitive emissions from fuels	14203.15	14203.15	14018.74	14090.05	14143.35	13794.16	13375.81	13064.47	13199.81	13165.78	12114.53
1. Solid fuels	148.33	148.33	131.11	145.54	97.32	91.19	83.17	78.12	78.65	74.33	71.29
2. Oil and natural gas and other emissions from											
energy production	14054.83	14054.83	13887.63	13944.51	14046.03	13702.98	13292.63	12986.35	13121.16	13091.44	12043.23
C. CO ₂ transport and storage	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
2. Industrial Processes	39257.16	39257.16	38825.91	38365.62	35442.84	34066.83	37270.73	34427.48	35089.02	35746.64	36275.56
A. Mineral industry	20720.45	20720.45	20682.33	21476.60	19076.44	18591.19	20239.69	18575.37	18844.17	19106.28	19903.26
B. Chemical industry	9626.06	9626.06	9905.71	9427.94	8911.37	8282.03	9370.71	8327.04	8526.13	8592.25	8430.52
C. Metal industry	6232.18	6232.18	5596.08	4750.25	4730.71	4367.57	4293.36	3693.37	3477.33	3271.99	2717.81
D. Non-energy products from fuels and solvent											
use	1680.76	1680.76	1660.70	1682.90	1618.56	1578.19	1533.45	1481.88	1483.79	1423.61	1423.48
E. Electronic industry	NO	NO	NO	NO	NO	NO	222.95	218.76	240.76	300.19	284.82
F. Product uses as ODS substitutes	NO	NO	NO	46.81	103.85	210.56	383.25	641.31	985.10	1586.95	2236.59
G. Other product manufacture and use	997.71	997.71	981.08	981.13	1001.91	1037.29	1227.32	1489.74	1531.74	1465.37	1279.07
H. Other	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
3. Agriculture	37675.99	37675.99	38567.96	38030.21	38384.88	38137.52	38076.40	38047.88	38514.77	37923.63	38370.92
A. Enteric fermentation	17092.76	17092.76	17376.75	16796.79	16604.07	16685.19	16696.92	16907.02	16808.96	16703.03	16933.60
B. Manure management	7941.80	7941.80	7964.54	7637.56	7582.99	7416.25	7567.34	7575.69	7549.50	7600.95	7678.58
C. Rice cultivation	2101.64	2101.64	2005.86	2082.82	2183.95	2239.56	2227.63	2194.49	2178.83	2058.12	2016.08
D. Agricultural soils	10010.73	10010.73	10622.81	10895.42	11311.10	11130.30	10998.09	10861.91	11375.13	10970.23	11127.90
E. Prescribed burning of savannas	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
F. Field burning of agricultural residues	19.20	19.20	20.78	20.36	19.62	19.74	18.94	19.96	18.29	20.56	20.23
G. Liming	1.36	1.36	1.36	1.37	1.38	1.38	1.39	1.38	1.39	1.37	2.01
H. Urea application	464.84	464.84	519.31	536.33	621.90	588.39	512.05	439.22	525.41	526.32	550.90

Table A8.1.1 GHG emission trends by gas and by sector, CRF year 2021

TABLE 10 EMISSION TRENDS

SUMMARY

Inventory 2021

Submission 2023

GREENHOUSE GAS SOURCE AND SINK CATEGORIES	Base year ⁽¹⁾	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
I. Other carbon-containing fertilizers	43.68	43.68	56.54	59.56	59.88	56.70	54.03	48.20	57.27	43.05	41.62
J. Other	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
4. Land use, land-use change and forestry ⁽²⁾	-3488.73	-3488.73	-18935.86	-16951.75	-4100.37	-17143.05	-23919.53	-25425.04	-17039.31	-14577.38	-24289.45
A. Forest land	-17183.93	-17183.93	-29328.78	-27904.78	-17394.09	-27866.84	-30986.54	-30735.66	-23064.66	-21538.50	-27026.79
B. Cropland	1795.03	1795.03	60.65	332.32	-414.49	-451.76	762.86	1458.68	723.02	229.70	-412.89
C. Grassland	5184.32	5184.32	1542.63	1525.04	4960.61	2142.33	-1884.47	-2302.20	-957.91	815.06	-2894.43
D. Wetlands	NE,NO	NE,NO	4.98	4.98	4.98	4.98	4.98	8.16	8.16	8.16	8.16
E. Settlements	7089.06	7089.06	8862.82	8863.76	8863.82	8864.74	8866.97	6925.58	6925.82	6925.89	6926.41
F. Other land	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
G. Harvested wood products	-387.80	-387.80	-94.49	209.02	-140.92	142.18	-706.26	-799.58	-690.80	-1031.74	-901.01
H. Other	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
5. Waste	18998.88	18998.88	19746.96	20176.48	20707.55	21417.74	22013.62	22754.56	23460.05	23160.86	23153.54
A. Solid waste disposal	13670.94	13670.94	14370.76	14855.65	15505.31	16219.11	16937.94	17695.93	18332.85	18033.73	18087.65
B. Biological treatment of solid waste	23.31	23.31	28.30	33.29	38.28	56.22	53.90	44.71	114.14	138.13	183.17
C. Incineration and open burning of waste	601.41	601.41	644.66	636.42	594.26	597.64	552.28	552.19	577.48	572.89	496.77
D. Waste water treatment and discharge	4703.21	4703.21	4703.24	4651.12	4569.70	4544.77	4469.50	4461.73	4435.59	4416.11	4385.95
E. Other	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
6. Other (as specified in summary 1.A)	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
Memo items:											
International bunkers	8636.79	8636.79	8658.01	8457.94	8865.86	8989.99	9822.01	9090.98	9259.83	10376.50	10523.86
Aviation	4317.33	4317.33	5164.15	5106.96	5264.45	5438.99	5845.16	6200.25	6273.71	6821.79	7538.87
Navigation	4319.46	4319.46	3493.86	3350.98	3601.41	3551.00	3976.86	2890.73	2986.12	3554.71	2984.98
Multilateral operations	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
CO ₂ emissions from biomass	14177.23	14177.23	16543.74	15524.59	15895.45	16386.59	16973.83	16991.53	18313.70	18535.21	20111.63
CO ₂ captured	NO,NA	NO,NA	NO,NA	NO,NA	NO,NA	NO,NA	NO,NA	NO,NA	NO,NA	NO,NA	NO,NA
Long-term storage of C in waste disposal sites	7058.15	7058.15	8451.21	8687.54	9312.79	9100.43	9806.65	9655.64	9703.71	9742.87	10165.67
Indirect N ₂ O	2736.13	2736.13	2789.40	2840.81	2739.70	2603.56	2535.60	2456.00	2375.38	2261.83	2117.84
Indirect CO ₂ ⁽³⁾	NO,IE	NO,IE	NO,IE	NO,IE	NO,IE	NO,IE	NO,IE	NO,IE	NO,IE	NO,IE	NO,IE
Total CO ₂ equivalent emissions without land use, land-use change and forestry	521480.34	521480.34	522696.67	521991.35	515159.96	509371.39	535653.71	530375.91	538111.37	550585.99	556140.38

TABLE 10 EMISSION TRENDS

SUMMARY

Inventory 2021

GREENHOUSE GAS SOURCE AND SINK CATEGORIES	Base year ⁽¹⁾	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
						(kt CO ₂ eq)					
Total CO ₂ equivalent emissions with land use, land-use change and forestry	517991.61	517991.61	503760.80	505039.60	511059.60	492228.34	511734.18	504950.87	521072.05	536008.62	531850.92
Total CO ₂ equivalent emissions, including indirect CO2, without land use, land-use change and forestry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total CO ₂ equivalent emissions, including indirect CO2, with land use, land-use change and forestry		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

GREENHOUSE GAS SOURCE AND SINK CATEGORIES	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
					(kt CC	D ₂ eq)				
Total (net emissions) ⁽²⁾	538424.00	530039.93	531633.10	559110.08	558433.11	558639.99	547687.60	565389.23	534327.06	476313.99
1. Energy	460325.94	459033.67	465911.79	483732.71	487546.43	488285.08	482438.09	476544.27	467744.69	418440.76
A. Fuel combustion (sectoral approach)	448235.48	447602.72	454629.77	472012.15	476842.57	477669.35	472505.51	466779.69	457999.34	409234.86
1. Energy industries	144873.56	143396.70	154420.64	159524.21	161375.89	159889.74	162147.17	159116.31	156039.48	134060.77
2. Manufacturing industries and construction	96243.77	91621.41	89476.81	95661.94	94526.23	92297.89	89143.78	91276.62	86799.62	64568.90
3. Transport	123944.25	125717.24	128113.07	128250.91	129939.64	128360.06	129603.27	129636.57	122806.10	117265.55
4. Other sectors	82297.04	86488.34	82283.41	87855.07	89801.23	95807.34	90533.63	85765.25	91540.15	92405.88
5. Other	876.86	379.03	335.84	720.03	1199.59	1314.31	1077.66	984.93	813.98	933.77
B. Fugitive emissions from fuels	12090.46	11430.96	11282.02	11720.56	10703.86	10615.74	9932.59	9764.59	9745.35	9205.90
1. Solid fuels	108.73	121.46	120.06	150.43	94.83	100.84	73.77	127.39	108.12	66.46
2. Oil and natural gas and other emissions from energy production	11981.74	11309.50	11161.96	11570.13	10609.02	10514.90	9858.82	9637.20	9637.24	9139.44
C. CO_2 transport and storage	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
2. Industrial Processes	38367.94	40410.74	40971.62	43001.18	46233.55	47225.64	44046.78	44473.89	42374.64	37512.24
A. Mineral industry	20749.02	21531.35	21554.56	22429.73	23186.82	23304.75	23361.75	23781.94	21498.18	17249.99

TABLE 10 EMISSION TRENDS

SUMMARY

Inventory 2021

GREENHOUSE GAS SOURCE AND SINK CATEGORIES	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
					(kt CC) ₂ eq)				
B. Chemical industry	9048.01	9329.07	9098.25	9205.72	10283.10	9686.78	5342.57	4651.96	3666.14	2908.08
C. Metal industry	2755.28	3027.44	2784.86	2481.05	2416.50	2769.71	2663.02	2632.48	2646.75	1905.98
D. Non-energy products from fuels and solvent use	1404.54	1359.09	1362.81	1344.52	1329.76	1344.87	1340.25	1329.77	1261.33	1147.50
E. Electronic industry	374.50	311.14	337.08	351.30	324.73	302.58	224.62	179.53	189.13	155.34
F. Product uses as ODS substitutes	2769.22	3670.97	4724.79	6071.39	7532.63	8688.35	9940.54	10846.66	12021.43	13104.95
G. Other product manufacture and use	1267.37	1181.68	1109.27	1117.46	1160.01	1128.60	1174.02	1051.54	1091.68	1040.40
H. Other	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
3. Agriculture	37184.86	36859.87	36165.84	35958.98	35226.11	34628.61	34121.39	34760.49	33694.37	33128.24
A. Enteric fermentation	16509.39	15844.10	15353.45	15421.08	14544.52	14484.22	14076.55	14593.30	14497.71	14523.83
B. Manure management	7451.06	7828.16	7604.23	7603.13	7399.26	7392.15	7330.39	7489.71	7409.91	7370.10
C. Rice cultivation	1855.18	1853.18	1918.68	1959.98	2044.71	1962.47	1965.49	2018.25	1848.16	2054.88
D. Agricultural soils	10779.35	10728.21	10659.15	10340.56	10585.83	10205.51	10138.47	10047.67	9365.84	8738.93
E. Prescribed burning of savannas	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
F. Field burning of agricultural residues	19.00	17.74	19.83	18.25	21.96	20.51	20.08	20.37	21.28	20.20
G. Liming	1.85	2.12	6.32	6.24	10.20	14.36	11.78	15.66	18.46	17.40
H. Urea application	525.37	539.23	560.22	564.97	576.04	506.92	539.36	536.96	498.22	371.58
I. Other carbon-containing fertilizers	43.67	47.13	43.95	44.77	43.59	42.47	39.27	38.58	34.78	31.33
J. Other	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
4. Land use, land-use change and forestry ⁽²⁾	-21554.14	-31800.02	-36119.98	-28137.81	-34470.31	-35557.39	-36365.47	-13425.25	-31915.91	-35341.01
A. Forest land	-26201.82	-32019.64	-35538.59	-29419.46	-33837.08	-34909.20	-34506.76	-18603.25	-31242.69	-33156.05
B. Cropland	-458.23	-2722.40	-1988.01	-1543.43	-1772.89	-1807.18	-2459.61	-2465.97	-1708.08	-2007.48
C. Grassland	-1385.01	-3781.81	-5201.74	-3695.36	-5245.88	-6103.46	-6458.91	603.68	-6038.00	-6743.12
D. Wetlands	8.16	8.16	8.16	8.16	8.16	8.16	8.16	8.16	8.16	129.57
E. Settlements	6927.98	6930.36	6933.01	6935.23	6937.78	7748.65	7758.43	7762.17	7803.73	6745.97
F. Other land	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
G. Harvested wood products	-453.55	-223.02	-341.14	-431.28	-568.73	-502.68	-715.11	-738.36	-747.35	-318.22
H. Other	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
5. Waste	24099.40	25535.67	24703.83	24555.03	23897.34	24058.05	23446.81	23035.82	22429.27	22573.75

TABLE 10 EMISSION TRENDS

SUMMARY

Inventory 2021

GREENHOUSE GAS SOURCE AND SINK CATEGORIES	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
					(kt CC	Ĵ₂ eq)				
A. Solid waste disposal	19263.51	20659.32	19845.23	19642.68	18975.38	19042.68	18400.86	18036.28	17509.14	17637.32
B. Biological treatment of solid waste	232.37	301.35	370.33	407.69	401.80	455.64	484.36	497.18	485.32	494.74
C. Incineration and open burning of waste	292.28	311.46	262.04	284.23	282.93	319.64	331.53	299.54	295.34	334.13
D. Waste water treatment and discharge	4311.23	4263.53	4226.23	4220.44	4237.22	4240.09	4230.06	4202.82	4139.47	4107.56
E. Other	NO									
6. Other (as specified in summary 1.A)	NO									
Memo items:										
International bunkers	11910.96	12487.98	12151.18	14187.71	14631.07	15263.13	16519.78	17452.42	17624.56	15300.77
Aviation	8020.99	7924.62	6864.77	7978.25	8017.19	8547.64	9276.25	9840.75	9447.18	8332.51
Navigation	3889.97	4563.36	5286.41	6209.46	6613.88	6715.49	7243.53	7611.67	8177.38	6968.26
Multilateral operations	NE									
CO ₂ emissions from biomass	19182.31	18820.12	13721.14	20267.20	16411.39	23618.21	26958.13	34588.46	41524.16	43007.03
CO ₂ captured	NO,NA									
Long-term storage of C in waste disposal sites	10249.61	9542.73	8470.02	8039.55	8016.06	8131.58	7203.64	7050.40	7064.69	6684.88
Indirect N ₂ O	2011.77	1962.17	1875.30	1872.50	1812.47	1722.19	1646.05	1596.79	1404.43	1297.05
Indirect CO ₂ ⁽³⁾	NO,IE									
Total CO_2 equivalent emissions without land use, land-use change and forestry	559978.14	561839.95	567753.08	587247.89	592903.42	594197.38	584053.07	578814.48	566242.97	511654.99
Total CO_2 equivalent emissions with land use, land-use change and forestry	538424.00	530039.93	531633.10	559110.08	558433.11	558639.99	547687.60	565389.23	534327.06	476313.99
Total CO_2 equivalent emissions, including indirect CO2, without land use, land-use change and forestry	NA									
Total CO_2 equivalent emissions, including indirect CO2, with land use, land-use change and forestry	NA									

TABLE 10 EMISSION TRENDS

SUMMARY

Inventory 2021

GREENHOUSE GAS SOURCE AND SINK CATEGORIES	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	Change from base to latest reported year
						(k	t CO ₂ eq)						%
Total (net emissions) ⁽²⁾	481781.11	476476.16	467036.00	415242.38	393484.62	401771.67	399801.31	414043.41	388460.25	380439.16	352425.15	390118.28	-24.69
1. Energy	429903.67	417048.33	400272.81	367864.85	347649.73	359966.14	356362.90	350968.55	346503.74	336391.23	300047.93	332832.13	-21.79
A. Fuel combustion (sectoral approach)	420227.42	407205.81	390629.21	358281.19	338548.59	351289.04	348481.77	343085.87	339054.25	329426.75	293854.58	327124.18	-20.47
1. Energy industries	137466.63	133361.16	128307.11	109130.90	100492.43	106052.41	104,679.35	104,808.26	95,827.13	91,692.91	81,633.56	86,427.96	-37.20
2. Manufacturing industries and construction	70057.55	70896.40	66489.74	56770.97	52586.44	55579.19	54,356.95	53,122.15	54,226.00	49,957.99	45,831.68	53,863.41	-41.55
3. Transport	115908.96	114909.36	107527.49	104427.92	109268.97	106693.81	105,609.99	101,538.28	105,134.01	106,339.65	86,559.54	103,279.81	1.06
4. Other sectors	96105.93	87496.47	87944.29	87329.59	75603.92	82487.09	83,304.16	83,278.88	83,516.74	80,970.50	79,189.32	83,245.93	6.39
5. Other	688.35	542.43	360.58	621.81	596.84	476.54	531.31	338.31	350.38	465.70	640.49	307.07	-72.96
B. Fugitive emissions from fuels	9676.26	9842.51	9643.61	9583.66	9101.14	8677.10	7881.13	7882.68	7449.49	6964.49	6193.35	5707.95	-59.81
1. Solid fuels	96.67	102.67	89.57	65.39	63.92	58.93	55.25	41.07	38.39	36.01	28.78	27.90	-81.19
2. Oil and natural gas and other emissions from energy production	9579.59	9739.84	9554.04	9518.27	9037.22	8618.16	7,825.87	7,841.61	7,411.09	6,928.48	6,164.57	5,680.05	-59.59
C. CO_2 transport and storage	NO	NO	NO	NO	NO	NO	0.00						
2. Industrial Processes	38960.39	39307.60	36644.72	35764.44	35403.26	33327.78	33571.44	33880.67	34927.21	34037.65	31039.64	31852.11	-18.86
A. Mineral industry	17341.49	16713.25	13775.44	12281.06	11685.33	11291.17	10,691.55	10,871.57	10,992.33	11,005.66	9,862.18	11,145.65	-46.21
B. Chemical industry	3088.68	2913.55	2724.16	2919.58	2742.21	2747.29	2,876.24	2,633.22	3,042.31	2,207.26	1,843.99	1,727.89	-82.05
C. Metal industry	2002.95	2202.24	2023.29	1736.01	1679.84	1615.04	1,768.44	1,729.48	1,734.72	1,649.86	1,477.57	1,713.45	-72.51
D. Non-energy products from fuels and solvent use	1116.81	1134.12	1046.34	1036.45	1008.25	965.02	976.34	1,048.86	1,083.74	1,078.99	953.72	1,004.46	-40.24
E. Electronic industry	206.47	241.01	217.87	232.86	259.57	246.06	240.72	244.19	247.84	235.29	207.35	223.19	100.00
F. Product uses as ODS substitutes	14311.30	15207.61	15910.78	16678.23	17235.77	15609.96	16,204.23	16,494.20	16,911.03	17,006.56	16,021.64	15,374.73	100.00
G. Other product manufacture and use	892.69	895.82	946.84	880.24	792.28	853.23	813.92	859.14	915.25	854.03	673.19	662.73	-33.58
H. Other	NA	NA	NA	NA	NA	NA	0.00						
3. Agriculture	32224.53	32780.83	33199.96	32427.12	32144.17	32101.67	33011.80	32580.81	32306.49	32190.29	33426.51	32717.22	-13.16
A. Enteric fermentation	14099.82	14098.48	14152.38	14309.83	14164.29	14271.91	14,587.85	14,697.69	14,612.29	14,583.55	14,770.86	14,670.96	-14.17
B. Manure management	7161.50	7415.60	7208.07	7091.62	6928.23	6875.42	6,845.18	6,843.96	6,731.34	6,699.25	6,710.51	6,582.08	-17.12
C. Rice cultivation	2040.85	2022.10	2003.84	1860.66	1807.03	1868.45	1,920.67	1,843.23	1,793.40	1,775.78	1,787.83	1,755.83	-16.45
D. Agricultural soils	8521.41	8821.21	9222.84	8664.14	8781.66	8607.42	9,042.52	8,720.31	8,707.58	8,682.80	9,634.36	9,227.55	-7.82

TABLE 10 EMISSION TRENDS

SUMMARY

Inventory 2021

GREENHOUSE GAS SOURCE AND SINK CATEGORIES	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	Change from base to latest reported year
						(kt	t CO ₂ eq)						%
E. Prescribed burning of savannas	NO	NO	NO	NO	NO	NO	0.00						
F. Field burning of agricultural residues	19.89	19.64	20.72	19.56	19.34	20.16	21.57	19.58	19.52	19.33	19.55	19.53	1.75
G. Liming	18.31	25.42	15.88	14.12	11.97	13.50	11.95	17.47	15.45	16.24	9.98	25.59	1788.69
H. Urea application	335.10	350.76	550.91	450.42	411.00	424.93	561.07	418.45	405.26	396.45	471.95	413.50	-11.04
I. Other carbon-containing fertilizers	27.65	27.63	25.33	16.77	20.66	19.87	20.98	20.12	21.65	16.88	21.47	22.17	-49.24
J. Other	NO	NO	NO	NO	NO	NO	0.00						
4. Land use, land-use change and forestry ⁽²⁾	-41684.59	-34378.45	-24913.91	-41233.34	-41914.72	-43963.98	-43160.97	-23297.57	-45170.65	-41837.02	-32544.72	-27473.16	687.48
A. Forest land	-36383.22	-33006.94	-28035.04	-38589.02	-39471.24	-40233.48	-39,183.62	-22,982.15	-40,596.55	-35,360.99	- 29,779.34	-27,766.30	61.58
B. Cropland	-781.97	869.61	2117.67	1837.35	1500.68	664.08	-1,232.23	-939.47	-504.01	-468.62	1,139.43	1,116.09	-37.82
C. Grassland	-9174.42	-7163.13	-4003.78	-9559.34	-8950.34	-9321.20	-8,286.62	-3,956.64	-8,861.28	-8,107.25	-7,254.95	-3,556.75	-168.61
D. Wetlands	129.57	129.57	129.57	129.57	129.57	129.57	31.61	31.61	31.61	31.61	31.61	NO,NE	0.00
E. Settlements	4658.78	4665.74	4670.85	4679.64	4688.60	4708.51	5,512.11	5,515.53	5,525.05	5,532.72	5,538.43	4,749.08	-33.01
F. Other land	NO	NO	NO	NO	NO	NO	0.00						
G. Harvested wood products	-141.65	120.09	201.82	265.26	186.42	88.54	-6.11	-974.42	-777.60	-3,480.53	-2,240.01	-2,035.39	424.85
H. Other	NO	NO	NO	NO	NO	NO	0.00						
5. Waste	22377.11	21717.86	21832.42	20419.32	20202.16	20340.06	20016.14	19910.95	19893.46	19657.00	20455.80	20189.97	6.27
A. Solid waste disposal	17428.84	16815.25	16915.13	15546.42	15483.75	15717.72	15,332.46	15,281.47	15,261.98	15,054.55	15,959.67	15,673.88	14.65
B. Biological treatment of solid waste	577.33	588.36	587.48	614.89	665.53	598.76	609.15	600.09	591.00	582.38	560.37	558.50	2295.93
C. Incineration and open burning of waste	261.13	260.97	286.00	305.36	192.83	180.88	187.44	171.73	169.35	173.38	167.32	163.50	-72.81
D. Waste water treatment and discharge	4109.80	4053.29	4043.82	3952.65	3860.05	3842.70	3,887.09	3,857.65	3,871.13	3,846.69	3,768.43	3,794.10	-19.33
E. Other	NO	NO	NO	NO	NO	NO	0.00						
6. Other (as specified in summary 1.A)	NO	NO	NO	NO	NO	NO	0.00						
Memo items:													
International bunkers	17087.64	15942.97	15815.77	14968.82	14178.87	14649.02	16209.83	17206.67	18245.05	17941.84	8049.96	10685.77	23.72
Aviation	8877.33	9278.06	8990.98	8934.82	9088.21	9638.58	10,367.98	11,238.58	12,046.56	12,487.80	3,817.04	4,999.79	15.81
Navigation	8210.30	6664.91	6824.79	6033.99	5090.65	5010.45	5,841.85	5,968.08	6,198.49	5,454.03	4,232.92	5,685.98	31.64
Multilateral operations	NE	NE	NE	NE	NE	NE	0.00						

TABLE 10 EMISSION TRENDS

SUMMARY

Inventory 2021

GREENHOUSE GAS SOURCE AND SINK CATEGORIES	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	Change from base to latest reported year %
												-	
CO ₂ emissions from biomass	42587.98	36933.15	42902.08	46205.49	43159.80	45618.16	44,787.09	46,898.27	45,388.51	45,751.53	45,013.73	47,325.18	233.81
CO ₂ captured	NO,NA	0.00											
Long-term storage of C in waste disposal sites	6620.25	5772.69	5050.28	4839.50	4438.06	4009.23	3,020.78	3,268.17	3,005.30	2,854.33	2,601.96	2,463.57	-65.10
Indirect N ₂ O	1246.83	1201.18	1151.36	1023.95	999.75	948.74	932.22	915.43	872.06	848.83	757.31	803.70	-70.63
Indirect CO ₂ ⁽³⁾	NO,IE	0.00											
Total CO ₂ equivalent emissions without land use, land-use change and forestry	523465.70	510854.61	491949.91	456475.72	435399.33	445735.65	442962.28	437340.98	433630.91	422276.17	384969.88	417591.43	-19.92
Total CO ₂ equivalent emissions with land use, land- use change and forestry	481781.11	476476.16	467036.00	415242.38	393484.62	401771.67	399801.31	414043.41	388460.25	380439.16	352425.15	390118.28	-24.69
Total CO ₂ equivalent emissions, including indirect CO2, without land use, land-use change and forestry	NA	0.00											
Total CO_2 equivalent emissions, including indirect CO2, with land use, land-use change and forestry	NA	0.00											

GREENHOUSE GAS EMISSIONS	Base year ⁽¹⁾	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
					CO	2 equivalent (kt)				
CO ₂ emissions without net CO ₂ from LULUCF	438904.30	438904.30	438385.65	438770.96	431176.40	425428.21	449430.22	443656.71	449430.94	461646.72	466393.43
CO_2 emissions with net CO_2 from LULUCF	433213.98	433213.98	417975.87	420264.72	424683.24	406524.94	424390.74	417235.83	430901.10	445294.02	440993.51
CH ₄ emissions without CH ₄ from LULUCF	54975.34	54975.34	55980.60	55749.39	56087.98	56518.47	57033.57	57656.65	58214.10	57745.82	57761.70
CH ₄ emissions with CH ₄ from LULUCF	56415.63	56415.63	56635.66	56478.70	57547.45	57388.14	57372.65	58031.21	59048.54	58819.01	58293.61
N ₂ O emissions without N ₂ O from LULUCF	24192.83	24192.83	25252.30	24963.63	25455.88	25055.08	26177.08	26328.67	27193.17	27439.34	27975.42
N_2O emissions with N_2O from LULUCF	24954.13	24954.13	26071.16	25788.80	26389.21	25945.65	26957.95	26949.95	27849.25	28141.47	28553.98

TABLE 10 EMISSION TRENDS

SUMMARY

Inventory 2021

HFCs	372.00	372.00	376.47	426.45	479.02	588.90	860.82	743.89	1193.87	1779.27	2272.20
PFCs	2614.99	2614.99	2257.62	1635.01	1502.75	1278.23	1350.88	1119.28	1163.24	1209.13	1210.12
Unspecified mix of HFCs and PFCs	NO,NA	NO,NA	NO,NA	NO,NA	NO,NA	NO,NA	24.43	24.43	24.43	24.43	24.43
SF ₆	420.89	420.89	444.02	445.91	457.93	502.49	700.13	784.51	837.53	707.45	476.39
NF ₃	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	76.57	61.78	54.09	33.83	26.69
Total (without LULUCF)	521480.34	521480.34	522696.67	521991.35	515159.96	509371.39	535653.71	530375.91	538111.37	550585.99	556140.38
Total (with LULUCF)	517991.61	517991.61	503760.80	505039.60	511059.60	492228.34	511734.18	504950.87	521072.05	536008.62	531850.92
Total (without LULUCF, with indirect)	NA										
Total (with LULUCF, with indirect)	NA										

GREENHOUSE GAS SOURCE AND SINK CATEGORIES	Base year ⁽¹⁾	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
CATEGORIES					CO	2 equivalent (kt)				
1. Energy	425548.31	425548.31	425555.84	425419.03	420624.70	415749.29	438292.96	435145.99	441047.52	453754.86	458340.36
2. Industrial processes and product use	39257.16	39257.16	38825.91	38365.62	35442.84	34066.83	37270.73	34427.48	35089.02	35746.64	36275.56
3. Agriculture	37675.99	37675.99	38567.96	38030.21	38384.88	38137.52	38076.40	38047.88	38514.77	37923.63	38370.92
4. Land use, land-use change and forestry ⁽⁵⁾	-3488.73	-3488.73	-18935.86	-16951.75	-4100.37	-17143.05	-23919.53	-25425.04	-17039.31	-14577.38	-24289.45
5. Waste	18998.88	18998.88	19746.96	20176.48	20707.55	21417.74	22013.62	22754.56	23460.05	23160.86	23153.54
6. Other	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
Total (including LULUCF) ⁽⁵⁾	517991.61	517991.61	503760.80	505039.60	511059.60	492228.34	511734.18	504950.87	521072.05	536008.62	531850.92

GREENHOUSE GAS EMISSIONS	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
					CO₂ equiv	/alent (kt)				
CO_2 emissions without net CO_2 from LULUCF	470524.12	470577.43	478002.00	496005.84	501631.60	502346.60	496934.40	490653.34	479077.16	424952.66
CO_2 emissions with net CO_2 from LULUCF	447552.34	437668.90	441060.08	466621.56	466208.72	465893.30	459748.52	474905.99	445994.39	388364.83
CH ₄ emissions without CH ₄ from LULUCF	57706.29	58154.28	56276.92	56556.37	54173.88	54702.56	53157.82	53932.21	53312.26	53177.29
CH ₄ emissions with CH ₄ from LULUCF	58506.27	58689.89	56568.29	57210.10	54565.46	55037.81	53425.69	55483.23	53878.42	53853.09
N ₂ O emissions without N ₂ O from LULUCF	26923.24	27116.52	26544.33	26249.18	27111.52	26047.52	21607.08	21148.20	19712.18	18782.78

TABLE 10 EMISSION TRENDS

SUMMARY

Inventory 2021

N_2O emissions with N_2O from LULUCF	27540.91	27689.41	27074.89	26841.92	27672.51	26608.18	22159.61	21919.28	20312.88	19353.80
HFCs	2802.55	3706.22	4754.02	6106.40	7562.33	8718.32	9970.99	10876.02	12040.54	13114.51
PFCs	1363.28	1370.91	1361.50	1712.93	1770.46	1759.44	1749.68	1703.21	1547.39	1099.48
Unspecified mix of HFCs and PFCs	24.43	24.43	24.43	24.43	24.43	24.43	24.43	24.43	24.43	24.43
SF ₆	620.97	877.38	761.83	564.92	600.35	565.13	586.47	465.50	510.23	485.89
NF ₃	13.26	12.79	28.06	27.84	28.86	33.38	22.20	11.57	18.79	17.97
Total (without LULUCF)	559978.14	561839.95	567753.08	587247.89	592903.42	594197.38	584053.07	578814.48	566242.97	511654.99
Total (with LULUCF)	538424.00	530039.93	531633.10	559110.08	558433.11	558639.99	547687.60	565389.23	534327.06	476313.99
Total (without LULUCF, with indirect)	NA									
Total (with LULUCF, with indirect)	NA									

GREENHOUSE GAS SOURCE AND SINK CATEGORIES	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009					
	CO ₂ equivalent (kt)														
1. Energy	460325.94	459033.67	465911.79	483732.71	487546.43	488285.08	482438.09	476544.27	467744.69	418440.76					
2. Industrial processes and product use	38367.94	40410.74	40971.62	43001.18	46233.55	47225.64	44046.78	44473.89	42374.64	37512.24					
3. Agriculture	37184.86	36859.87	36165.84	35958.98	35226.11	34628.61	34121.39	34760.49	33694.37	33128.24					
4. Land use, land-use change and forestry ⁽⁵⁾	-21554.14	-31800.02	-36119.98	-28137.81	-34470.31	-35557.39	-36365.47	-13425.25	-31915.91	-35341.01					
5. Waste	24099.40	25535.67	24703.83	24555.03	23897.34	24058.05	23446.81	23035.82	22429.27	22573.75					
6. Other	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO					
Total (including LULUCF) ⁽⁵⁾	538424.00	530039.93	531633.10	559110.08	558433.11	558639.99	547687.60	565389.23	534327.06	476313.99					

GREENHOUSE GAS EMISSIONS	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	Change from base to latest reported year
						CO ₂ equiv	valent (kt)						(%)

TABLE 10 EMISSION TRENDS

SUMMARY

Inventory 2021

CO ₂ emissions without net CO ₂ from LULUCF	436534.30	424739.25	404260.61	370253.54	350126.68	361935.92	358814.02	353418.59	349826.90	340402.52	303281.27	337229.88	-23.17
CO ₂ emissions with net CO ₂ from LULUCF	394075.34	389318.62				317384.55			304086.08		269900.21	308306.13	-28.83
CH ₄ emissions without CH ₄ from LULUCF	52690.46	51386.95	51997.26	50332.12	49268.06	49315.56	48816.02	48783.97	47972.43	46762.32	47513.41	47087.05	-14.35
CH ₄ emissions with CH ₄ from LULUCF	53082.72	52021.92	53341.39	50507.26	49575.38	49611.49	49159.19	50476.38	48143.53	46965.16	47884.50	48065.26	-14.80
N ₂ O emissions without N ₂ O from LULUCF	18089.98	17495.95	17905.21	17170.57	16910.18	16787.57	17179.62	16957.50	16892.85	16691.12	17345.70	17193.34	-28.93
N_2O emissions with N_2O from LULUCF	18472.08	17903.15	18386.79	17468.16	17230.42	17079.04	17563.11	17452.44	17291.91	17124.47	17810.94	17665.72	-29.21
HFCs	14324.79	15223.14	15922.60	16692.35	17252.85	15629.74	16223.31	16513.65	16927.95	17019.38	16035.05	15387.77	4036.50
PFCs	1376.64	1503.76	1357.00	1543.53	1419.94	1528.73	1460.21	1191.05	1501.85	915.40	498.66	395.32	-84.88
Unspecified mix of HFCs and PFCs	24.43	24.43	24.43	24.43	24.43	24.43	24.43	24.43	22.74	23.15	22.37	25.33	100.00
SF ₆	404.94	453.36	457.87	433.50	369.02	485.29	410.69	428.29	464.06	444.33	257.18	257.50	-38.82
NF ₃	20.17	27.78	24.93	25.70	28.17	28.42	33.98	23.50	22.13	17.94	16.24	15.23	100.00
Total (without LULUCF)	523465.70	510854.61	491949.91	456475.72	435399.33	445735.65	442962.28	437340.98	433630.91	422276.17	384969.88	417591.43	-19.92
Total (with LULUCF)	481781.11	476476.16	467036.00	415242.38	393484.62	401771.67	399801.31	414043.41	388460.25	380439.16	352425.15	390118.28	-24.69
Total (without LULUCF, with indirect)	NA	0.00											
Total (with LULUCF, with indirect)	NA	0.00											

GREENHOUSE GAS SOURCE AND SINK CATEGORIES	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	Change from base to latest reported year
						CO ₂ equiv	valent (kt)						(%)
1. Energy	429903.67	417048.33	400272.81	367864.85	347649.73	359966.14	356362.90	350968.55	346503.74	336391.23	300047.93	332832.13	-21.79
2. Industrial processes and product use	38960.39	39307.60	36644.72	35764.44	35403.26	33327.78	33571.44	33880.67	34927.21	34037.65	31039.64	31852.11	-18.86

TABLE 10 EMISSION TRENDS

SUMMARY

Inventory 2021

3. Agriculture	32224.53	32780.83	33199.96	32427.12	32144.17	32101.67	33011.80	32580.81	32306.49	32190.29	33426.51	32717.22	-13.16
4. Land use, land-use change and forestry ⁽⁵⁾	-41684.59	-34378.45	-24913.91	-41233.34	-41914.72	-43963.98	-43160.97	-23297.57	-45170.65	-41837.02	-32544.72	-27473.16	687.48
5. Waste	22377.11	21717.86	21832.42	20419.32	20202.16	20340.06	20016.14	19910.95	19893.46	19657.00	20455.80	20189.97	6.27
6. Other	NO	0.00											
Total (including LULUCF) ⁽⁵⁾	481781.11	476476.16	467036.00	415242.38	393484.62	401771.67	399801.31	414043.41	388460.25	380439.16	352425.15	390118.28	-24.69

A8.2.2 Standard electronic format

Table A8.2.2.1 Total quantities of Kyoto Protocol units by account type at beginning of reported year

Party	Italy
Submission year	2023
Reported year	2022
Commitment period	2

Table 1. Total quantities of Kyoto Protocol units by account type at beginning of reported year

	A			Unit	type		
	Account type	AAUs	ERUs	RMUs	CERs	tCERs	ICERs
1	Party holding accounts	2.410.291.421	698.870	NO	975.569	NO	NO
2	Entity holding accounts	NO	372.201	NO	4.052.403	142.882	NO
3	Retirement account	NO	NO	NO	NO	NO	NO
4	Previous period surplus reserve account	NO					
5	Article 3.3/3.4 net source cancellation accounts	NO	NO	NO	NO		
6	Non-compliance cancellation account	NO	NO	NO	NO		
7	Voluntary cancellation account	NO	37.875	NO	50.597	NO	NO
8	Cancellation account for remaining units after carry-over	NO	NO	NO	NO	NO	NO
9	Article 3.1 ter and quater ambition increase cancellation account	NO					
10	Article 3.7 ter cancellation account	NO					
11	tCER cancellation account for expiry					NO	
12	ICER cancellation account for expiry						NO
13	ICER cancellation account for reversal of storage						NO
14	ICER cancellation account for non-submission of certification report						NO
15	tCER replacement account for expiry	NO	NO	NO	NO	NO	
16	ICER replacement account for expiry	NO	NO	NO	NO		
17	ICER replacement account for reversal of storage	NO	NO	NO	NO		NO

18	ICER replacement account for non-submission of certification report	NO	NO	NO	NO		NO
	Total	2.410.291.421	1.108.946	NO	5.078.569	142.882	NO

Table A8.2.2.2.a Annual internal transactions

Party	Italy
Submission year	2023
Reported year	2022
Commitment period	2

Table 2 (a). Annual internal transactions

				Add	tions			Subtractions						
	Transaction type			Unit	type					Un	it type			
		AAUs	ERUs	RMUs	CERs	tCERs	ICERs	AAUs	ERUs	RMUs	CERs	tCERs	ICERs	
	Article 6 issuance and conversion											_		
1	Party-verified projects		NO					NO		NO				
2	Independently verified projects		NO					NO		NO				
	Article 3.3 and 3.4 issuance or cancellation													
3	3.3 Afforestation and reforestation			NO				NO	NO	NO	NO			
4	3.3 Deforestation			NO				NO	NO	NO	NO			
5	3.4 Forest management			NO				NO	NO	NO	NO			
6	3.4 Cropland management			NO				NO	NO	NO	NO			
7	3.4 Grazing land management			NO				NO	NO	NO	NO			
8	3.4 Revegetation			NO				NO	NO	NO	NO			
9	3.4 Wetlands drainage and management			NO				NO	NO	NO	NO			
	Article 12 afforestation and reforestation											-		
10	Replacement of expired tCERs							NO	NO	NO	NO	NO		
11	Replacement of expired ICERs							NO	NO	NO	NO			
12	Replacement for reversal of storage							NO	NO	NO	NO		NO	
13	Cancellation for reversal of storage												NO	
14	Replacement for non-submission of certification report							NO	NO	NO	NO		NO	
15	Cancellation for non-submission of certification report												NO	

	Other cancelation									
16	Voluntary cancellation				NO	1.353	NO	489.955	NO	NO
17	Article 3.1 ter and quater ambition increase cancellation				NO					
	Sub-total	NO	NO		NO	1.353	NO	489.955	NO	NO

					Retir	ement		
		Transaction type			Unit	type		
			AAUs	ERUs	RMUs	CERs	tCERs	ICERs
1	I	Retirement	NO	NO	NO	NO	NO	NO
2	2	Retirement from PPSR	NO					
		Total	NO	NO	NO	NO	NO	NO

Table A8.2.2.2.b Total annual external transactions

Party	Italy
Submission year	2023
Reported year	2022
Commitment period	2

		Additions						Subtractions							
		Unit type							Unit type						
		AAUs	ERUs	RMUs	CERs	tCERs	ICERs	AAUs	ERUs	RMUs	CERs	tCERs	ICERs		
	Total transfers and acquisitions														
1	СН	NO	NO	NO	208.055	NO	NO	NO	NO	NO	106.003	NO	NO		
2	EU	NO	NO	NO	12.403	NO	NO	NO	NO	NO	NO	NO	NO		
3	SI	NO	NO	NO	277.543	NO	NO	NO	NO	NO	NO	NO	NO		
4	AU	NO	NO	NO	3.003	NO	NO	NO	NO	NO	NO	NO	NO		
5	CDM	NO	NO	NO	71.928	NO	NO	NO	NO	NO	NO	NO	NO		
6	NL	NO	NO	NO	45.000	NO	NO	NO	NO	NO	NO	NO	NO		
	Sub-total	NO	NO	NO	617.932	NO	NO	NO	NO	NO	106.003	NO	NO		

Table 2 (b). Total annual external transactions

Table 2 (c). Annual transactions between PPSR accounts

	Additions							Subtractions						
		Unit type					Unit type							
	AAUs	ERUs	RMUs	CERs	tCERs	ICERs	AAUs	ERUs	RMUs	CERs	tCERs	ICERs		
 Transfers and acquisitions between PPSR accounts														
Sub-total	NO						NO							

Table 2 (d). Share of proceeds transactions under decision 1/CMP.8, paragraph 21 - Adaptation fund

		Amount transferred or converted						Amount contributed as SoP to the adaptation fund						
		AAUs	ERUs	RMUs	CERs	tCERs	ICERs	AAUs	ERUs	RMUs	CERs	tCERs	ICERs	
1	First international transfers of AAUs	NO						NO						
2	Issuance of ERU from party-verified projects		NO						NO					
3	Issuance of independently verified ERUs		NO						NO					

Table 2 (e). Total annual transactions

1	Total (Sum of sub-totals in table 2a and table 2b)	NO	NO	NO	617.932	NO	NO	NO	1 353	NO	595 958	NO	NO
-		NO	NO	NO	017.952	NO	NO	NO	1.555	NO	292.920	NO	NO

Table A8.2.2.3 Annual expiry, cancellation and replacement

Party	Italy
Submission year	2023
Reported year	2022
Commitment period	2

Table 3. Annual expiry, cancellation and replacement

	Transaction or event type		luiremen replace or cance				Replac	cement			Cancellation						
			Unit type	•			Unit	type				Unit type					
		tCERs	ICERs	CERs	AAUs	ERUs	RMUs	CERs	tCERs	ICERs	AAUs	ERUs	RMUs	CERs	tCERs	ICERs	
	Temporary CERs																
1	Expired in retirement and replacement accounts	NO			NO	NO	NO	NO	NO								
2	Expired in holding accounts	NO													NO		
	Long-term CERs																

3	Expired in retirement and replacement accounts		NO		NO	NO	NO	NO								
4	Expired in holding accounts		NO													NO
5	Subject to reversal of storage		NO		NO	NO	NO	NO		NO						NO
6	Subject to non-submission of certification Report		NO		NO	NO	NO	NO		NO						NO
	Carbon Capture and Storage CERs															
7	Subject to net reversal of storage			NO							NO	NO	NO	NO		
8	Subject to non-submission of certification report			NO							NO	NO	NO	NO		
	Total	NO														

Table A8.2.2.4 Total quantities of Kyoto Protocol units by account type at end of reported year

Party	Italy
Submission year	2023
Reported year	2022
Commitment period	2

Table 4. Total quantities of Kyoto Protocol units by account type at end of reported year

	Account tyme			Unit	type		
	Account type	AAUs	ERUs	RMUs	CERs	tCERs	ICERs
1	Party holding accounts	2.410.291.421	698.870	NO	975.569	NO	NO
2	Entity holding accounts	NO	370.848	NO	4.074.377	142.882	NO
3	Retirement account	NO	NO	NO	NO	NO	NO
4	Previous period surplus reserve account	664.334					
5	Article 3.3/3.4 net source cancellation accounts	NO	NO	NO	NO		
6	Non-compliance cancellation account	NO	NO	NO	NO		
7	Voluntary cancellation account	NO	39.228	NO	540.552	NO	NO
8	Cancellation account for remaining units after carry-over	NO	NO	NO	NO	NO	NO
9	Article 3.1 ter and quater ambition increase cancellation account	NO					

10	Article 3.7 ter cancellation account	NO					
11	tCER cancellation account for expiry					NO	
12	ICER cancellation account for expiry						NO
13	ICER cancellation account for reversal of storage						NO
14	ICER cancellation account for non-submission of certification report						NO
15	tCER replacement account for expiry	NO	NO	NO	NO	NO	
16	ICER replacement account for expiry	NO	NO	NO	NO		
17	ICER replacement account for reversal of storage	NO	NO	NO	NO		NO
18	ICER replacement account for non-submission of certification report	NO	NO	NO	NO		NO
	Total	2.410.955.755	1.108.946	NO	5.590.498	142.882	NO

Table A8.2.2.5.a Summary information on additions and subtractions, on annual transactions, annual transactions between PPSR accounts, on expiry, cancellation, replacement and retirement

Party	Italy
Submission year	2023
Reported year	2022
Commitment period	2

Table 5 (a). Summary information on additions and subtractions

				Additior	IS					Subt	ractions		
				Unit typ	е					Un	it type		
		AAUs	ERUs	RMUs	CERs	tCERs	ICERs	AAUs	ERUs	RMUs	CERs	tCERs	ICERs
1	Assigned amount units issued	2.410.291.421											
2	Article 3 paragraph 7 ter cancellations							NO					
3	Cancellation following increase in ambition							NO					

4	Cancellation of remaining units after carry over					NO	NO	NO	NO	NO	NO
5	Non-compliance cancellation					NO	NO	NO	NO		
6	Carry-over		1.108.946	2.112.952			NO		NO		
7	Carry-over to PPSR	664.334				NO					
	Total	2.410.955.755	1.108.946	2.112.952		NO	NO	NO	NO	NO	NO

Table 5 (b). Summary information on annual transactions

				Additio	ns					Subt	ractions		
				Unit typ)e					Un	it type		
		AAUs	ERUs	RMUs	CERs	tCERs	ICERs	AAUs	ERUs	RMUs	CERs	tCERs	ICERs
1	Year 1 (2013)	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
2	Year 2 (2014)	NO	NO	NO	168.770	NO	NO	NO	NO	NO	168.671	NO	NO
3	Year 3 (2015)	NO	NO	NO	3.365.100	NO	NO	NO	NO	NO	2.051.147	NO	NO
4	Year 4 (2016)	NO	NO	NO	715.832	NO	NO	NO	NO	NO	297.919	NO	NO
5	Year 5 (2017)	NO	NO	NO	647.472	NO	NO	NO	7.659	NO	393.002	NO	NO
6	Year 6 (2018)	NO	NO	NO	278.361	NO	NO	NO	NO	NO	22.474	NO	NO
7	Year 7 (2019)	NO	NO	NO	622.614	29.694	NO	NO	1	NO	57.784	NO	NO
8	Year 8 (2020)	NO	NO	NO	237.830	113.025	NO	NO	2.515	NO	269.662	NO	NO
9	Year 2021	NO	NO	NO	201.000	163	NO	NO	27.700	NO	61.300	NO	NO
10	Year 2022	NO	NO	NO	617.932	NO	NO	NO	1.353	NO	595.958	NO	NO
11	Year 2023	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
	Total	NO	NO	NO	6.854.911	142.882	NO	NO	39.228	NO	3.917.917	NO	NO

Table 5 (c). Summary information on annual transactions between PPSR accounts

Additions	Subtractions
Unit type	Unit type

		AAUs	ERUs	RMUs	CERs	tCERs	ICERs	AAUs	ERUs	RMUs	CERs	tCERs	ICERs
1	Year 1 (2013)	NO						NO					
2	Year 2 (2014)	NO						NO					
3	Year 3 (2015)	NO						NO					
4	Year 4 (2016)	NO						NO					
5	Year 5 (2017)	NO						NO					
6	Year 6 (2018)	NO						NO					
7	Year 7 (2019)	NO						NO					
8	Year 8 (2020)	NO						NO					
9	Year 2021	NO						NO					
10	Year 2022	NO						NO					
11	Year 2023	NO						NO					
	Total	NO						NO					

Table 5 (d). Summary information on expiry, cancellation and replacement

		Requiremer ca	nt to replac ancel	e or		F	Replacer	nent			Cancellation						
		Un	it type				Unit ty	ре			Unit type						
		tCERs	ICERs	CERs	AAUs	ERUs	RMUs	CERs	tCERs	ICERs	AAUs	ERUs	RMUs	CERs	tCERs	ICERs	
1	Year 1 (2013)	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	
2	Year 2 (2014)	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	
3	Year 3 (2015)	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	
4	Year 4 (2016)	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	
5	Year 5 (2017)	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	
6	Year 6 (2018)	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	
7	Year 7 (2019)	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	
8	Year 8 (2020)	131.267	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	

9	Year 2021	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
10	Year 2022	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
11	Year 2023	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
	Total	131.267	NO													

Table 5 (e). Summary information on retirement

			F	Retireme	ent		
				Unit typ	е		
	Year	AAUs	ERUs	RMUs	CERs	tCERs	ICERs
1	Year 1 (2013)	NO	NO	NO	NO	NO	NO
2	Year 2 (2014)	NO	NO	NO	NO	NO	NO
3	Year 3 (2015)	NO	NO	NO	NO	NO	NO
4	Year 4 (2016)	NO	NO	NO	NO	NO	NO
5	Year 5 (2017)	NO	NO	NO	NO	NO	NO
6	Year 6 (2018)	NO	NO	NO	NO	NO	NO
7	Year 7 (2019)	NO	NO	NO	NO	NO	NO
8	Year 8 (2020)	NO	NO	NO	NO	NO	NO
9	Year 2021	NO	NO	NO	NO	NO	NO
10	Year 2022	NO	NO	NO	NO	NO	NO
11	Year 2023	NO	NO	NO	NO	NO	NO
	Total	NO	NO	NO	NO	NO	NO

Table A8.2.2.6.a, b, c Memo item: corrective transactions relating to addition and subtractions, replacement and retirement

Party	Italy
Submission year	2023
Reported year	2022
Commitment period	2

Table 6 (a). Memo item: Corrective transactions relating to additions and subtractions

		Additions						Subtract	ions		
		Unit type						Unit ty	ре		
AAUs	AAUs ERUs RMUs CERs tCERs ICERs							RMUs	CERs	tCERs	ICERs

 Table 6 (b). Memo item: Corrective transactions relating to replacement

Requirement fo	or replacement			Replacen	nent		
Unit	type			Unit typ	De		
tCERs	AAUs	ERUs	RMUs	CERs	tCERs	ICERs	

Table 6 (c). Memo item: Corrective transactions relating to retirement

		Retirement			
		Unit type			
AAUs	ERUs	RMUs	CERs	tCERs	ICERs

ANNEX 9: MINIMIZATION OF ADVERSE IMPACTS

In this annex, Italy provides an overview of its commitments under Article 4.8 and 4.9⁶⁵, of the Convention, either at national level and as a Member of the European Union.

National and European Commitments

The EU is well aware of the need to assess impacts, and has built up thorough procedures in line with obligations. This includes bilateral dialogues and different platforms that allow interacting with third countries, explain new policy initiatives and receive comments from third countries. Impacts on third countries are mostly indirect and can frequently neither be directly attributed to a specific EU policy, nor directly measured by the EU in developing countries. A wide-ranging impact assessment (IA) system accompanying all new policy initiatives has been established. This approach ensures that potential adverse social, environmental and economic impacts on various stakeholders are identified and minimized within the legislative process (European Commission, 2010).

At European level, IA is required for the most important initiatives, policy and programs and those which will have the most far-reaching impacts. In 2009, IA was adopted; in general, the IA highlights advantages and disadvantages of possible policy options by assessing their potential impacts. Since 2003 all IA of EU policies are listed and published online by subject (European Commission, 2021).

Key questions on economic, social and environmental impacts in relation to third countries are listed in Table A9.1.

	Economic		Social		Environmental
•	How does the policy initiative affect trade or investment flows between the EU and third countries? How does it affect EU trade policy and its international obligations, including in the WTO?	•	Does the option have a social impact on third countries that would be relevant for	•	Does the option affect the emission of greenhouse
•	Does the option affect specific groups (foreign and domestic businesses and consumers) and if so in what way?		overarching EU policies, such as development policy?		gases (e.g. carbon dioxide, methane etc) into the atmosphere?
•	Does the policy initiative concern an area in which international standards, common regulatory approaches or international regulatory dialogues exist?	•	Does it affect international obligations and commitments of the	•	Does the option affect the emission of
•	Does it affect EU foreign policy and EU development policy?		EU arising from e.g. the ACP-EU Partnership		ozone-depleting substances (CFCs,
•	What are the impacts on third countries with which the EU has preferential trade arrangements?		Agreement or the Millennium	•	HCFCs etc)? Does the option

⁶⁵ **UNFCCC**, **Art 4. Par 8.** "In the implementation of the commitments in this Article, the Parties shall give full consideration to what actions are necessary under the Convention, including actions related to funding, insurance and the transfer of technology, to meet the specific needs and concerns of developing country Parties arising from the adverse effects of climate change and/or the impact of the implementation of response measures, especially on: (a) Small island countries; (b) Countries with low-lying coastal areas; (c) Countries with arid and semi-arid areas, forested areas and areas liable to forest decay; (d) Countries with areas prone to natural disasters; (e) Countries with areas liable to drought and desertification; (f) Countries with areas of high urban atmospheric pollution; (g) Countries with areas with fragile ecosystems, including mountainous ecosystems; (h) Countries whose economies are highly dependent on income generated from the production, processing and export, and/or on consumption of fossil fuels and associated energy-intensive products; and (i) Landlocked and transit countries. Further, the Conference of the Parties may take actions, as appropriate, with respect to this paragraph."

UNFCCC Art 4. Par. 9. "The Parties shall take full account of the specific needs and special situations of the least developed countries in their actions with regard to funding and transfer of technology."

Economic	Social	Environmental
 Does it affect developing countries at different stages of development (least developed and other low-income and middle income countries) in a different manner? Does the option impose adjustment costs on developing countries? Does the option affect goods or services that are produced or consumed by developing countries? 	 Development Goals? Does it increase poverty in developing countries or have an impact on income of the poorest populations? 	 affect our ability to adapt to climate change? Does the option have an impact on the environment in third countries that would be relevant for overarching EU policies, such as development policy?

Source: European Commission, 2009[a]

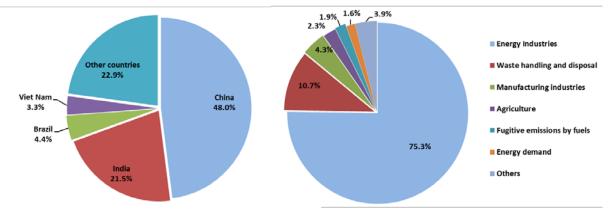
A review of European response measures for two EU policies were chosen for further description because the IA identified potential impacts on thirds countries. These measures are the Directive 2009/28/EC on the promotion of the use of renewable energy, and the EU emission trading scheme for the inclusion of the aviation (see European Commission, 2009[b]; European Commission, 2010).

Directive on the promotion of the use of renewable energy

EU has reached a 20% share of energy from renewable sources in the overall energy consumption by 2020 (with individual targets for each Member State) and a 10% share of renewable energy specifically in the transport sector, which includes biofuels, biogas, hydrogen and electricity from renewables. EU leaders agreed on 23 October 2014 the domestic 2030 targets of greenhouse gas reduction of at least 40% compared to 1990 and at least 27% for renewable energy and energy savings by 2030. IAs related to enhanced use in the EU showed that the cultivation of energy crops has positive (growing of EU demand for bioenergy generates new export revenues and employment opportunities for developing countries and boosts rural economies), and negative (biodiversity, soil and water resources and have positive/ negative effects on air pollutants) impacts. For this reason, Article 17 of the EU's Directive has created "sustainability criteria", applicable to all biofuels (biomass used in the transport sector) and bioliquids, which consider to establish a threshold for GHG emission reductions that have to be achieved from the use of biofuels; to exclude the use of biofuels from land with high biodiversity value (primary forest and wooded land, protected areas or highly biodiverse grasslands), and to exclude the use of biofuels from land with high C stocks, such as wetlands, peatlands or continuously forested areas. In this context, developing country representatives as well as other stakeholder were extensively consulted during the development of the sustainability criteria and preparation of the directive and the extensive consultation process has been documented. The Commission also reports on biofuels' potential indirect land use change effect and the positive and negative impact on social sustainability in the Union and in third countries, including the availability of foodstuffs at affordable prices, in particular for people living in developing countries, and wider development issues.

Inclusion of aviation in the EU emission trading scheme

In 2005 the Commission adopted a Communication entitled "Reducing the Climate Change Impact of Aviation", which evaluated the policy options available to this end and was accompanied by an IA. The assessment concluded that, in view of the likely strong future growth in air traffic emissions, further measures are urgently needed. Aircraft operators from developing countries will be affected to the extent they operate on routes covered by the scheme. As operators from third countries generally represent a limited share of emissions covered, the impact is also modest. On the other hand, to the extent that aviation's inclusion in the EU ETS creates additional demand for credits from JI and CDM projects, there will also be indirect positive effects as such projects imply additional investments in clean technologies in developing.


National and sectoral Italian policies are expected to have no direct impacts in developing countries. Policies and measures in the Italian energy sector aim to increase energy efficiency and develop a low-carbon energy system but in the context of a global energy scenarios that do not foresee a decline in income for fossil fuel exporting countries (IEA, World Energy Outlook 2008).

In the following an analysis of the Clean Development Mechanism and Joint Implementation is reported.

Procedure for assessing sustainability at local and national level for CDM and JI

For this section, information was collected from the UNFCCC CDM Project Search Database (UNFCCC, 2023[a]). On 28 February 2023, the UNFCCC CDM Database reported a total of 7,844 registered project activities out of 8,234 projects. With data as of 31 January 2023, 83.7% of CDM projects were registered in Asia and the Pacific Region, 12.9% in Latin America and Caribbean, 2.8% in Africa, and 0.6% in Countries with economies in transition. As for registered projects by scope activity more than 90% of was mainly in three scopes: energy industries (75.3%), waste handling and disposal (10.7%) and manufacturing industries (4.3%). Registered projects by Host Party were mainly in China (48%), India (21.5%), Brazil (4.4%) and Viet Nam (3.3%).

The distribution of global CDM projects by Host country and scope is presented in Figure 14.1.

Figure A9.1 CDM projects by Host country and scope (as for 31/01/2023)

Source: UNFCCC, 2023[b]

Italy as investor Party, contributes with 1.6% of world-wide registered CDM project portfolio. Up to 29 February 2023 Italy is involved in 129 CDM registered projects. No new project has been registered since the last year. Italy is the only proposer for 39.5% of the CDM projects where Italy is involved.

Italian CDM projects by Host country and scope are illustrated in Tables A9.2 and A9.3, respectively.

Table A9.2 Italian CDM projects by Host country

Country	n°	%
China	52	40.3
India	12	9.3
Brazil	6	4.7
Nepal	5	3.9
Uganda	5	3.9
Kenya	5	3.9
Republic of Moldova	4	3.1
Argentina	4	3.1
Tunisia	3	2.3
Other	33	25.6
Total	129	100

Scope	n°	%
Energy industries (renewable/non renewable)	82	53.6
Waste handling and disposal	20	13.1
Afforestation and reforestation	16	10.5
Manufacturing industries	16	10.5
Fugitive emissions from production and consumption of halocarbons and sulphur hexafluoride	8	5.2
Energy demand	7	4.6
Other	4	2.6
Total	153	100

Table A9.3 Italian CDM projects by scope (there are project with multiple scopes)

For JI projects, the JI database from IGES source updated to 31 January shows only one large scale project with Italy involved. The task of the project is to reduce GHG emissions fuel switch (IGES, 2022).

Voluntary validation of sustainable development is taking place at international level for CDM and JI projects. The UNEP database (2022) highlights the Gold Standard (GS) and the Climate, Community and Biodiversity Alliance (CCB) for assessing SD on CDM project, and only GS for JI projects. In 2014 the CDM Board published a tool to report about the contribution of CDM projects to sustainable development (UNFCCC, 2023[c]). The SD Tool is a voluntary tool for describing sustainable development co-benefits (SDC) of CDM project activities or programmes of activities enables CDM project developers to highlight the sustainable development benefits of their projects or PoAs by using a check list of predefined criteria and indicators. these projects are tracked in the UNFCCC/CDM Registry.

Up to 01 January 2022 the UNEP database reports 7,174 registered CDM projects in the pipeline with 7,845 registered from which 6 projects are validated with CCB, 125 with GS, and 44 with SD tool.

Funding, strengthening capacity and transfer of technology

The flow of financial resources to developing countries and multilateral organisations from Italy is shown in Table 14.4 (OECD, 2023).

	2010-2011	2018	2019	2020	2021
GRANT EQUIVALENTS (a)					
I. Official Development Assistance (ODA)	-	5 190	4 411	4 248	6 085
ODA as % of GNI	-	0.25	0.22	0.22	0.29
A. Bilateral Official Development Assistance	-	2231	1436	1158	2303
of which: Bilateral grants	-	2144	1324	981	1675
Bilateral loans	-	77	102	177	143
Debt relief	-	10	9	-	485
Other bilateral flows	-	10	9	-	-
of which: PSI Institutional approach	-	_	-	-	-
PSI Instrument approach	-	_	-	-	-
B. Contributions to Multilateral Institutions	-	2958	2975	3090	3783
NET DISBURSEMENTS					
I. Official Development Assistance (ODA) (A + B)	3 661	5 098	4 298	4 396	6 272
ODA as % of GNI	0.17	-	-	-	-
A. Bilateral Official Development Assistance	1 231	2 140	1 323	1 306	2 489
of which: General budget support	3	1	-	-	-
Core support to national NGOs	8	38	33	43	49

Table A9.4 Financial resources to developing countries and multilateral organisations from Italy, USD million.

	2010-2011	2018	2019	2020	2021
Investment projects	138	48	- 13	28	17
Administrative costs	48	46	52	46	51
Other in-donor expenditures (b)	265	1 129	452	229	556
of which: Refugees in donor countries	264	1 125	445	229	556
Imputed student costs		5	5	7	9
B. Contributions to Multilateral Institutions	2 430	2 958	2 975	3 090	3 783
of which: UN	160	169	194	209	292
EU	1 741	1 920	1 884	2 010	2 188
IDA	283	323	387	353	326
Regional Development Banks	106	263	271	152	106
II. Other Official Flows (OOF) net (C + D)	95	37	21	107	- 68
C. Bilateral Other Official Flows	95	37	21	107	- 68
D. Multilateral Institutions	-	-	-	-	-
III. Officially Supported Export Credits (c)	781	2 121	675	1 540	1 522
IV. Private Flows at Market Terms (long-term) (1 to 3)	6 093	98	1 557	458	4 180
1. Direct investment	5 948	10	- 2	- 8	- 2
2. Bilateral portfolio investment	145	88	1 559	466	4 182
3. Securities of multilateral agencies	-	-	-	-	-
V. Grants by Private Voluntary Agencies	131	23	62	28	58
VI. Total Resource Flows (long-term) (I to IV)	10 760	7 378	6 613	6 529	11 963
Total Resource Flows as a % of GNI	0.51	0.35	0.33	0.34	0.56

a) In 2021, items not yet included in grant equivalent measure as reporting directives have not yet been agreed: use

of private sector instruments. See See https://one.oecd.org/document/DCD/DAC/STAT(2020)44/ADD3/FINAL/en/pdf.

b) Covers development awareness and refugees in donor countries.

c) Including funds in support of private export credits.

Source: OECD (2023) http://www.oecd.org/dac/financing-sustainable-development/development-finance-

data/statisticsonresourceflowstodevelopingcountries.htm

Total official development assistance (ODA) (USD 6.0 billion, preliminary data) increased in 2021, representing 0.28% of gross national income (GNI). ODA increases exceeded COVID-19 vaccine donations. In 2021, Italy ranked 18th among Development Assistance Committee (DAC) member countries when ODA is taken as a share of GNI (preliminary figures). More data are available in the report of the Italian Development co-operation profiles at the URL:

https://www.oecd-ilibrary.org/sites/37f92091-en/index.html?itemId=/content/component/5e331623en& csp =b14d4f60505d057b456dd1730d8fcea3&itemIGO=oecd&itemContentType=chapter

Italian multilateral cooperation on climate change has been performed with different United Nations organizations, funds, and institutions⁶⁶. Cooperation has involved from the supply of financial resources, to the design and implementation of programmes and projects, the promotion of transfer of environmentally-sound technologies aiming at reducing the impacts of human activities on climate change, and support to adaptation measures. Funding climate change and related topics in developing countries has different and ambitious objective: efficient use of energy, implementation of innovative financial mechanisms, efficient water management, carbon sequestration, professional training, and exchange of know-how, promotion of eco-efficient technologies.

⁶⁶ Italian multilateral cooperation with the United Nations Educational, Scientific and Cultural Organization (UNESCO), United Nations Industrial Development Organization (UNIDO), Food and Agriculture Organization of the United Nations (FAO), the Regional Environmental Centre for Central and Eastern Europe (REC), the Global Environment Facility (GEF), the World Bank (WB), International Union for Conservation of Nature (IUCN), the United Nations Environment Programme (UNEP), United Nations Development Programme (UNDP) and the Mediterranean Action Plan (MAP).

ANNEX 10: THE NATIONAL REGISTRY

The Consolidated System of European Registries, in short CSEUR, was developed together with the new EU registry on the basis the following modalities:

- 1. Each Party retains its organization designated as its registry administrator to maintain the national registry of that Party and remains responsible for all the obligations of Parties that are to be fulfilled through registries;
- 2. Each Kyoto unit issued by the Parties in such a consolidated system is issued by one of the constituent Parties and continues to carry the Party of origin identifier in its unique serial number;
- 3. Each Party retains its own set of national accounts as required by paragraph 21 of the Annex to Decision 15/CMP.1. Each account within a national registry keeps a unique account number comprising the identifier of the Party and a unique number within the Party where the account is maintained;
- 4. Kyoto transactions continue to be forwarded to and checked by the UNFCCC Independent Transaction Log (ITL), which remains responsible for verifying the accuracy and validity of those transactions;
- 5. The transaction log and registries continue to reconcile their data with each other in order to ensure data consistency and facilitate the automated checks of the ITL;
- 6. The requirements of paragraphs 44 to 48 of the Annex to Decision 13/CMP.1 concerning making non-confidential information accessible to the public is fulfilled by each Party through a publically available web page hosted by the Union registry;
- 7. All registries reside on a consolidated IT platform sharing the same infrastructure technologies. The chosen architecture implements modalities to ensure that the consolidated national registries are uniquely identifiable, protected and distinguishable from each other, notably:
 - With regards to the data exchange, each national registry connects to the ITL directly and establishes a secure communication link through a consolidated communication channel (VPN tunnel);
 - The ITL remains responsible for authenticating the national registries and takes the full and final record of all transactions involving Kyoto units and other administrative processes such that those actions cannot be disputed or repudiated;
 - With regards to the data storage, the consolidated platform continues to guarantee that data is kept confidential and protected against unauthorized manipulation;
 - The data storage architecture also ensures that the data pertaining to a national registry are distinguishable and uniquely identifiable from the data pertaining to other consolidated national registries;
 - In addition, each consolidated national registry keeps a distinct user access entry point (URL) and a distinct set of authorisation and configuration rules.

Following the successful implementation of the CSEUR, the 28 national registries concerned were recertified in June 2012 and switched over to their new national registry on 20 June 2012. Croatia was migrated and consolidated as of 1 March 2013. During the go-live process, all relevant transaction and holdings data were migrated to the Union registry platform and the individual connections to and from the ITL were re-established for each Party. A complete description of the consolidated registry has been provided in the common readiness documentation and specific readiness documentation for the national registry of the EU and all consolidating national registries. This description includes:

- Readiness questionnaire;
- Application logging;
- Change management procedure;
- Disaster recovery;
- Manual Intervention;
- Operational Plan;
- Roles and responsibilities;
- Security Plan;
- Time Validation Plan;
- Version change Management.

The documents above have been annexed to the National Inventory Report submission for year 2013.

A new central service desk has been set up to support the registry administrators of the consolidated system. The new service desk acts as 2nd level of support to the local support provided by the Parties. It also plays a key communication role with the ITL Service Desk with regards notably to connectivity or reconciliation issues.

Since 2006 ISPRA acts as national administrator and an operational unit has been set up including:

- 1 chief of the unit;
- 4 employees in charge of Registry functions and operations, implementing Competent Authority's provisions, preparing documents and reports, providing support to users through a dedicated helpdesk;
- 1 employee assisting with legal and security issues;
- 1 employee for the design of a BMS application facilitating the administrative tasks;
- 1 employee dedicated to paper documentation archiving and minor secretarial tasks.

Economic resources for the administration of the Registry are supplied to ISPRA by account holders paying a fee. The amount of such fees has been regulated by <u>Ministerial Decree 6 December 2021</u>.

Supplementary information with regards to the national registry and in accordance with the guidelines set down in Decision 15 CMP.1 (Annex II.E Paragraph 32) is reported below:

(a) The name and contact information of the registry administrator designated by the Party to maintain the national registry

The Italian Registry is administrated by ISPRA (national Institute for Environmental Protection and Research).

The contact person is: Mr Riccardo Liburdi

address: Via Vitaliano Brancati 48 – 00144 Rome – Italy

telephone: +39 0650072544

e-mail: riccardo.liburdi@isprambiente.it

No change of name or contact occurred during the reported period.

(b) The names of the other Parties with which the Party cooperates by maintaining their national registries in a consolidated system

Italy maintains its national registry in a consolidated manner with all the Parties that are also EU Member States and with the European Union, sharing the same platform hosted and facilitated by the European Commission.

No change of regarding cooperation arrangement occurred during the reported period.

(c) A description of the database structure and capacity of the national registry

The complete description of the consolidated registry was provided in the common readiness documentation and specific readiness documentation for the national registry of EU and all consolidating national registries.

During certification, the consolidated registry was notably subject to connectivity testing, connectivity reliability testing, distinctness testing and interoperability testing to demonstrate capacity and conformance to the Data Exchange Standard (DES). All tests were executed successfully and lead to successful certification on 1 June 2012.

There has been 3 new EUCR releases (versions 13.6.1, 13.7.1 and 13.8.2) after version 13.5.2 (the production version at the time of the last submission).

No changes were applied to the database, whose model is provided in Annex A.

No change was required to the application backup plan or to the disaster recovery plan.

No change to the capacity of the national registry occurred during the reported period.

(d) A description of how the national registry conforms to the technical standards for data exchange between registry systems for the purpose of ensuring the accurate, transparent and efficient exchange of data between national registries, the clean development mechanism registry and the transaction log (decision 19/CP.7, paragraph 1)

The overall change to a Consolidated System of EU Registries triggered changes to the registry software and required new conformance testing. The complete description of the consolidated registry was provided in the common readiness documentation and specific readiness documentation for the national registry of EU and all consolidating national registries.

During certification, the consolidated registry was notably subject to connectivity testing, connectivity reliability testing, distinctness testing and interoperability testing to demonstrate capacity and conformance to the Data Exchange Standard (DES). All tests were executed successfully and lead to successful certification on 1 June 2012.

The changes that have been introduced with versions 13.6.1, 13.7.1 and 13.8.2 compared with version 13.5.2 of the national registry are presented in Annex B.

It is to be noted that each release of the registry is subject to both regression testing and tests related to new functionality. These tests also include thorough testing against the DES and are carried out prior to the relevant major release of the version to Production (see Annex B).

No other change in the registry's conformance to the technical standards occurred for the reported period.

(e) A description of the procedures employed in the national registry to minimize discrepancies in the issuance, transfer, acquisition, cancellation and retirement of ERUs, CERs, tCERs, ICERs, AAUs and/or RMUs, and replacement of tCERS and ICERs, and of the steps taken to terminate transactions where a discrepancy is notified and to correct problems in the event of a failure to terminate the transactions

The overall change to a Consolidated System of EU Registries also triggered changes to discrepancies procedures, as reflected in the updated *manual intervention document* and the *operational plan*. The complete description of the consolidated registry was provided in the common readiness documentation and specific readiness documentation for the national registry of EU and all consolidating national registries.

Detailed information for year 2022 according to paragraphs 12 to 17 is provided below:

- paragraph 12 List of discrepant transactions: no discrepant transactions occurred in 2022;
- paragraph 13 and 14 *List of CDM notifications*: no CDM notifications occurred in 2022;
- paragraph 15 List of non-replacements: no non-replacements occurred in 2022;
- paragraph 16 *List of invalid units*: no invalid units exist as of 31 December 2022;
- paragraph 17 Actions and changes to address discrepancies: since no discrepant transactions occurred in 2022, there's been no need for actions to correct or changes to prevent discrepancies in the reported period.

Therefore, no change of discrepancies procedures occurred during the reported period.

Considering the information above, reports R2, R3, R4 and R5 have not been included in the submission.

(f) An overview of security measures employed in the national registry to prevent unauthorized manipulations and to prevent operator error and of how these measures are kept up to date

The overall change to a Consolidated System of EU Registries also triggered changes to security, as reflected in the updated *security plan*. The complete description of the consolidated registry was provided in the common readiness documentation and specific readiness documentation for the national registry of EU and all consolidating national registries.

No changes regarding security were introduced.

(g) A list of the information publicly accessible by means of the user interface to the national registry

Non-confidential information required by Decision 13/CMP.1 annex II.E paragraphs 44-48, is publicly accessible via the Union Registry website at:

https://unionregistry.ec.europa.eu/euregistry/IT/public/reports/publicReports.xhtml

and it is also available on the informative website at :

https://ariet.isprambiente.it/ArietWeb/customPage/reportistica

Information is updated on a monthly basis and is provided with the following exceptions:

- paragraph 45(d)(e): account number, representative identifier name and contact information is deemed as confidential according to Annex III and VIII (Table III-I and VIII-I) of Commission Delegated Regulation (EU) No 2019/1122;
- paragraph 46: no Article 6 (Joint Implementation) project is reported as conversion to an ERU under an Article 6 project did not occur in the specified period;
- paragraph 47(a)(d)(f): holding and transaction information is provided on an account type level, due to more detailed information being declared confidential by article 80 of Commission Delegated Regulation (EU) No 2019/1122.

No change to list of publicly available information occurred during the reported period.

(h) The Internet address of the interface to its national registry

The registry is available at <u>https://unionregistry.ec.europa.eu/euregistry/IT/index.xhtml</u> and the URL has not changed since last submission.

(i) A description of measures taken to safeguard, maintain and recover data in order to ensure the integrity of data storage and the recovery of registry services in the event of a disaster

The overall change to a Consolidated System of EU Registries also triggered changes to data integrity measures, as reflected in the updated *disaster recovery plan*. The complete description of the consolidated registry was provided in the common readiness documentation and specific readiness documentation for the national registry of EU and all consolidating national registries.

No change of data integrity measures occurred during the reported period.

(j) The results of any test procedures that might be available or developed with the aim of testing the performance, procedures and security measures of the national registry undertaken pursuant to the provisions of decision 19/CP.7 relating to the technical standards for data exchange between registry systems

The consolidated EU system of registries successfully completed a full certification procedure in June 2012. Notably, this procedure includes connectivity testing, connectivity reliability testing, distinctness testing and interoperability testing to demonstrate capacity and conformance to the Data Exchange Standard (DES). This included a full Annex H test. All tests were executed successfully and led to successful certification on 1 June 2012.

No change occurred during the reported period.

Previous Review Recommendations

The SIAR Report for Italy from last year reported no recommendations.

ANNEX 11: OVERVIEW OF THE CURRENT SUBMISSION IMPROVEMENTS

A11.1 Results of the UNFCCC review process

During the last UNFCCC review process, some issues were raised which have been considered to improve the current submission. Responses to the main recommendations, received in the draft review report, are described in the following table.

CRT category / issue	Review recommendation	Review report / paragraph	MS response / status of implementation
Comparison with international data – refinery feedstocks (E.4, 2021) Accuracy	Not resolved The ERT considers that the recommendation has not yet been fully addressed, as the difference between national and international data remains significant, for example by 230.8 per cent for 2020 when data in the CRF tables are compared with those in the IEA data. Italy has no access to further IEA information about the data, but can confirm what is reported in the NIR and that the data of the different fuels are taken from the same joint questionnaire. In addition to production, import and export, refinery feedstocks also include 'backflow', which has not yet been characterized in the Party's submission and requires further investigation to properly characterize it.	E.1	In our point of view, it is only an allocation issue. In order to improve transparency and comparability Italy could split backflows and feedstock and report this information in the NIR
2.D.3 Other (non-energy products from fuels and solvent use) – CO2 (I.5, 2021) (I.10, 2019) Convention reporting adherence	Addressing. The Party continued to report total national emissions including indirect CO2 in the CRF tables (e.g. CRF table summary 2 and CRF table 10) in the row intended for total national emissions excluding indirect CO2, while reporting "NA" for the national emission totals including indirect CO2 rather than providing numerical values to reflect the reporting of indirect CO2 emissions from solvents. Italy explained in its NIR (section 2.5, p.61) that the indirect CO2 emissions are reported in the relevant categories of solvent use. During the review, Italy provided an Excel spreadsheet which shows GHG national total emissions with and without indirect CO2. The ERT considers that, if Italy reports those emissions in CRF table 6, this issue will be resolved.	1.2	Additional information has been includd in the NIR.
4.A Forest land – CO2 (L.4, 2021) (L.2, 2018) (L.5, 2016) (L.5, 2015) (56, 2014) Transparency	Addressing. In previous review reports, the ERTs noted that fully resolving this recommendation will require data from the third NFI to validate the For-est Model. The Party reported in its NIR (p.267 and 598–599) and confirmed during the review that the complete set of data from the third NFI will be available in late 2022 and therefore the For-est Model validation against the latest NFI data is due to be implemented for the next submission.	L.4	The recommendation has been addressed in the 2023 submission.
4.G HWP – AD (L.19, 2021) Transparency	Not resolved. The Party has not provided the full series of HWP AD in CRF table 4.Gs2 The ERT considers that the recommendation has not yet been addressed because CRF table 4.Gs2 should include AD from the first year for which they were available.	L.5	The recommendation has been addressed in the 2023 submission.
4.G HWP – CO2 (L.12, 2021) (L.16, 2019) Transparency	Not resolved. The Party has not documented in the HWP section of its NIR (section 6.12, pp.296–297) the methodology used for estimating CO2 emissions from HWP in SWDS However, when comparing the current and previous submissions, the ERT noted that the Party has updated the methodology for estimating annual change in total longterm carbon storage in HWP waste reported as a memo item in CRF table 5, whereas the methodology for estimating CO2 net emissions from HWP in SWDS reported in CRF table 4.Gs1 has not been changed and is therefore not the same as that described in section 7.2.6 of the NIR. In addition, Italy has not provided an explanation for	L.6	The recommendation has been addressed in the 2023 submission; in particular the CO2 emissions reported in the CRF table 4Gs.1 are estimated with the some methodology used to estimate annual change in total longterm carbon storage in HWP waste reported as a memo item in CRF table 5.

CRT category / issue	Review recommendation	Review report /	MS response / status of implementation
Issue	reporting "NO" for gains in HWP in SWDS together with positive annual stock change in CRF table 4.Gs1.	paragraph	
4.G HWP – CO2 (L.20, 2021) Accuracy	Addressing. The Party reported in its NIR (p.314) that CO2 emissions from HWP in SWDS are under investigation The ERT considers that the recommendation has not yet been fully addressed, as the information regarding HWP in SWDS reported in CRF table 4.Gs1 is not consistent with CRF table 5 (see ID# L.6 above).	L.7	The recommendation has been addressed in the 2023 submission; in particular the CO2 emissions reported in the CRF table 4Gs.1 are estimated with the some methodology used to estimate annual change in total longterm carbon storage in HWP waste reported as a memo item in CRF table 5.
4.G HWP – CO2 (L.21, 2021) Transparency	Not resolved. The Party has not included any additional information in the NIR section concerning methodology for estimating emissions from HWP (pp.296-297). During the review, the Party clarified that the relevant information is provided in the NIR, section 9.4.5 (pp.358–359), stating that all wood originating from deforestation is assigned to fuelwood so that there are not HWP originating from deforestation activity. However, the ERT could not identify any documentation or references which justify this assumption.	L.8	Italy asked for the deletation of this reccommendation
1.B.2.a Oil – liquid fuels – CH4	During the review, the ERT noted a significant inter-annual change between 2015 and 2016 of -60.13 per cent for CH4 emissions from oil production (CRF table 1.B.2.a) due to recalculation of the emissions The ERT welcomes the Party's detailed explanation and recommends that the Party include in its NIR information provided during the review that explains why updating CH4 EFs for oil production would not reflect the actual state of emissions prior to 2016.	E.4	Additional information has been included in the NIR.
1.B.2.a Oil – natural gas liquids – CH4 1.A(a) - – natural gas	During the review, the ERT noted that for 2020, IEA has reported natural gas liquid consumption of about 412 TJ, while the CRF tables 1.A(b) and 1.A(d) report no apparent consumption for this fuel, leading to a 100 per cent difference between the two data sets The ERT recommends that the Party investigate production and use of natural gas liquids in Italy and if the activity does occur, report activity data and emissions, both for fugitive as well as for combustion emissions, with respect to refinery operations.	E.5	Natural gas liquid has been made explicit among fuels reported in the reference approach since 2020. In previous years it was included in the crude oil. As concern this category we verified that the amount of natural gas liquid is already included in the activity data so that no changes are due.
4.B.1 Cropland remaining cropland – 4.C.1 Grassland remaining grassland – CO2	The ERT noted that the description provided in the NIR regarding the estimation of CSCs in mineral soils for cropland remaining cropland (pp.270–273) and grassland remaining grassland (grazing land) (pp.276–278) is not transparent enough to check if the applied approach is consistent with the 2006 IPCC Guidelines (vol, 4, chap.5) The ERT recommends that the Party include in the NIR more transparent information regarding estimation of CSCs in mineral soils for cropland remaining cropland and grassland remaining grassland (grazing land), such as trends in land areas under different management practices since 1970.	L.9	The recommendation has been addressed in the 2023 submission; in particular additional information has been included in the NIR to transparently describe the methodology used for CSC estimation.

CRT category / issue	Review recommendation	Review report / paragraph	MS response / status of implementation
4.C.2 Land converted to grassland – CO2	The Party reported in its NIR (p.280) that it applies a tier 1 methodology to estimate CSCs in land converted to grassland, assuming that carbon stocks in biomass immediately after the conversion are equal to 0 t C ha1 The ERT recommends that the Party report in CRF tables 4.C separately biomass losses and gains from land-use conversion. The ERT also recommends that the Party provide transparent information on BBEFORE values for each type of land conversion, as well as justification for the parameter values used to estimate CSCs in biomass for annual crops converted to natural grazing land and woody crops converted to other wooded land.	L.10	The recommendation has been addressed in the 2023 submission; in particular additional information has been included in the NIR to transparently describe the methodology used for CSC estimation.
5.A Solid waste disposal on land – CH4	The Party reported in its NIR (section 7.2.2, p.306) and CRF table 5.A a DOCf value of 0.5 (50 per cent), which is the default value in the 2006 IPCC Guidelines (vol.5, chap.3, p.3.13) despite the fact that the Party indicates that it applies tier 2 method for the category The ERT recommends that the Party plan and begin research in order to verify that the parameters presented in the short term national studies are still relevant to the national conditions of Italy in order to improve the estimates by using a higher tier methodology (tier 2 or 3) that use separate country- specific DOCf values defined for specific waste types The ERT notes that it is good practice to use disaggregated DOCf values specific to waste types only when waste composition data are based on representative sampling and analysis over a longer period.	W.6	Italy has planned a survey on the characterization of waste also from the point of view of degradable organic carbon through discussions with the staff of the national waste center managed by ISPRA. The goal is to evaluate data and studies with useful information and to verify the accuracy and consistency of DOCf values.
5.C.2 Open burning of waste – CO2	The Party reported in its NIR (p.321) the fraction of the population burning waste (Pfrac) of 9–9.4 and the fraction of the waste amount that is burned relative to the total amount of waste treated (Bfrac) of 0.4 to calculate emissions of CO2 from open burning of waste The ERT recommends that the Party update the fraction of the population burning waste (Pfrac) and the fraction of the waste amount that is burned relative to the total amount of waste treated (Bfrac) using the survey or research data available, or expert judgment.	W.7	Italy does not agree with the recommendation. The 2006 IPCC Guidelines report as default value Bfrac=0.6. In recent years the most important fires (industrial warehouses) involved 1800 Mg in Corteolona in 2018 and 8400 Mg in Pomezia in 2017 which means negligible quantities even considering an order of magnitude higher. For example, if they were 100,000 Mg of open burning waste annually, they would be equivalent, from 1990 to 2018, to approximately 0.4% to 0.3% (instead of the 60% represented by the default). More 2006GL stated that "For countries that have well functioning waste collection systems in place, it is good practice to investigate whether any fossil carbon is open-burned. In a developed country, Pfrac can be assumed to be the rural population for a rough estimate. In a region where urban population exceeds 80 percent of total population, one can assume no open burning of waste occurs." and Pfrac (Istat,2017 "Forme, livelli e dinamiche dell'urbanizzazione in Italia") is less than 10% (9-9.4%) which means that rural population is more than 90% and open burning of urban

CRT category / issue	Review recommendation	Review report / paragraph	MS response / status of implementation
			waste can be considered negligible.
5.D.1 Domestic wastewater – CH4	The ERT compared the indigenous sewage sludge gas production reported by the Party to Eurostat (2,137 TJ in 2019) with the amounts of CH4 for energy recovery reported in CRF table 5.D (21.56 kt in 2019, which is approximately 1,087 TJ) and found a difference of about 50 per cent The ERT recommends that the Party reconsider its assumption of a 50 per cent share of CH4 in biogas and provide the value and its documentation in the NIR. The ERT also recommends that Italy investigate possible reasons for the remaining difference between the amount reported to Eurostat (2,137 TJ in 2019) and the amount it estimated on the basis of the volume of biogas provided by Terna (1,415 TJ in 2019), which may include other uses of biogas (e.g. blending with natural gas, own use in wastewater treatment plants) in addition to the use of biogas for the production of electricity and heat, or consider estimating CH4 recovery for energy on the basis of total indigenous biogas production.	W.8	Production data is not comparable with biogas recovered wich will be less than production data . Biogas not recovered has been flared in high temperature torches. Moreover biogas data in the energy balance are not comparable at all with emissions from sewage sludge management. As a consequence it is not clear why we should revise the amount of CH4 in biogas.
5.D.2 Industrial wastewater - CH4	The Party reported in table 7.36 of its NIR (p.328) the wastewater generation (m3/t) from several industries and associated COD (g/l) values used in the estimatesThe ERT recommends that the Party conduct an investigation into COD values and wastewater production for the most significant industries and to report data in the next submission.	W.10	Additional info has been included in the NIR

A11.2 Results of the ESD technical review process

During the last ESD technical review process, no issues were raised in the review report and no revised estimates or technical corrections were deemed necessary. Anyway, issues identified during the review have been taken into account as much as possible to improve the current submission.

ANNEX 12: REPORTING UNDER EU REGULATION No 525/2013

A12.1 Article 10 of the EU Regulation

Implementing Regulation Article 10: Reporting on consistency of reported emissions with data from the emissions trading system

1. Member States shall report the information referred to in Article 7(1)(k) of Regulation (EU) No 525/2013 in accordance with the tabular format set out in Annex V to this Regulation.

2.Member States shall report textual information on the results of the checks performed pursuant to Article 7(1)(I) of Regulation (EU) No 525/2013.

Allocation of verified emissions reported by installations and operators under Directive 2003/87/EC to source categories of the national greenhouse gas inventory

Member State:	Italy	
Reporting year:	2023	
Basis for data: verified ETS emissions and gre	eenhous	e gas emissions as reported in inventory submission for the year X-2

Total emissions (CO2 -eq)		-		-	
Category[1]	Gas	Greenhouse gas inventory emissions [kt CO2eq][3]	Verified emissions under Directive 2003/87/EC [kt CO2eq][3]	Ratio in % (Verified emissions/ inventory emissions)[3]	Comment[2]
Greenhouse gas emissions (total emissions without LULUCF for GHG inventory and without emissions from 1A3a Civil aviation, total emissions from installations under Article 3h of Directive 2003/87/EC)	Total GHG	415,888.08	131,446.56	31.61%	
CO2 emissions (total CO2 emissions without LULUCF for GHG inventory and without emissions from 1A3a Civil aviation, total emissions from installations under Article 3h of Directive 2003/87/EC)	Total CO ₂	335,526.53	131,387.87	39.16%	

	CO ₂ emissions									
Category[1]		Greenhouse gas inventory emissions [kt CO2eq][3]	Verified emissions under Directive 2003/87/EC [kt CO2eq][3]	Ratio in % (Verified emissions/ inventory emissions)[3]	Comment[2]					
1.A Fuel combustion activities, total	CO ₂	319,646.20	NA	NA						
1.A Fuel combustion activities, stationary combustion [4]	CO ₂	319,346.74	116,353.06	36.43%						
1.A.1 Energy industries	CO ₂	86,008.66	83,970.35	97.63%						
1.A.1.a Public electricity and heat production	CO ₂	64,806.40	62,768.09	96.85%						
1.A.1.b Petroleum refining	CO ₂	16,547.99	16,547.99	100.00%						
1.A.1.c Manufacture of solid fuels and other energy industries	CO ₂	4,654.27	4,654.27	100.00%						
Iron and steel total (1.A.1.c, 1.A.2, 1.B, 2.C.1) [5]	CO ₂	15,666.99	14,192.09	90.59%						

CO ₂ emissions								
Category[1]		Greenhouse gas inventory emissions [kt CO2eq][3]	Verified emissions under Directive 2003/87/EC [kt CO2eq][3]	Ratio in % (Verified emissions/ inventory emissions)[3]	Comment[2]			
1.A.2. Manufacturing industries and construction	CO ₂	52,790.84	31,159.98	59.03%				
1.A.2.a Iron and steel	CO ₂	9,589.77	8,114.86	84.62%				
1.A.2.b Non-ferrous metals	CO ₂	967.71	427.17	44.14%				
1.A.2.c Chemicals	CO ₂	11,300.71	4,856.73	42.98%				
1.A.2.d Pulp, paper and print	CO ₂	5,307.83	3,967.24	74.74%				
1.A.2.e Food processing, beverages and tobacco	CO ₂	3,814.71	1,761.94	46.19%				
1.A.2.f Non-metallic minerals	CO ₂	11,194.01	9,447.35	84.40%				
1.A.2.g Other	CO ₂	10,616.10	2,584.68	24.35%				
1.A.3. Transport	CO ₂	102,200.11	703.09	0.69%				
1.A.3.e Other transportation (pipeline transport)	CO ₂	851.19	703.09	82.60%				
1.A.4 Other sectors	CO ₂	78,347.12	519.63	0.66%				
1.A.4.a Commercial / Institutional	CO ₂	24,603.40	519.63	2.11%				
1.A.4.c Agriculture/ Forestry / Fisheries	CO ₂	7,065.81	-	0.00%				
1.B Fugitive emissions from Fuels	CO ₂	1,815.63	850.73	46.86%				
1.C CO2 Transport and storage	CO ₂							
1.C.1 Transport of CO2	CO ₂							
1.C.2 Injection and storage	CO ₂							
1.C:3 Other 2.A Mineral products	CO ₂							
2.A Mineral products	CO ₂	11,145.65	10,660.04	95.6%				
2.A.1 Cement Production	CO ₂	7,918.83	7,908.90	99.87%				
2.A.2. Lime production	CO ₂	2,003.28	1,764.61	88.09%				
2.A.3. Glass production	CO ₂	614.07	614.07	100.00%				
2.A.4. Other process uses of carbonates	CO ₂	609.47	372.46	61.11%				
2.B Chemical industry	CO ₂	1,402.95	1,856.09	132.30%				
2.B.1. Ammonia production	CO ₂	631.09	1,088.96	172.55%	Includes emissions from urea production			
2.B.3. Adipic acid production (CO2)	CO ₂	2.06	2.06	100.00%				
2.B.4. Caprolactam, glyoxal and glyoxylic acid production	CO ₂							
2.B.5. Carbide production	CO ₂	4.73	-	0.00%				
2.B.6 Titanium dioxide production	CO ₂							
2.B.7 Soda ash production	CO ₂	278.38	278.38	100.00%				
2.B.8 Petrochemical and carbon black production	CO ₂	486.69	486.69	100.00%				
2.C Metal production	CO ₂	1,667.96	1,667.96	100.00%				
2.C.1. Iron and steel production	CO ₂	1,422.95	1,422.95	100.00%				
2.C.2 Ferroalloys production	CO ₂							
2.C.3 Aluminium production	CO ₂							
2.C.4 Magnesium production	CO ₂							
2.C.5 Lead production	CO ₂							

CO ₂ emissions										
Category[1]		Greenhouse	Verified	Ratio in %	Comment[2]					
		gas	emissions	(Verified						
		inventory	under	emissions/						
		emissions	Directive	inventory						
		[kt CO ₂ eq][3]	2003/87/EC	emissions)[3]						
			[kt CO2eq][3]							
2.C.6 Zinc production	CO ₂	245.01	245.01	100.00%						
2.C.7 Other metal production	CO ₂									

N ₂ O emissions										
Category[1]	Gas	Greenhouse gas inventory emissions [kt CO2eq][3]	Verified emissions under Directive 2003/87/EC [kt CO2eq][3]	Ratio in % (Verified emissions/ inventory emissions)[3]	Comment[2]					
2.B.2. Nitric acid production	N ₂ O	23.19	23.20	100.00%						
2.B.3. Adipic acid production	N ₂ O	35.49	35.49	100.00%						
2.B.4. Caprolactam, glyoxal and glyoxylic acid production	N ₂ O									

PFC emissions										
Category[1]	Gas	Greenhous e gas inventory emissions [kt CO2eq][3]	Verified emissions under Directive 2003/87/EC [kt CO2eq][3]	Ratio in % (Verified emissions/ inventory emissions)[3]	Comment[2]					
2.C.3 Aluminium production	PFC									

[1] The allocation of verified emissions to disaggregated inventory categories at four digit level must be reported where such allocation of verified emissions is possible and emissions occur. The following notation keys should be used: NO = not occurring IE = included elsewhere C = confidential negligible = small amount of verified emissions may occur in respective CRF category, but amount is < 5% of the category

[2] The column comment should be used to give a brief summary of the checks performed and if a Member State wants to provide additional explanations with regard to the allocation reported. Member States should add a short explanation when using IE or other notation keys to ensure transparency.

[3] Data to be reported up to one decimal point for kt and % values

[4] 1.A Fuel combustion, stationary combustion should include the sum total of the relevant rows below for 1.A (without double counting) plus the addition of other stationary combustion emissions not explicitly included in any of the rows below.

[5] To be filled on the basis of combined CRF categories pertaining to 'Iron and Steel', to be determined individually by each Member State; e.g. (1.A.2.a+ 2.C.1 + 1.A.1.c and other relevant CRF categories that include emissions from iron and steel (e.g. 1A1a, 1B1))

Notation: x = reporting year

A12.2 Article 12 of the EU Regulation

Implementing Regulation Article 12: Reporting on consistency with energy data

1.Under Article 7(1)(m)(iii) of Regulation (EU) No 525/2013, Member States shall report textual information on the comparison between the reference approach calculated on the basis of the data included in the greenhouse gas inventory and the reference approach calculated on the basis of the data reported pursuant to Article 4 of Regulation (EC) No 1099/2008 of the European Parliament and of the Council (1) and Annex B to that Regulation.

2.Member States shall provide quantitative information and explanations for differences of more than +/- 2 % in the total national apparent fossil fuel consumption at aggregate level for all fossil fuel categories for the year X-2 in accordance with the tabular format set out in Annex VI.

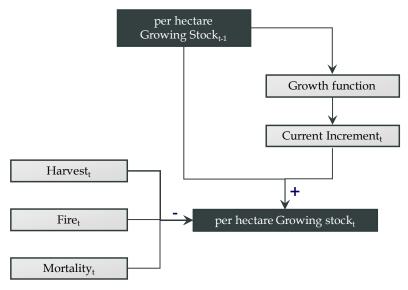
Member	ITALY			
State:				
Reporting	2023			
year:				

	FUEL TYPES		Apparent consumption reported in GHG inventory (TJ) (3)	Apparent consumption using data reported pursuant to Regulation (EC) No 1099/2008 (TJ) (3)	Absolute difference (1) (TJ) (3)	Relative difference (2) % (3)	Explanati ons for differenc es
Liquid fossil	Primary fuels	Crude oil	2,585,479	2,585,479	0.0	0.0%	
		Orimulsion			0.0		
		Natural gas liquids	399	399	0.0	0.0%	
	Secondary fuels	Gasoline	-310,887	-310,887	0.0	0.0%	
		Jet kerosene	-37,513	-37,513	0.0	0.0%	
		Other kerosene	12,477	12,477	0.0	0.0%	
		Shale oil			0.0		
		Gas/diesel oil	-144,863	-144,863	0.0	0.0%	
		Residual fuel oil	-200,170	-200,170	0.0	0.0%	
		Liquefied petroleum gases (LPG)	88,465	88,465	0.0	0.0%	
		Ethane			0.0		
		Naptha	63,292	63,292	0.0	0.0%	
		Bitumen	-45,460	-45,460	0.0	0.0%	
		Lubricants	-20,360	-20,360	0.0	0.0%	
		Petroleum coke	34,439	34,439	0.0	0.0%	
		Refinery feedstocks	136,695	136,695	0.0	0.0%	
		Other oil	-48,189	-11,870	-36,318.4	75.4%	
	Other liquid fossil				0.0		
	Liquid fossil total		2,113,803	2,150,122	-36,318.4	-1.7%	
Solid fossil	Primary fuels	Anthracite	2,661	2,661	0.0	0.0%	
		Coking coal	49,950	49,950	0.0	0.0%	
		Other bituminous coal	168,630	168,630	0.0	0.0%	
		Sub-bituminous coal	100,030	0	0.0	0.070	
		Lignite	14	14	0.0	0.0%	
		Oil shale and tar sand			0.0		
		Peat			0.0		

	Secondary fuels	BKB and patent fuel	11,196	11,196	0.0	0.0%	
		Coke oven/gas coke	-458	-458	0.0	0.0%	
		Coal tar			0.0		
	Other solid fossil						
	Solid fossil totals		231,993	231,993	0.0	0.0%	
Gaseous fossil		Natural gas (dry)			0.0		
Other gaseous fossil							
Gaseous fossil totals			2,614,149	2,614,149	0.0	0.0%	
	Waste (non- biomass fraction)	·	48,464	47,805	658.7	1.4%	
Other fossil fuels					0.0		
Peat							
Total			5,008,409	5,044,069	-35,659.7	-0.7%	

(1) Apparent consumption reported in GHG inventory minus apparent consumption using data reported pursuant to Regulation (EC) No 1099/2008

(2) Absolute difference divided by apparent consumption reported in


GHG inventory

(3) Data to be reported up to one decimal point for kt and % values

ANNEX 13: FOR-EST MODEL

For-est is a book keeping model (figure A13.1) that calculates annually the C stock of the aboveground biomass pool, as derived from the growing stock, by adding the annual net increment and subtracting annual losses associated with formal and informal⁶⁷ harvest (industrial roundwood and fuelwood), forest fires and other mortality, which includes all other disturbances⁶⁸ (i.e. drought, grazing, wind).

Figure A13.1 For-est model flow-chart

The model is applied to each of the 26⁶⁹ forest inventory typology, at regional/provincial scale (NUTS2 - 19 regions⁷⁰ and 2 provinces), using as model input data for the forest area and initial growing stock of the first NFI (NFI1985) and forest area of the second and third NFIs (NFI2005, NFI2015). An independent verification (Tabacchi et al., 2010) of the model results versus measured data was carried out in the year 2008 by comparison of the growing stock calculated by the model vs the data collected in the second national forest inventory⁷¹, showing that the difference between the measured and modeled biomass C stocks is around -7%; which means that the model has underestimated by almost 0.3% net C stocks per year across the period 1985-2008.

Consistently, the time series of growing stock values in each forest inventory typology in each region/province is estimated applying the following steps:

1. deriving the initial growing stock volume for the year 1985 from the NFI data (MAF/ISAFA, 1988);

⁶⁷ "Informal harvest" includes all harvest not captured by the official system of statistics either because occurring outside the chain of data collection, e.g. domestic fuelwood collection, or because may have occurred outside the planned harvest, e.g. small areas for which no harvesting plan is required and illegal harvest.

⁶⁸ Although natural mortality does not explicitly include losses caused by exceptional occurrences of those other disturbances, such exceptional losses are included in the national GHG inventory through the subsequent salvage logging of those lost biomass stocks.

⁶⁹ 4 different management system of practices (High stands, Coppices, Plantations, Protective) are combined with 22 forest types to classify 26 forest inventory typologies:

Stands: 1. norway spruce, 2. silver fir, 3. larches, 4. mountain pines, 5. mediterranean pines, 6. other conifers, 7. European beech, 8. turkey oak, 9. other oaks, 10. other broadleaves.

Coppices: 11. European beech, 12. sweet chestnut, 13. hornbeams, 14. other oaks, 15. turkey oak, 16. evergreen oaks, 17. other broadleaves, 18. conifers.

<u>Plantations</u>: 19. eucalyptuses coppices, 20. other broadleaves coppices, 21. poplar stands, 22. other broadleaves stands, 23. conifers stands, 24. others.

Protective Forests: 25. rupicolous forest, 26. riparian forests

⁷⁰ Abruzzo, Alto Adige/Sud Tirolo, Basilicata, Calabria, Campania, Emilia Romagna, Friuli Venezia Giulia, Lazio, Liguria, Lombardia, Marche, Molise, Piemonte, Puglia, Sardegna, Sicilia, Toscana, Trentino, Umbria, Valle d'Aosta, Veneto.
⁷¹ <u>https://www.sian.it/inventarioforestale/isp/risultati_introa.jsp?menu=3</u>

- 2. for each year, the current increment per hectare [m³ ha⁻¹yr⁻¹] is computed with the forest inventory typology specific derivative Richards function, for each forest inventory typology using as independent variable x the per hectare growing stock.
- 3. for each year, the following losses are calculated:
 - a. harvest, statistical data collected from ISTAT on industrial roundwood production (all assigned to "stands" forests), fuelwood (all assigned to "coppices" forests) and wood outside forest (all assigned to "plantations" forests). Aiming at taking into account the informal⁷² harvest, the time series has been recalculated, applying a correction factor, on regional basis, to the commercial harvested wood statistical data (table A13.2). The correction factor⁷³, was inferred from the outcome of a 2005 NFI survey⁷⁴ (table A13.1), carrying out a regional assessment of the harvested biomass. In each region/province, harvested quantities are assigned to each forest inventory typology in proportion of its total annual increment. The correction factors, at regional level, are reported in table A13.3.

Table A13.1 NF	l survey -	harvested	volume
----------------	------------	-----------	--------

Region	Harvested volume	S.E.	Harvested volume	S.E.
	m ³	%	m³ha⁻¹	%
Piemonte	1,360,223	31	1.6	30.9
Valle d'Aosta	-	-	-	-
Lombardia	1,039,728	52.7	1.7	52.7
Alto Adige (Bolzano)	862,811	62.4	2.6	62.4
Trentino	1,348,355	40.7	3.6	40.6
Veneto	475,573	40	1.2	39.9
Friuli - Venezia Giulia	462,541	67.3	1.4	67.3
Liguria	372,380	61.9	1.1	61.9
Emilia Romagna	362,005	62.2	0.6	62.2
Toscana	1,745,382	28.1	1.7	28
Umbria	1,294,494	43.6	3.5	43.6
Marche	418,031	74.9	1.4	74.9
Lazio	1,576,155	54.5	2.9	54.5
Abruzzo	388,752	51.8	1	51.7
Molise	200,825	54.5	1.5	54.4
Campania	915,244	59.6	2.4	59.6
Puglia	255,981	60.5	1.8	60.5
Basilicata	7,820	71.4	0	71.4
Calabria	624,762	53	1.3	53
Sicilia	23,477	58	0.1	57.9
Sardegna	62,323	53.3	0.1	53.2
Italia	13,796,864	12.9	1.6	12.9

⁷² Data on biomass removed in commercial harvest have been judged underestimated, particularly fuelwood consumption (APAT - ARPA Lombardia, 2007, UNECE – FAO, Timber Committee, 2008, Corona et al., 2007).

⁷³ A correction factor for each Italian region (21) has been pointed out. The mean value is 1.57, obtained as ratio of data from official statistics and NFI survey data. The variance is equal to 0.82.

⁷⁴NFI survey on harvested volume: <u>http://www.sian.it/inventarioforestale/caricaDocumento?idAlle=442</u>

Region	Harvested volume
	<i>m</i> ³
Piemonte	363,846
Valle d'Aosta	16,279
Lombardia	1,060,701
Alto Adige (Bolzano)	589,191
Trentino	484,906
Veneto	270,880
Friuli - Venezia Giulia	180,544
Liguria	96,515
Emilia Romagna	485,777
Toscana	1,477,135
Umbria	471,070
Marche	192,068
Lazio	875,408
Abruzzo	203,632
Molise	159,104
Campania	518,376
Puglia	101,776
Basilicata	299,019
Calabria	753,042
Sicilia	59,850
Sardegna	139,751

Table A13.3 Correction factors

- b. fires, burnt area from Forest service statistics, assigned to forest inventory typologies proportionally to their area. The growing stock loss caused by forest fires is estimated on the basis of the average growing stock per hectare. The methodology used for emission estimates due to forest fires is described in the Annex 14.
- mortality, an average constant ratio of mortality to total growing stock (Federici et al, 2008) estimated by expert judgement for evergreen (1.16%) and deciduous (1.17%) forests;
- 4. for protective forest (i.e., rupicolous and riparian forests) only, an average constant ratio of 3% (expert judgement - Federici et al., 2008) of C stock losses associated with drain and grazing. Starting from 1986, for each year, the final growing stock per hectare [m³ ha⁻¹] is computed adding to the final growing stock volume of the previous year the increment calculated for the current year and subtracting the losses occurred in the year as due to harvest, fires and mortality.

The procedure can be summarized as follows:

$$v_{i} = \frac{V_{i-1} + I_{i} - H_{i} - F_{i} - M_{i} - D_{i}}{A_{i}}$$

where:

 $I_i = f(v_{i-1}) \cdot A_{i-1};$

 v_i is the volume per hectare of growing stock for the current year;

 V_{i-1} is the total previous year growing stock volume;

- *Ii* is the total current increment of growing stock for the current year;
- *H_i* is the total amount of harvested growing stock for the current year;
- F_i is the total amount of burned growing stock for the current year;
- *M_i* is the annual rate of mortality;
- *D* is the annual rate of drain and grazing for the protective forest;
- A_i is the total area referred to a specific forest typology for the current year;
- *v*_{*i*-1} is the previous year growing stock volume per hectare;
- A_{i-1} is the total area referred to a specific forest typology for the previous year;
- *f* is the Richard function reported above.

The annual current increment is estimated thought the use of a non-linear function, the Richards function, that has the growing stock as its independent variable. The Richards' 4 parameters allow the needed flexibility to represent the various potential growth rates, including the initial, nearly constant, rate. To calculate the 4 parameters for each forest inventory typology the Richards function has been fitted through the data of growing stock [m³ ha⁻¹] and increment [m³ ha⁻¹yr⁻¹] obtained from the collection of Italian yield tables.

$$y = a \cdot \left[1 \pm e^{(\beta - kt)}\right]^{-\frac{1}{\nu}}$$

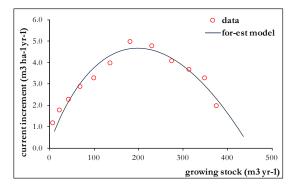
(Richards function)

The per hectare growing stock (i.e. the biomass density of the stand) is the independent variable x, while the dependent variable y is the increment computed with the Richards function - first derivative.

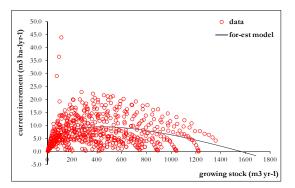
$$\frac{dy}{dt} = \frac{k}{v} \cdot y \cdot \left[1 - \left(\frac{y}{a}\right)^{v}\right] + y_{0}$$

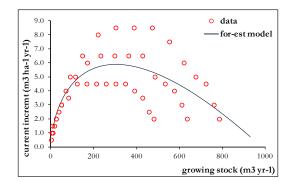
(Richards function - first derivative)

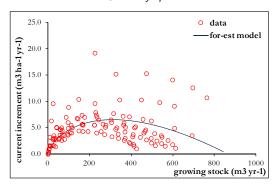
where the general constrain for the parameters are the following:


a,k>0 $-1 \le v \le \infty$ and $v \ne 0$

The constant y_0 is the growing stock volume at 1-year age.


The Richards function, first derivative, has been fitted against data taken from all quality classes of each yield table (figure A13.2), to calculate a set of variables' values for each forest inventory typology.


The curves have been derived from a collection of around 100 Italian yield tables



A13.2b Lombardia, norway spruce

A13.2c Piemonte, other conifers

A13.2d Campania, European beech

The per hectare growing stock and associated gain and losses are converted into aboveground biomass stock applying the following equation:

Aboveground tree biomass (d.m.) = $GS \cdot BEF \cdot WBD \cdot A$

where:

GS = volume of growing stock (MAF/ISAFA, 1988) [m³ ha⁻¹] of specific forest inventory typology;

BEF = Biomass Expansion Factors which expands growing stock volume to volume of aboveground woody biomass (ISAFA, 2004);

WBD = Wood Basic Density for conversions from fresh volume to dry weight (d.m.) [t m⁻³] (Giordano, 1980);

A = forest area of specific forest inventory typology [ha]

The BEFs and WBDs have been estimated for each forest inventory typology and are reported in following table A13.4.

		BEF	WBD
	Inventory typology	aboveground biomass / growing stock	Dry weigth t/ fresh volume
	norway spruce	1.29	0.38
	silver fir	1.34	0.38
	larches	1.22	0.56
	mountain pines	1.33	0.47
Stands	mediterranean pines	1.53	0.53
Sta	other conifers	1.37	0.43
	european beech	1.36	0.61
	turkey oak	1.45	0.69
	other oaks	1.42	0.67
	other broadleaves	1.47	0.53
	european beech	1.36	0.61
	sweet chestnut	1.33	0.49
ş	hornbeams	1.28	0.66
oice	other oaks	1.39	0.65
Coppices	turkey oak	1.23	0.69
0	evergreen oaks	1.45	0.72
	other broadleaves	1.53	0.53
	conifers	1.38	0.43
	eucalyptuses coppices	1.33	0.54
ns	other broadleaves coppices	1.45	0.53
Plantations	poplars stands	1.24	0.29
anta	other broadleaves stands	1.53	0.53
Pla	conifers stands	1.41	0.43
	others	1.46	0.48
tive	rupicolous forest	1.44	0.52
Protective	riparian forest	1.39	0.41

Table A13.4 Biomass Expansion Factors and Wood Basic Densities

Applying a Root/Shoot ratio (R) to the aboveground volume and the same WBDs the belowground biomass is derived for each forest inventory typology. The Rs have been estimated for each forest inventory typology and are reported in table A13.2. Data on root to shoot ratios have been taken from the following European projects: CANIF⁷⁵ (*CArbon and NItrogen cycling in Forest ecosystems*), CARBODATA⁷⁶ (*Carbon Balance Estimates and Resource Management - Support with Data from Project Networks Implemented at European Continental Scale*), CARBOINVENT⁷⁷ (*Multi-source inventory methods for quantifying carbon stocks and stock changes in European forests*) and COST⁷⁸ Action E21- Contribution of forests and forestry to mitigate greenhouse effects.

Belowground tree biomass $(d.m.) = Abovegroundtree biomass \cdot R$

where:

R = Root/Shoot ratio dimensionless of each specific forest inventory typology

⁷⁵ CANIF-CArbon and NItrogen cycling in Forest ecosystems <u>http://www.bgc-jena.mpg.de/bgc-processes/research/Schulze Euro CANIF.html;</u> Scarascia Mugnozza G., Bauer G., Persson H., Matteucci G., Masci A.(2000). Tree biomass, growth and nutrient pools. In: Schulze E.-D. (edit.) Carbon and Nitrogen Cycling in European forest Ecosystems, Ecological Studies 142, Springer Verlag, Heidelberg. Pp. 49-62. ISBN 3-540-67239-7

⁷⁶ CARBODATA - Carbon Balance Estimates and Resource Management - Support with Data from Project Networks Implemented at European Continental Scale: <u>http://afoludata.jrc.it/carbodat/proj_desc.html</u>

⁷⁷ CARBOINVENT - Multi-source inventory methods for quantifying carbon stocks and stock changes in European forests; http://www.joanneum.at/carboinvent/

⁷⁸ COST Action E21 - Contribution of forests and forestry to mitigate greenhouse effects: <u>http://www.cost.eu/domains_actions/fps/Actions/E21;http://www.afs-journal.org/index.php?option=com_article&access=standard&Itemid=129&url=/articles/forest/pdf/2005/08/F62800f.pdf</u>

	Inventory typology	R
		Root/shoot ratio
	norway spruce	0.29
	silver fir	0.28
	Larches	0.29
	mountain pines	0.36
Stands	mediterranean pines	0.33
Sta	other conifers	0.29
	european beech	0.20
	turkey oak	0.24
	other oaks	0.20
	other broadleaves	0.24
	european beech	0.20
	sweet chestnut	0.28
10	Hornbeams	0.26
Coppices	other oaks	0.20
1do	turkey oak	0.24
0	evergreen oaks	1.00
	other broadleaves	0.24
	Conifers	0.29
	eucalyptuses coppices	0.43
su	other broadleaves coppices	0.24
ntio	poplars stands	0.21
Plantations	other broadleaves stands	0.24
Plc	conifers stands	0.29
	others	0.28
Protective	rupicolous forest	0.42
Prote	riparian forest	0.23

Table A13.5 Root/Shoot ratio and Wood Basic Densities

The biomass stocks and stock changes are converted to carbon units applying the IPCC default carbon fraction (CF) value of 0.47 t C (t d.m.)⁻¹.

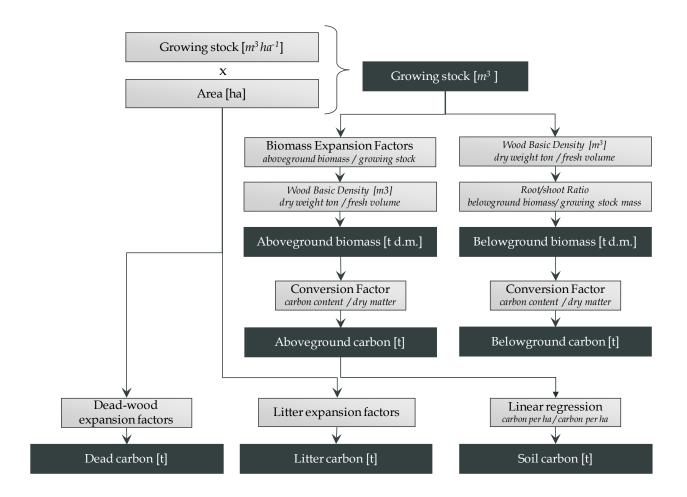
The dead wood mass has been estimated using coefficients calculated from Italian national forest inventory (NFI) survey, in 2008 and 2009, which specifically intended to investigate the carbon storage of forests. Samples of dead-wood were collected across the country from the plots of the national forest inventory network, and their basic densities measured to calculate conversion factors for estimating the dry weight of dead-wood (Di Cosmo et al., 2013). The values used, aggregated at regional level, may be found on the NFL website: http://www.sian.it/inventarioforestale/jsp/dati carguant tab.jsp.

The definition of the deadwood pool, coherent with the definition adopted by the NFI, is related to "All non-living woody biomass not contained in the litter, either standing, lying on the ground, or in the soil. Dead wood includes wood lying on the surface, stumps larger than or equal to 10 cm in diameter and standing trees with DBH > 4,5 cm". Additional explanation on the data and parameters used for deadwood are included in the paper Di Cosmo et al., 2013, and in the NFI website (http://www.sian.it/inventarioforestale/jsp/necromassa.jsp).

In table A13.6 dead wood coefficients are reported.

Table A13.6 Dead-wood expansion factor

	Inventory typology	dead wood (dry matter) t ha ⁻¹
	norway spruce	6.360
	silver fir	7.770
	Larches	3.830
	mountain pines	4.385
stands	mediterranean pines	2.670
sta	other conifers	4.290
	european beech	3.350
	turkey oak	1.770
	other oaks	1.690
	other broadleaves	3.990
	european beech	3.350
	sweet chestnut	12.990
S	hornbeams	2.730
coppices	other oaks	1.690
Idos	turkey oak	1.770
0	evergreen oaks	1.370
	other broadleaves	2.690
	Conifers	4.290
S	eucalyptuses coppices	0.670
plantations	other broadleaves coppices	0.670
ntat	poplars stands	0.480
olar	other broadleaves stands	0.670
	conifers stands	3.040
protective	rupicolous forest	2.730
pro	riparian forest	4.790


Carbon amount contained in litter pool has been estimated using the values of litter carbon content, per hectare, assessed by the Italian national forest inventory. The values used, aggregated at regional level, may be found on the NFI website: http://www.sian.it/inventarioforestale/jsp/dati carquant tab.jsp. The average value of litter organic carbon content, for Italy, is equal to 2.67 t C ha⁻¹.

A comparison between carbon in the aboveground, deadwood and litter pools, estimated with the described methodology, and the II NFI data (INFC2005) is reported in table A13.7.

Table A13.7 Comparison between estimated and INFC2005 carbon stocks

	INFC2005	For-est model	differences	
	t C	t C	t C	%
aboveground	456,857,390	425,240,589	-31,616,801	-6.92
deadwood	15,987,541	15,869,766	-117,775	-0.74
litter	28,170,660	28,138,039	-32,621	-0.12

Figure A13.3: For-est model complete flow-chart

ANNEX 14: FOR-FIRES MODEL

For-fires is a bookkeeping model that calculates the non-CO₂ emissions from fires affecting forest and other wooded land categories. The model is based on the approach developed by Bovio (2007); to this aim, the template used by Carabinieri Force⁷⁹, for each forest event, was modified in 2007 to collect the data needed to implement this approach. The model was implemented by Chiriacò and Perugini (Chiriacò et al., 2013) jointly with ISPRA.

A14.1 Method description

For-fires model is based on the on the equation 2.27 of the 2006 IPCC Guidelines (vol.4, ch. 2):

$$L_{fire} = A \times M_B \times C_f \times G_{ef} \times 10^{-3}$$

where

*L*_{fire} amount of greenhouse gas emissions released from fire

A burned area (hectares)

 $M_{\rm B}$ mass of fuel available for combustion (t ha⁻¹)

C_f combustion factor (dimensionless)

 G_{ef} emission factors (g kg⁻¹ dry matter burnt)

The key driver for fires emissions release is the assessment of the burned and oxidised biomass in each fire event. According to Chiriacò et al. (2013), the combustion factor (C_f) term is the most critical to be estimated as it represents the fraction of pre-disturbance biomass that is actually combusted during the fire event. Its estimation has been carried out based on the approach developed by Bovio (2007), which assess forest fire damage in Italy, taking into account two main elements: the burned forest typology, and the fire intensity (assessed through the scorch height).

The Bovio (2007) approach groups the forest typologies into 9 forest vegetation classes considering the possible effect that a fire event can have on them because of specific forest characteristics and their distribution over the country (Table A14.1).

⁷⁹ the Armed Forces and Police Authority where the State Forestry Service is embedded, following the legislative decree 19/08/2016, n. 177

Forest vegetation class	forest typology
	european beech stands
	sweet chestnut stands
Α	hornbeam stands
	riparian forests
	other broadleaves
	turkey oak stands
В	other oak stands
В	evergreen oak stands
	cork oaks
	Larches
	norway spruce
С	silver fir
	mountain pines above 500 m a.s.l.
	black pine above 500 m a.s.l.
	mountain pines below 500 m asl
_	black pine below 500 m asl
D	mediterranean pines
	other conifers
	european beech coppices
E	sweet chestnut coppices
	turkey oak coppices
F	other oak coppices
-	evergreen oak coppices
	hornbeam coppices
G	shrublands (including mediterranean maquis)
	other broadleaves with a mean height lower than 3.5m
н	(temporary unstocked broadleaves forests)
	other conifers with a mean height than3.5m (temporary
I	unstocked conifer forests)

Table A14.1: Bovio (2007) forest vegetation classes and forest typologies: correspondence matrix

Bovio (2007) assumed that, in each forest vegetation class, the damage level depends on the fire intensity, which, in turn, can be estimated as a function of scorch height. In table A14.2, the damage level as a function of scorch height (and fire intensity), for each forest vegetation class, is shown.

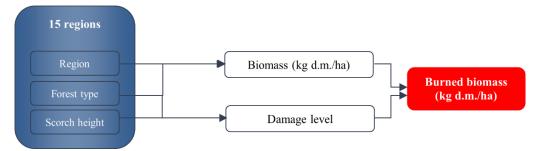
Table A14.2: Damage level of forest typologies as a function of fire intensity and forest vegetation class

Forest vegetation			Scorch height (m	1)	
class	<1	1-2.5	2.5-3.5	3.5-4.5	>4.5
А	0.10	0.15	0.30	0.60	0.90*
В	0.08	0.20	0.30	0.80	0.90
С	0.10	0.25	0.50	0.80	0.90
D	0.08	0.30	0.55	0.85	0.95
E	0.05	0.15	0.40	0.65	0.90*
F	0.05	0.20	0.35	0.60	0.95
G	0.10	0.30	0.60	0.80	0.95
Н	0.30	0.70	0.80	0.90	1.00
	0.25	0.40	0.70	0.90*	1.00*

* values not included in Bovio (2007); they have been assumed based on the damage levels assigned to the other forest vegetation classes for the corresponding scorch height categories

A14.2 Activity data

The activity data needed to estimate the annual loss of biomass (burned) caused by forest fires are:


- year;
- burned area [ha];
- forest typology (27 NFI typologies) to assess the available combustion fuel and the combustion factor;
- mean scorch height [m] to assess the combustion factor.

A detailed database, annually provided by Carabinieri Force, has been used; the database collects data, from 2008 onward, related to any fire event occurred in 15 administrative Italian regions⁸⁰ (the 5 autonomous regions are not included), reporting, for each fire event, the following information:

- year;
- administrative region name;
- burned area [ha];
- forest typology (27 classes in line with the NFI nomenclature);
- scorch height [m];
- fire's type (crown, surface or ground fire).

The database was checked in order to select only the observations with known scorch height (and corresponding damage level), and the assignation of the fire event to a forest category that does exist in the corresponding region according to the NFI⁸¹. For these observations, the burned biomass per hectare is estimated according to the logical pathway summarised in Figure A14.1.

Figure A14.1: Logical pathway to estimate the burned biomass on hectare basis caused by forest fires

Data and information on fire occurrences in the 5 remaining autonomous regions are collected at regional level, with different level of disaggregation and details (e.g., in Sardinia region, the amount of biomass burned is reported instead of the scorch height).

For the period 1990-2007, national statistics on areas affected by fire per region and aggregated forest types are available for (ISTAT, several years [a]). The aggregated forest types are high forest (conifers, broadleaves, mixed) and coppice (simple, compound and degraded).

Therefore, the data used in the estimation process may be subdivided into the following groups with similar characteristics:

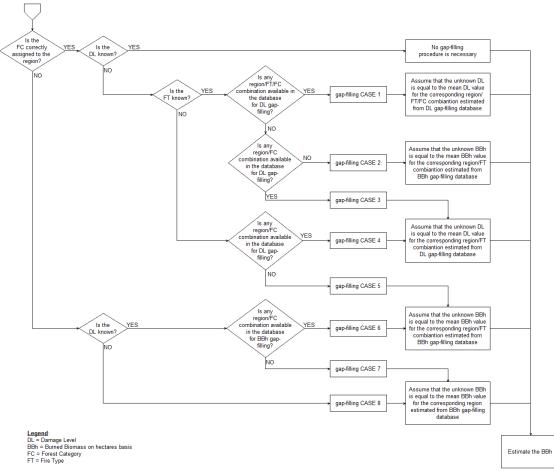
- a. time series from 2008 onward for the 15 Regions: data related to burned area, divided into different forest types, scorch height and fire's type;
- b. time series from 2008 onward for the 5 autonomous regions/provinces: data related to burned area;
- c. time series from 1990 to 2007 for the 20 Italian regions: data related to burned area.

A14.3 Methodological issues

Based on three different datasets identified in the previous section A15.2, different approaches and assumptions have been followed to estimate non-CO₂ emissions from fires.

a. Time series from 2008 onward for the 15 Regions

The estimation of non-CO₂ emissions from fires in the 15 regions has been carried out based on the approach developed by Bovio (Bovio, 2007). The burnt biomass has been assessed, for each fire event,


⁸¹ It is possible that some forest categories have been erroneously assigned to a specific administrative region because of problems in the forest identification on the field (e.g. due to the important damage caused by the fire event).

based on the damage level (assessed through the scorch height) and the forest typologies affected by fire. These two elements allow an assessment of the fraction of biomass burnt in a fire event.

In case of some data missing, record by record, a gap filling procedure has been specifically applied according to the causes of the missing or unreliable data. The main causes are:

- 1. Scorch height data missing (unknown damage level)
- 2. No volume is associated with the record this is due to the probable misclassification of the forest type by the surveyors, which have attributed a forest type that is not present in the region, thus no data from NFI can be attributed (unknown damage level)
- 3. Scorch height and volume missing: In case information on both issues is missing (unknown damage level)

For these fire events, the gap-filling procedure follows a logical framework shown in figure A14.2.

Figure A14.2: Workflow of gap-filling procedure

In summary, it is not possible to directly calculate the burnt biomass if:

- the damage level (which is derived from the flame height) is missing;
- the forest category burned by a fire event is not correctly assigned to a specific region.

When these issues occur singularly or simultaneously, damage level or burnt biomass per hectare are assigned on the basis of the corresponding mean values estimated from the full dataset for the period 2008-2016 considering the region/forest category/fire type parameters (or their combination), when available. This choice, i.e., use of 2008-2016 data to deduce average values, estimation is due to the fact that:

- the year 2017 was not included in the dataset since the 2017 was not representative; in fact it was characterised by an extremely dry summer period, in which the overall surface covered by fires was anomalous compared to the past (on average +263% over the period 1990-2016) and in which the damage caused by the fires themselves was significantly more important than in the previous period (2008-2016);
- a possible annual extension of this period from 2008 to the last reported year constantly affects the gap-filling procedure causing annually recalculations of the relative GHG emissions along the whole time-series.

Finally, it has to be noted that the average values, instead of the maximum average ones, have been applied to implement the gap-filling procedure, addressing the 2019 UNFCCC review process's recommendation. Finally, the total burned biomass is estimated multiplying the burned (lost) biomass per hectare by the burned area of the corresponding fire event.

b. Time series from 2008 onward for the 5 autonomous regions/provinces

The emissions from fires have been estimated on the basis of the average values assessed for the 15 regions from 2008 on. In particular the burnt biomass per hectare for fires has been estimated by applying the above-described gap filling procedure. The implementation consists in the following:

- A. clustering the 15 regions (those considered in the full dataset 208-2016) into three groups with similar climatic conditions and forest types (Northern, Central and Southern Italy);
- B. estimating, for each cluster, the burnt biomass per hectare as the mean of burnt volume per hectare of the related regions;
- C. classifying the 5 autonomous regions on the basis of the clusters identified at step A;
- D. assigning to each of the 5 autonomous regions the burnt biomass per hectare of the corresponding cluster estimated at step B.

Finally, the total burned biomass is estimated multiplying the estimated burned (lost) biomass per hectare by the total annual burned area for each year of the time-series (1990-2019), a datum that is available from ISTAT (several years [a]).

c. Time series from 1990 to 2007 for the 20 Italian regions

The emissions from fires for the period 1990-2007 for the 20 Italian regions have been estimated based on the average values computed among 2008 and 2016, taking into account the fire's type and each region. The average values, instead of the maximum average values adopted in the previous submissions, have implemented to address the 2019 UNFCCC review process's recommendation. The selected value of released carbon is then multiplied by the burned area of the region in each year from 1990 to 2007.

CH₄, N₂O, CO and NO_x have been estimated following the IPCC 2006 methodology (eq. 2.27, vol. 4, ch. 4), multiplying the C released, estimated as described above, by the emission ratios elaborated for EMEP/EEA 2009 (Table 3.3, ch. 11.B), as shown in the table A14.3; in the same table emission factors for CO, NMVOC NH₃ and SO₂ also reported.

Pollutant/GHG	emission factor	unit	reference
со	0.23	g X/g C	EMEP-EEA 2009
CH₄	0.015	g X/g C	EMEP-EEA 2009
NMVOC	0.021	g X∕g C	EMEP-EEA 2009
NOx	0.008	g X∕g C	EMEP-EEA 2009
NH ₃	0.0018	g X∕g C	EMEP-EEA 2009
N ₂ O	0.0004	g X∕g C	EMEP-EEA 2009
SO ₂	0.0016	g X/g C	EMEP-EEA 2009

Table A14.3: CO, CH₄, NMVOC, NO_x, NH₃, N₂O, SO₂ emission factors

PM10, PM2.5, dioxin and polycyclic aromatic hydrocarbon (PAH) emissions have been also estimated, by multiplying the burnt biomass (dry matter) by the emission factors reported in the table A14.4. For black carbon, emissions have been estimated considering a percentage, i.e., 42%, of the PM2.5 emissions.

pollutant	emission factor	unit	reference
PM10	0.011	g X/g C	EMEP-EEA 2009
PM2.5	0.009	g X/g C	EMEP-EEA 2009
Dioxin	10	ng C/kg C	EEA-EMEP 2013
РАН	8.58	g/t	EMEP-EEA 2009

Table A14.4: PM10, PM2.5, dioxin, and polycyclic aromatic hydrocarbon (PAH) emission factors

RAPPORTI 383/2023